From 29f23f1fa9dbcb148718ff852a60a495a87471ad Mon Sep 17 00:00:00 2001 From: Zach Mueller Date: Fri, 6 Sep 2024 02:57:48 -0400 Subject: [PATCH] Apply deprecated `evaluation_strategy` (#1819) Apply deprecation `evaluation_strategy` --- .../training/image-classification/README.md | 2 +- optimum/onnxruntime/training_args.py | 22 +++++++++---------- 2 files changed, 12 insertions(+), 12 deletions(-) diff --git a/examples/onnxruntime/training/image-classification/README.md b/examples/onnxruntime/training/image-classification/README.md index bf4bed8ee43..967942e7a93 100644 --- a/examples/onnxruntime/training/image-classification/README.md +++ b/examples/onnxruntime/training/image-classification/README.md @@ -39,7 +39,7 @@ torchrun --nproc_per_node=NUM_GPUS_YOU_HAVE run_image_classification.py \ --per_device_eval_batch_size 32 \ --logging_strategy steps \ --logging_steps 10 \ - --evaluation_strategy epoch \ + --eval_strategy epoch \ --seed 1337 ``` diff --git a/optimum/onnxruntime/training_args.py b/optimum/onnxruntime/training_args.py index 6aec362c07c..6135abc1376 100644 --- a/optimum/onnxruntime/training_args.py +++ b/optimum/onnxruntime/training_args.py @@ -117,32 +117,32 @@ def __post_init__(self): if self.disable_tqdm is None: self.disable_tqdm = logger.getEffectiveLevel() > logging.WARN - if isinstance(self.evaluation_strategy, EvaluationStrategy): + if isinstance(self.eval_strategy, EvaluationStrategy): warnings.warn( - "using `EvaluationStrategy` for `evaluation_strategy` is deprecated and will be removed in version 5" + "using `EvaluationStrategy` for `eval_strategy` is deprecated and will be removed in version 5" " of 🤗 Transformers. Use `IntervalStrategy` instead", FutureWarning, ) # Go back to the underlying string or we won't be able to instantiate `IntervalStrategy` on it. - self.evaluation_strategy = self.evaluation_strategy.value + self.eval_strategy = self.eval_strategy.value - self.evaluation_strategy = IntervalStrategy(self.evaluation_strategy) + self.eval_strategy = IntervalStrategy(self.eval_strategy) self.logging_strategy = IntervalStrategy(self.logging_strategy) self.save_strategy = IntervalStrategy(self.save_strategy) self.hub_strategy = HubStrategy(self.hub_strategy) self.lr_scheduler_type = SchedulerType(self.lr_scheduler_type) - if self.do_eval is False and self.evaluation_strategy != IntervalStrategy.NO: + if self.do_eval is False and self.eval_strategy != IntervalStrategy.NO: self.do_eval = True # eval_steps has to be defined and non-zero, fallbacks to logging_steps if the latter is non-zero - if self.evaluation_strategy == IntervalStrategy.STEPS and (self.eval_steps is None or self.eval_steps == 0): + if self.eval_strategy == IntervalStrategy.STEPS and (self.eval_steps is None or self.eval_steps == 0): if self.logging_steps > 0: logger.info(f"using `logging_steps` to initialize `eval_steps` to {self.logging_steps}") self.eval_steps = self.logging_steps else: raise ValueError( - f"evaluation strategy {self.evaluation_strategy} requires either non-zero --eval_steps or" + f"evaluation strategy {self.eval_strategy} requires either non-zero --eval_steps or" " --logging_steps" ) @@ -154,7 +154,7 @@ def __post_init__(self): if self.logging_steps != int(self.logging_steps): raise ValueError(f"--logging_steps must be an integer if bigger than 1: {self.logging_steps}") self.logging_steps = int(self.logging_steps) - if self.evaluation_strategy == IntervalStrategy.STEPS and self.eval_steps > 1: + if self.eval_strategy == IntervalStrategy.STEPS and self.eval_steps > 1: if self.eval_steps != int(self.eval_steps): raise ValueError(f"--eval_steps must be an integer if bigger than 1: {self.eval_steps}") self.eval_steps = int(self.eval_steps) @@ -165,13 +165,13 @@ def __post_init__(self): # Sanity checks for load_best_model_at_end: we require save and eval strategies to be compatible. if self.load_best_model_at_end: - if self.evaluation_strategy != self.save_strategy: + if self.eval_strategy != self.save_strategy: raise ValueError( "--load_best_model_at_end requires the saving steps to be a multiple of the evaluation " "steps, which cannot get guaranteed when mixing ratio and absolute steps for save_steps " f"{self.save_steps} and eval_steps {self.eval_steps}." ) - if self.evaluation_strategy == IntervalStrategy.STEPS and self.save_steps % self.eval_steps != 0: + if self.eval_strategy == IntervalStrategy.STEPS and self.save_steps % self.eval_steps != 0: if self.eval_steps < 1 or self.save_steps < 1: if not (self.eval_steps < 1 and self.save_steps < 1): raise ValueError( @@ -244,7 +244,7 @@ def __post_init__(self): ) if self.lr_scheduler_type == SchedulerType.REDUCE_ON_PLATEAU: - if self.evaluation_strategy == IntervalStrategy.NO: + if self.eval_strategy == IntervalStrategy.NO: raise ValueError("lr_scheduler_type reduce_lr_on_plateau requires an eval strategy") if not is_torch_available(): raise ValueError("lr_scheduler_type reduce_lr_on_plateau requires torch>=0.2.0")