-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel-CARA.lyx
709 lines (535 loc) · 13.8 KB
/
model-CARA.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "times" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
\begin_inset Formula
\begin{equation}
U(N_{1},N_{2})=u(Y_{1})+u(Y_{2})+a(N_{1}+N_{2})\label{eq:U}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula $u$
\end_inset
is now CARA
\begin_inset Formula $u(y)=-e^{-\gamma y}$
\end_inset
, with
\begin_inset Formula $u'(y)=\gamma e^{-\gamma y}$
\end_inset
.
\end_layout
\begin_layout Standard
Period 1 and period 2 income are:
\begin_inset Formula
\begin{align}
Y_{1} & =1-s-bN_{1}\label{eq:Y1}\\
Y_{2} & =w(s,h)(1-bN_{2})\label{eq:Y2}
\end{align}
\end_inset
with
\begin_inset Formula $w(s,h)=sh$
\end_inset
.
\end_layout
\begin_layout Standard
Write the Lagrangian of utility
\begin_inset Formula $U$
\end_inset
(
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:U"
plural "false"
caps "false"
noprefix "false"
\end_inset
) as
\begin_inset Formula
\[
\mathcal{L}(N_{1},N_{2},s)=u(Y_{1})+u(Y_{2})+a(N_{1}+N_{2})+\lambda_{1}N_{1}+\lambda_{2}(\frac{1}{b}-s-N_{1})+\lambda_{3}N_{2}+\lambda_{4}(\frac{1}{b}-N_{2})+\mu_{1}s+\mu_{2}(1-s)
\]
\end_inset
\end_layout
\begin_layout Standard
with conditions
\begin_inset Formula
\begin{align*}
\frac{d\mathcal{L}}{dN_{1}} & =-\gamma be^{-\gamma Y_{1}}+a+\lambda_{1}-\lambda_{2}=0\textrm{ with }\lambda_{1}N_{1}=0,\lambda_{2}(\frac{1}{b}-s-N_{1})=0\\
\frac{d\mathcal{L}}{dN_{2}} & =-\gamma shbe^{-\gamma Y_{2}}+a+\lambda_{3}-\lambda_{4}=0\textrm{ with }\lambda_{3}N_{2}=0,\lambda_{4}(\frac{1}{b}-N_{2})=0\\
\frac{d\mathcal{L}}{ds} & =-\gamma e^{-\gamma Y_{1}}+\gamma h(1-bN_{2})e^{-\gamma Y_{2}}+\mu_{1}-\mu_{2}=0\textrm{ with }\mu_{1}s=0,\mu_{2}(1-s)=0\\
N_{1},N_{2},s,\mathbf{\lambda},\mathbf{\mu} & \ge0\\
& s\le1,N_{1}\le\frac{1-s}{b},N_{2}\le\frac{1}{b}.
\end{align*}
\end_inset
\end_layout
\begin_layout Subsection
\series bold
Solving for
\begin_inset Formula $N_{1}$
\end_inset
:
\series default
\begin_inset Formula
\begin{align}
-\gamma be^{-\gamma Y_{1}}+a & \lesseqqgtr0\textrm{ as }N_{1}=0,N_{1}\in(0,\frac{1-s}{b}),N_{1}=\frac{1-s}{b}\nonumber \\
\frac{a}{\gamma b} & \lesseqqgtr e^{-\gamma Y_{1}}\nonumber \\
\log(\frac{a}{\gamma b}) & \lesseqqgtr-\gamma Y_{1}=-\gamma(1-s-bN_{1})\nonumber \\
\frac{1}{\gamma}\log(\frac{a}{\gamma b}) & \lesseqqgtr bN_{1}+s-1\nonumber \\
\frac{1}{b\gamma}\log(\frac{a}{\gamma b})+\frac{1-s}{b} & \lesseqqgtr N_{1}\textrm{ as }N_{1}=0,N_{1}\in(0,\frac{1-s}{b}),N_{1}=\frac{1-s}{b}.\label{eq:N1cond}
\end{align}
\end_inset
\end_layout
\begin_layout Standard
Note that if
\begin_inset Formula $a>\gamma b$
\end_inset
then we must have
\begin_inset Formula $N_{1}=\frac{1-s}{b}$
\end_inset
.
\end_layout
\begin_layout Standard
Equally if
\begin_inset Formula $\frac{1}{b\gamma}\log(\frac{a}{\gamma b})+\frac{1}{b}<0\Leftrightarrow\log(\frac{a}{\gamma b})<-\gamma$
\end_inset
then we must have
\begin_inset Formula $N_{1}=0$
\end_inset
for any
\begin_inset Formula $s$
\end_inset
.
\end_layout
\begin_layout Subsection
\series bold
Solving for
\begin_inset Formula $N_{2}$
\end_inset
:
\series default
\begin_inset Formula
\begin{align}
-\gamma shbe^{-\gamma Y_{2}}+a & \lesseqqgtr0\textrm{ as }N_{2}=0,N_{2}\in(0,\frac{1}{b}),N_{2}=\frac{1}{b}\nonumber \\
\frac{a}{\gamma shb} & \lesseqqgtr e^{-\gamma Y_{2}}\nonumber \\
\log(\frac{a}{\gamma shb}) & \lesseqqgtr-\gamma Y_{2}=-\gamma(sh(1-bN_{2}))\nonumber \\
\frac{1}{\gamma sh}\log(\frac{a}{\gamma shb}) & \lesseqqgtr bN_{2}-1\nonumber \\
\frac{1}{b}+\frac{1}{b\gamma sh}\log(\frac{a}{\gamma shb}) & \lesseqqgtr N_{2}\textrm{ as }N_{2}=0,N_{2}\in(0,\frac{1}{b}),N_{2}=\frac{1}{b}.\label{eq:N2cond}
\end{align}
\end_inset
\end_layout
\begin_layout Standard
If
\begin_inset Formula $a>\gamma shb$
\end_inset
, in particular always if
\begin_inset Formula $a>\gamma hb$
\end_inset
, then we have
\begin_inset Formula $N_{2}=\frac{1}{b}$
\end_inset
.
\end_layout
\begin_layout Standard
If
\begin_inset Formula $\frac{1}{b}+\frac{1}{b\gamma sh}\log(\frac{a}{\gamma shb})<0\Leftrightarrow\log(\frac{a}{\gamma shb})<-\gamma sh$
\end_inset
and in particular always if
\begin_inset Formula $\log(\frac{a}{\gamma shb})<-\gamma h$
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
but note
\begin_inset Formula $s$
\end_inset
is still in there
\end_layout
\end_inset
then
\begin_inset Formula $N_{2}=0$
\end_inset
.
\end_layout
\begin_layout Subsection
\series bold
Solving for
\begin_inset Formula $s$
\end_inset
:
\series default
\begin_inset Formula
\begin{align}
-\gamma e^{-\gamma Y_{1}}+\gamma h(1-bN_{2})e^{-\gamma Y_{2}} & \lesseqqgtr0\textrm{ as }s=0,s\in(0,1),s=1\nonumber \\
h(1-bN_{2})e^{-\gamma Y_{2}} & \lesseqqgtr e^{-\gamma Y_{1}}\nonumber \\
\log(h(1-bN_{2}))-\gamma Y_{2} & \lesseqqgtr-\gamma Y_{1}\nonumber \\
\frac{1}{\gamma}\log(h(1-bN_{2})) & \lesseqqgtr Y_{2}-Y_{1}=sh(1-bN_{2})-(1-s-bN_{1})\nonumber \\
\frac{1}{\gamma}\log(h(1-bN_{2})) & \lesseqqgtr s(h(1-bN_{2})+1)-(1-bN_{1})\nonumber \\
\frac{\frac{1}{\gamma}\log(h(1-bN_{2}))+(1-bN_{1})}{1+h(1-bN_{2})} & \lesseqqgtr s\textrm{ as }s=0,s\in(0,1),s=1.\label{eq:scond}
\end{align}
\end_inset
\end_layout
\begin_layout Standard
Note that the above, specifically line 2, implies
\begin_inset Formula $s=0$
\end_inset
whenever
\begin_inset Formula $N_{2}=1/b$
\end_inset
.
\end_layout
\begin_layout Subsection
\series bold
Low
\begin_inset Formula $h$
\end_inset
\end_layout
\begin_layout Standard
Let's start from low
\begin_inset Formula $h$
\end_inset
.
Then
\begin_inset Formula $a>\gamma hb$
\end_inset
and so we have
\begin_inset Formula $N_{2}=\frac{1}{b}$
\end_inset
.
Note that the second line of the above chain becomes
\begin_inset Formula $0<e^{0}$
\end_inset
which is always true, so
\begin_inset Formula $s=0$
\end_inset
.
\begin_inset Formula $N_{1}$
\end_inset
then, like
\begin_inset Formula $N_{2}$
\end_inset
, solely depends on
\begin_inset Formula $a,\gamma$
\end_inset
and
\begin_inset Formula $b$
\end_inset
.
So at these low values,
\begin_inset Formula $N^{*}$
\end_inset
is constant in
\begin_inset Formula $h$
\end_inset
.
\end_layout
\begin_layout Standard
What's the maximum for this? (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:scond"
plural "false"
caps "false"
noprefix "false"
\end_inset
) is satisfied for
\begin_inset Formula $s=0$
\end_inset
so long as
\begin_inset Formula $N_{2}=1/b$
\end_inset
.
The condition from (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:N2cond"
\end_inset
) line 1 for
\begin_inset Formula $N_{2}=1/b$
\end_inset
is also satisfied so long as
\begin_inset Formula $s=0$
\end_inset
.
(If you're out of the labour market having kids, no point in getting educated,
and if you didn't get educated, you may as well have kids.
The condition for
\begin_inset Formula $N_{1}$
\end_inset
from (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:N1cond"
\end_inset
) does not depend on
\begin_inset Formula $h$
\end_inset
except via
\begin_inset Formula $s$
\end_inset
, so if
\begin_inset Formula $s=0$
\end_inset
it's satisfied for any
\begin_inset Formula $h$
\end_inset
.
But NB we haven't yet shown global concavity, so this might be only a local
optimum.
\end_layout
\begin_layout Subsection
\series bold
High
\begin_inset Formula $h$
\end_inset
\end_layout
\begin_layout Standard
Now let's make
\begin_inset Formula $h$
\end_inset
high.
If it is high enough, then from (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:N2cond"
\end_inset
) we can't have
\begin_inset Formula $N_{2}=\frac{1}{b}$
\end_inset
.
That then implies that the term (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:scond"
\end_inset
) is proportionate to
\begin_inset Formula $\log(h)/h$
\end_inset
which approaches zero asymptotically.
I.e.
\begin_inset Formula $s^{*}$
\end_inset
is slowly declining.
It also implies
\begin_inset Formula $ds^{*}/dh\rightarrow0$
\end_inset
, I think.
Since
\begin_inset Formula $s^{*}$
\end_inset
is slowly declining
\begin_inset Formula $N_{1}$
\end_inset
is slowly increasing, towards
\begin_inset Formula $\frac{1}{b\gamma}\log(\frac{a}{\gamma b})+\frac{1}{b}$
\end_inset
if that's a valid number for it.
(If not it stays at 0.) Similarly
\begin_inset Formula $N_{2}$
\end_inset
increases towards
\begin_inset Formula $1/b$
\end_inset
since
\begin_inset Formula $\frac{1}{b\gamma sh}\log(\frac{a}{\gamma shb})<0$
\end_inset
and approaches 0 as
\begin_inset Formula $h$
\end_inset
gets large.
\end_layout
\begin_layout Subsection
Interior equilibrium
\end_layout
\begin_layout Standard
Let's seek an interior equilibrium.
Then
\begin_inset Formula
\begin{align*}
s & =\frac{\frac{1}{\gamma}\log(h(1-bN_{2}))+(1-bN_{1})}{1+h(1-bN_{2})}\in(0,1);\\
N_{2} & =\frac{1}{b}+\frac{1}{b\gamma sh}\log(\frac{a}{\gamma shb})\in(0,\frac{1}{b});\\
N_{1} & =\frac{1}{b\gamma}\log(\frac{a}{\gamma b})+\frac{1-s}{b}\in(0,\frac{1-s}{b})
\end{align*}
\end_inset
\end_layout
\begin_layout Standard
This clearly requires
\begin_inset Formula $a<\gamma b$
\end_inset
and
\begin_inset Formula $a<\gamma shb$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
indeed in compute-CARA.jl you get a stark switch of regimes if this condition
is violated, from babies/no education to no babies/education.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
We'll insert
\begin_inset Formula $N_{1}$
\end_inset
and
\begin_inset Formula $N_{2}$
\end_inset
into
\begin_inset Formula $s$
\end_inset
:
\begin_inset Formula
\begin{align*}
s & =\frac{\frac{1}{\gamma}\log(-\frac{1}{\gamma s}\log(\frac{a}{\gamma shb}))-\frac{1}{\gamma}\log(\frac{a}{\gamma b})+s}{1-\frac{1}{\gamma s}\log(\frac{a}{\gamma shb})}\\
& =\frac{\log(-\frac{1}{\gamma s}\log(\frac{a}{\gamma shb}))-\log(\frac{a}{\gamma b})+s}{\gamma-\frac{1}{s}\log(\frac{a}{\gamma shb})}\\
s(1-\frac{1}{\gamma-\frac{1}{s}\log(\frac{a}{\gamma shb})}) & =\frac{\log(-\frac{1}{\gamma s}\log(\frac{a}{\gamma shb}))-\log(\frac{a}{\gamma b})}{\gamma-\frac{1}{s}\log(\frac{a}{\gamma shb})}\\
s(\gamma-\frac{1}{s}\log(\frac{a}{\gamma shb})-1) & =\log(-\frac{1}{\gamma s}\log(\frac{a}{\gamma shb}))-\log(\frac{a}{\gamma b})\\
s(\gamma-1)-\log(\frac{a}{\gamma shb}) & =\log(-\frac{1}{\gamma s}\log(\frac{a}{\gamma shb}))-\log(\frac{a}{\gamma b})\\
s(\gamma-1) & =\log(-\frac{1}{\gamma s}\log(\frac{a}{\gamma shb}))-\log(\frac{a}{\gamma b})+\log(\frac{a}{\gamma shb})\\
s(\gamma-1) & =\log(-\frac{1}{\gamma s}\log(\frac{a}{\gamma shb}))-\log(sh)\\
s & =\frac{\log(\frac{1}{\gamma s}\log(\frac{\gamma shb}{a}))-\log(sh)}{\gamma-1}
\end{align*}
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Formula
\[
\frac{d}{ds}\frac{1}{\gamma s}\log(\frac{\gamma shb}{a})=\frac{d}{ds}\log((\frac{\gamma shb}{a})^{1/\gamma s})\textrm{ signed by}\frac{d}{ds}(\frac{\gamma shb}{a})^{1/\gamma s}
\]
\end_inset
which is
\begin_inset Formula
\[
\log\frac{\gamma shb}{a}(\frac{-\gamma}{(\gamma s)^{2}})\frac{\gamma hb}{a}(\frac{\gamma shb}{a})^{1/\gamma s}<0\textrm{ since }\gamma shb>a.
\]
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
With
\begin_inset Formula $N_{1}=0$
\end_inset
\end_layout
\begin_layout Standard
x
\end_layout
\begin_layout Standard
x
\end_layout
\begin_layout Standard
In between these values, what if
\begin_inset Formula $a>\gamma b$
\end_inset
? Then
\begin_inset Formula $N_{1}=(1-s)/b$
\end_inset
and (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:scond"
\end_inset
) becomes
\begin_inset Formula
\begin{align*}
\frac{\frac{1}{\gamma}\log(h(1-bN_{2}))+s}{1+h(1-bN_{2})} & \lesseqqgtr s\textrm{ as }s=0,s\in(0,1),s=1.\\
\frac{1}{\gamma}\log(h(1-bN_{2})) & \lesseqqgtr s(h(1-bN_{2}))\\
\frac{1}{\gamma h(1-bN_{2})}\log(h(1-bN_{2})) & \lesseqqgtr s\textrm{ as }s=0,s\in(0,1),s=1.
\end{align*}
\end_inset
\end_layout
\begin_layout Standard
Also from (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:N2cond"
\end_inset
):
\begin_inset Formula
\[
\frac{1}{b}+\frac{1}{b\gamma sh}\log(\frac{a}{\gamma shb})\lesseqqgtr N_{2}\textrm{ as }N_{2}=0,N_{1}\in(0,\frac{1}{b}),N_{2}=\frac{1}{b}.
\]
\end_inset
\end_layout
\end_body
\end_document