You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
model = AutoModelForSequenceClassification.from_pretrained(
"distilbert/distilbert-base-uncased-finetuned-sst-2-english"
)
Initialize the sentiment-analysis pipeline with the custom tokenizer and PyTorch model
classifier = pipeline(
"sentiment-analysis",
model=model,
framework='pt', # Use PyTorch
tokenizer=tokenizer,
device=device # Use GPU if available, otherwise use CPU
)
result = classifier(
["I've been waiting for a HuggingFace course my whole life.", "I hate this so much!"]
)
Hello,
Going via the training.
Some small ideas for improvements.
#######################
Transformers, what can they do?
https://huggingface.co/learn/nlp-course/en/chapter1/3
A)
Current code sample
is incomplete
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
classifier("I've been waiting for a HuggingFace course my whole life.")
CORRECT COULD BE
B)
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
result = classifier("I've been waiting for a HuggingFace course my whole life.")
print(result)
C)
Even better could be
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Suppresses TensorFlow logs
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' # Disables oneDNN custom operations
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import warnings
import torch
import tensorflow as tf
tf.get_logger().setLevel('ERROR')
Set environment variable to disable oneDNN custom operations warning (specific to TensorFlow)
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
Suppress warnings
warnings.filterwarnings('ignore', category=DeprecationWarning)
Check if a GPU is available
device = 0 if torch.cuda.is_available() else -1
Load the tokenizer with the clean_up_tokenization_spaces parameter set
tokenizer = AutoTokenizer.from_pretrained(
"distilbert/distilbert-base-uncased-finetuned-sst-2-english",
clean_up_tokenization_spaces=True
)
Load the model in PyTorch
model = AutoModelForSequenceClassification.from_pretrained(
"distilbert/distilbert-base-uncased-finetuned-sst-2-english"
)
Initialize the sentiment-analysis pipeline with the custom tokenizer and PyTorch model
classifier = pipeline(
"sentiment-analysis",
model=model,
framework='pt', # Use PyTorch
tokenizer=tokenizer,
device=device # Use GPU if available, otherwise use CPU
)
result = classifier(
["I've been waiting for a HuggingFace course my whole life.", "I hate this so much!"]
)
print(result)
######################
https://huggingface.co/learn/nlp-course/en/chapter8/5
transformers-cli env
transformers
version: 4.44.0The text was updated successfully, but these errors were encountered: