-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel-appendix.Rmd
484 lines (407 loc) · 20 KB
/
model-appendix.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
\section*{Solution for the one-period model}
Differentiating and setting $\frac{dU}{dN}=0$ gives the first order
condition for an optimal choice of children $N^{*}>0$:
\[
\frac{bW}{(W(1-bN^{*}))^{\sigma}}\ge a\textrm{, with equality if }N^{*}>0.
\]
Rearranging gives
\begin{equation}
N^{*}=\max\left\{ \frac{1}{b}\left(1-\left(\frac{b}{a}\right)^{1/\sigma}W^{(1-\sigma)/\sigma}\right),0\right\} .\label{eq:N-one-period}
\end{equation}
Note that when $\sigma<1$, for high enough $W$, $N^{*}=0$. Differentiating
gives the effect of wages on fertility for $N^{*}>0$. This is also
the fertility-human capital relationship:
\begin{equation}
\frac{dN^{*}}{dh}=\frac{dN^{*}}{dW}=-\frac{1}{b}\left(\frac{b}{a}\right)^{1/\sigma}\frac{1-\sigma}{\sigma}W^{(1-2\sigma)/\sigma}.\label{eq:DNdW-one-period}
\end{equation}
This is negative if $\sigma<1$. Also,
\[
\frac{d^{2}N^{*}}{dW^{2}}=-\frac{1}{b}\left(\frac{b}{a}\right)^{1/\sigma}\frac{1-\sigma}{\sigma}\frac{1-2\sigma}{\sigma}W^{(1-3\sigma)/\sigma}
\]
For $0.5<\sigma<1$, this is positive, so the effect of fertility
on wages shrinks towards zero as wages increase (and becomes 0 when
$N^{*}=0$). Next, we consider the time cost of children $b$:
\[
\frac{d^{2}N^{*}}{dWdb}=-\left(\frac{1}{a}\right)^{1/\sigma}\left(\frac{1-\sigma}{\sigma}\right)^{2}(Wb)^{(1-2\sigma)/\sigma}<0.
\]
Lastly we consider the effect of $a$. From (\ref{eq:N-one-period}),
$N^{*}$ is increasing in $a$. Differentiating (\ref{eq:DNdW-one-period})
by $a$ gives
\[
\frac{d^{2}N^{*}}{dadW}=b^{1/\sigma-1}\frac{1-\sigma}{\sigma^{2}}W^{(1-2\sigma)/\sigma}a^{-1/\sigma-1}
\]
which is positive for $\sigma<1$.
\section*{Solution for the two-period model}
Period 1 and period 2 income are:
\begin{align}
Y_{1} & =1-s-bN_{1}\label{eq:Y1}\\
Y_{2} & =w(s,h)(1-bN_{2})\label{eq:Y2}
\end{align}
Write the Lagrangian of utility $U$ (\ref{eq:U}) as
\[
\mathcal{L}(N_{1},N_{2},s)=u(Y_{1})+u(Y_{2})+a(N_{1}+N_{2})+\lambda_{1}N_{1}+\lambda_{2}N_{2}+\lambda_{3}(\frac{1}{b}-N_{2})+\mu s
\]
Lemma \ref{lemma-concavity} below shows that if $\sigma>0.5$, this
problem is globally concave, guaranteeing that the first order conditions
identify a unique solution. We assume $\sigma>0.5$ from here on.
Plugging (\ref{eq:Y1}) and (\ref{eq:Y2}) into the above, we can
derive the Karush-Kuhn-Tucker conditions for an optimum $(N_{1}^{*},N_{2}^{*},s^{*})$
as:
\begin{align}
\frac{d\mathcal{L}}{dN_{1}}=-bY_{1}^{-\sigma}+a+\lambda_{1} & =0\textrm{, with }\lambda_{1}=0\textrm{ if }N_{1}^{*}>0;\label{eq:kkt1}\\
\frac{d\mathcal{L}}{dN_{2}}=-bs^{*}hY_{2}^{-\sigma}+a+\lambda_{2} & -\lambda_{3}=0\textrm{, with }\lambda_{2}=0\textrm{ if }N_{2}^{*}>0,\lambda_{3}=0\textrm{ if }N_{2}^{*}<\frac{1}{b};\label{eq:kkt2}\\
\frac{d\mathcal{L}}{ds}=-Y_{1}^{-\sigma}+h(1-bN_{2}^{*})Y_{2}^{-\sigma}+\mu & =0;\label{eq:kkt3}\\
N_{1}^{*},N_{2}^{*},s^{*},\lambda_{1},\lambda_{2},\lambda_{3},\mu & \ge0;N_{2}^{*}\le\frac{1}{b}.
\end{align}
Note that the Inada condition (that marginal utility of income grows without
bound as income approaches zero, $\lim_{x\rightarrow0}u'(x)=\infty$)
for period 1 rules out $s^{*}=1$ and $N_{1}=1/b$, so we need not
impose these constraints explicitly. Also, so long as $N_{2}^{*}<1/b$,
the same condition rules out $s^{*}=0$. We consider four cases,
of which only three can occur.
\subsection*{Case 1: $N_{1}^{*}>0,N_{2}^{*}>0$}
Rearranging (\ref{eq:kkt1}), (\ref{eq:kkt2}) and (\ref{eq:kkt3})
gives:
\begin{align}
N_{1}^{*} & =\frac{1}{b}\left(1-s^{*}-\left(\frac{b}{a}\right)^{1/\sigma}\right);\label{eq:N11}\\
N_{2}^{*} & =\frac{1}{b}\left(1-\left(\frac{b}{a}\right)^{1/\sigma}(s^{*}h)^{(1-\sigma)/\sigma}\right);\label{eq:N21}\\
s^{*} & =\frac{1-bN_{1}^{*}}{1+\left((1-bN_{2}^{*})h\right)^{1-1/\sigma}}.
\end{align}
Plugging the expressions for $N_{1}^{*}$ and $N_{2}^{*}$ into $s^{*}$ gives
\[
s^{*}=\frac{s^{*}+\left(\frac{b}{a}\right)^{1/\sigma}}{1+\left(\left(\frac{b}{a}\right)^{1/\sigma}s^{*(1-\sigma)/\sigma}h{}^{1/\sigma}\right)^{1-1/\sigma}}
\]
which simplifies to
\begin{equation}
s^{*}=\left(\frac{b}{a}\right)^{1/(2\sigma-1)}h^{(1-\sigma)/(2\sigma-1)}.\label{eq:s1}
\end{equation}
Plugging the above into (\ref{eq:N11}) and (\ref{eq:N21}) gives:
\begin{align*}
N_{1}^{*} & =\frac{1}{b}\left(1-\left(\frac{b}{a}\right)^{1/(2\sigma-1)}h^{(1-\sigma)/(2\sigma-1)}-\left(\frac{b}{a}\right)^{1/\sigma}\right);\\
N_{2}^{*} & =\frac{1}{b}\left(1-\left(\frac{b}{a}\right)^{1/(2\sigma-1)}h^{(1-\sigma)/(2\sigma-1)}\right).
\end{align*}
Note that that $N_{1}^{*}<N_{2}^{*}$. For these both to be positive
requires low values of $h$ if $\sigma<1$ and high values of $h$
if $\sigma>1$. Also:
\[
w(s^{*},h)\equiv s^{*}h=\left(\frac{b}{a}\right)^{1/(2\sigma-1)}h^{\sigma/(2\sigma-1)}.
\]
Observe that $w(s^{*},h)$ is increasing in $h$ for $\sigma>0.5$,
and convex iff $0.5<\sigma<1$.
While $N_{1}^{*}$ and $N_{2}^{*}$ are positive, they have the same
derivative with respect to $h$:
\begin{equation}
\frac{dN_{t}^{*}}{dh}=-\frac{1}{b}\left(\frac{b}{a}\right)^{1/(2\sigma-1)}\frac{1-\sigma}{2\sigma-1}h^{(1-\sigma)/(2\sigma-1)-1}\label{eq:dNdh1}
\end{equation}
Examining this and expression (\ref{eq:s1}) gives:
\begin{lem}
\label{case-1-lemma}For $\sigma<1$, case 1 holds for $h$ low enough,
and in case 1, $N_{1}^{*}$ and $N_{2}^{*}$ decrease in $h$, while
$s^{*}$ increases in $h$.
For $\sigma>1$, case 1 holds for $h$ high enough, and in case 1
$N_{1}^{*}$ and $N_{2}^{*}$ increase in $h$, while $s^{*}$ decreases
in $h$.
$N_{t}^{*}$ is convex in $h$ for $\sigma>2/3$, and concave otherwise.
$s^{*}$ is convex in $h$ if $\sigma<2/3$, and concave otherwise.
\end{lem}
\subsection*{Case 2: $N_{1}^{*}=0,N_{2}^{*}>0$}
Replace $N_{1}^{*}=0$ into the first order condition for $s^{*}$
from (\ref{eq:kkt3}), and rearrange to give:
\[
s^{*}=\frac{1}{1+\left((1-bN_{2})h\right)^{1-1/\sigma}}.
\]
Now since $N_{2}^{*}>0$, we can rearrange (\ref{eq:kkt2}) to give
\begin{equation}
N_{2}^{*}=\frac{1}{b}\left(1-\left(\frac{b}{a}\right)^{1/\sigma}(s^{*}h)^{(1-\sigma)/\sigma}\right).\label{eq:N22}
\end{equation}
Plugging this into $s^{*}$ gives
\begin{align*}
s^{*} & =\frac{1}{1+\left(\frac{bh}{a}\right)^{(\sigma-1)/\sigma^{2}}(s^{*}){}^{-(1-\sigma)^{2}/\sigma^{2}}}
\end{align*}
which can be rearranged to
\begin{equation}
(1-s^{*})(s^{*})^{(1-2\sigma)/\sigma^{2}}=\left(\frac{a}{bh}\right)^{(1-\sigma)/\sigma^{2}}.\label{eq:estar2}
\end{equation}
Differentiate the left hand side of the above to get
\begin{align}
& \frac{1-2\sigma}{\sigma^{2}}(1-s^{*})(s^{*})^{(1-2\sigma)/\sigma^{2}-1}-(s^{*})^{(1-2\sigma)/\sigma^{2}}\nonumber \\
= & \frac{1-2\sigma}{\sigma^{2}}(s^{*})^{(1-2\sigma)/\sigma^{2}-1}-\frac{\sigma^{2}+1-2\sigma}{\sigma^{2}}(s^{*})^{(1-2\sigma)/\sigma^{2}}\nonumber \\
= & \frac{1-2\sigma}{\sigma^{2}}(s^{*})^{(1-2\sigma)/\sigma^{2}-1}-\frac{(1-\sigma)^{2}}{\sigma^{2}}(s^{*})^{(1-2\sigma)/\sigma^{2}}.\label{eq:destar-lhs}
\end{align}
This is negative if and only if
\begin{align*}
s^{*} & >\frac{1-2\sigma}{(1-\sigma)^{2}}
\end{align*}
which is always true since $\sigma>0.5$. Note also that since $\sigma>0.5$,
then the left hand side of (\ref{eq:estar2}) approaches infinity
as $s^{*}\rightarrow0$ and approaches 0 as $s^{*}\rightarrow1$.
Thus, (\ref{eq:estar2}) implicitly defines the unique solution for
$s^{*}$.
To find how $s^{*}$ changes with $h$, note that the right hand side
of the above decreases in $h$ for $\sigma<1$, and increases in $h$
for $\sigma>1$. Putting these facts together: for $\sigma<1$, when
$h$ increases the RHS of (\ref{eq:estar2}) decreases, hence the
LHS decreases and $s^{*}$ increases, i.e. $s^{*}$ is increasing
in $h$. For $\sigma>1$, $s^{*}$ is decreasing in $h$.
To find how $N_{2}^{*}$ changes with $h$, we differentiate (\ref{eq:N22}):
\begin{align}
\frac{dN_{2}^{*}}{dh} & =-\frac{1}{b}\left(\frac{b}{a}\right)^{1/\sigma}\frac{1-\sigma}{\sigma}(s^{*}h)^{(1-2\sigma)/\sigma}(s^{*}+h\frac{ds^{*}}{dh})\label{eq:dNdh2}
\end{align}
which is negative for $\sigma<1$, since $\frac{ds^{*}}{dh}>0$ in
this case.
Differentiating again:
\begin{align*}
\frac{d^{2}N_{2}}{dh^{2}} & =-X[\frac{1-2\sigma}{\sigma}(s^{*}h)^{(1-3\sigma)/\sigma}(s^{*}+h\frac{ds^{*}}{dh})^{2}+(s^{*}h)^{(1-2\sigma)/\sigma}(2\frac{ds^{*}}{dh}+h\frac{d^{2}s^{*}}{dh^{2}})]\\
& =X(s^{*}h)^{(1-3\sigma)/\sigma}[\frac{2\sigma-1}{\sigma}(s^{*}+h\frac{ds^{*}}{dh})^{2}-(s^{*}h)(2\frac{ds^{*}}{dh}+h\frac{d^{2}s^{*}}{dh^{2}})]
\end{align*}
where $X=\frac{1}{b}\left(\frac{b}{a}\right)^{1/\sigma}\frac{1-\sigma}{\sigma}>0$.
Note that $\frac{d^{2}N_{2}}{dh^{2}}$ is continuous in $\sigma$
around $\sigma=1$. Note also from (\ref{eq:estar2}) that for $\sigma=1$,
$s^{*}$ becomes constant in $\sigma$. The term in square brackets
then reduces to $(s^{*})^{2}>0$. Putting these facts together, for
$\sigma$ sufficiently close to 1, $\frac{d^{2}N_{2}^{*}}{dh^{2}}>0$,
i.e. $N_{2}^{*}$ is convex in $h$.
This case holds for intermediate values on $h$. Equation (\ref{eq:dNdh2})
shows that for $\sigma < 1$, $N_2$ decreases in $h$; the requirement that
$N_2>0$ therefore puts a maximum on $h$. When $\sigma>1$, $N_2$ increases in
$h$ and this puts a minimum on $h$. The requirement $N_1 = 0$ provides the
other bound. Equation (\ref{eq:kkt1})
requires $-bY_{1}^{-\sigma}+a \le 0$ since $\lambda_1$ must be non-negative.
The LHS is increasing in $Y_1$, and hence decreasing in $s$ as $Y_1 = 1-s$ since
$N_1=0$. Lastly, optimal choice of education $s^*$ increases in $h$ for
$\sigma<1$, and decreases for $\sigma > 1$. Hence for $\sigma < 1$, (\ref{eq:kkt1})
puts a minimum on $h$, and for $\sigma > 1$ it puts a maximum on $h$.
Summarizing:
\begin{lem}
\label{case-2-lemma}Case 2 holds for intermediate values of $h$.
In case 2: for $\sigma<1$, $s^{*}$ is increasing in $h$ and $N_{2}^{*}$
is decreasing in $h$. For $\sigma>1$, $s^{*}$is decreasing in $h$.
For $\sigma$ close enough to 1, $N_{2}^{*}$ is convex in $h$.
\end{lem}
\subsection*{Case 3: $N_{1}^{*}=0,N_{2}^{*}=0$}
We can solve for $s^{*}$ by substituting values of $Y_{1}$ and $Y_{2}$
into (\ref{eq:kkt3}):
\[
-(1-s^{*}){}^{-\sigma}+h(s^{*}h)^{-\sigma}=0
\]
which rearranges to
\begin{equation}
s^{*}=\frac{1}{1+h^{(\sigma-1)/\sigma}}.\label{eq:estar1}
\end{equation}
Conditions (\ref{eq:kkt1}) and (\ref{eq:kkt2}) become:
\begin{align*}
-b(1-s^{*})^{-\sigma}+a & \le0\\
-bs^{*}h(s^{*}h)^{-\sigma}+a & \le0
\end{align*}
equivalently
\begin{align*}
\frac{a}{b} & \le(1-s^{*})^{-\sigma}\\
\frac{a}{b} & \le s^{*}h(s^{*}h)^{-\sigma}
\end{align*}
which can both be satisfied for $a/b$ close enough to zero. Note
from (\ref{eq:estar1}) that as $h\rightarrow\infty$, $s^{*}$ increases
towards 1 for $\sigma<1$, and decreases towards 0 for $\sigma>1$.
Note also that the right hand side of the first inequality above approaches
infinity as $s^{*}\rightarrow1$, therefore also as $h\rightarrow\infty$
for $\sigma<1$. Rewrite the second inequality as
\[
\frac{a}{b}<(s^{*}h)^{1-\sigma}=\left(\frac{h}{1+h^{(\sigma-1)/\sigma}}\right)^{1-\sigma}=\left(h^{-1}+h^{-1/\sigma}\right)^{\sigma-1}
\]
and note that again, as $h\rightarrow\infty$, the RHS increases towards
infinity for $\sigma<1$, and decreases towards zero otherwise. Thus,
for $\sigma<1$, both equations will be satisfied for $h$ high enough.
For $\sigma>1$, they will be satisfied for $h$ low enough. Summarizing
\begin{lem}
\label{case-3-lemma}For $\sigma<1$, case 3 holds for $h$ high enough,
and in case 3, $s^{*}$ increases in $h$. For $\sigma>1$, case 3
holds for $h$ low enough and $s^{*}$ decreases in $h$.
\end{lem}
\subsection*{Case 4: $N_{1}^{*}>0,N_{2}^{*}=0$}
Rearranging the first order conditions (\ref{eq:kkt1}) and (\ref{eq:kkt2})
for $N_{1}^{*}$ and $N_{2}^{*}$ gives
\begin{align*}
\frac{a}{b} & =(1-s^{*}-bN_{1}^{*})^{-\sigma}\\
\frac{a}{b} & \le s^{*}hY_{2}^{-\sigma}
\end{align*}
hence
\begin{align*}
(1-s^{*}-bN_{1}^{*})^{-\sigma} & \le s^{*}hY_{2}^{-\sigma}=(s^{*}h)^{1-\sigma}\\
\Leftrightarrow(1-s^{*}-bN_{1}^{*})^{\sigma} & \ge(s^{*}h)^{\sigma-1}\\
\Leftrightarrow1-s^{*}-bN_{1}^{*} & \ge(s^{*}h)^{1-1/\sigma}
\end{align*}
Now rearrange the first order condition for $s^{*}$ from (\ref{eq:kkt3}),
noting that since $N_{2}^{*}=0$, $s^{*}>0$ by the Inada condition.
\begin{align*}
h^{1/\sigma-1}(1-s^{*}-bN_{1}^{*}) & =s^{*}\\
1-s^{*}-bN_{1}^{*} & =s^{*}h^{1-1/\sigma}
\end{align*}
This, combined with the previous inequality, implies
\begin{align*}
(s^{*}h)^{1-1/\sigma} & \le s^{*}h^{1-1/\sigma}\\
\Leftrightarrow(s^{*})^{-1/\sigma} & \le1
\end{align*}
which cannot hold since $0<s^{*}<1$.
\subsection*{Comparative statics}
We can now examine how the fertility-human capital relationship
\[
\frac{dN^{*}}{dh},\textrm{ where }N^{*}\equiv N_{1}^{*}+N_{2}^{*},
\]
changes with respect to other parameters. We focus on the case $\sigma<1$,
since it gives the closest match to our observations, and since it
also generates "reasonable" predictions in other areas, e.g. that
education levels increase with human capital. Figure \ref{fig:theory}
shows how $N^{*}$ changes with $h$ for $a=0.4,b=0.25,\sigma=0.7$.
\begin{figure}
\begin{centering}
\includegraphics[width=9cm, height=6cm]{N-plot}
\par\end{centering}
\caption{\label{fig:theory}Fertility vs. human capital in the two-period model
with $a=0.4,b=0.25,\sigma=0.7$.}
\end{figure}
\begin{lem}
For $\sigma < 1$ in a neighbourhood of 1, $N^*$ is globally convex in $h$.
\end{lem}
\begin{proof}
From Lemmas \ref{case-1-lemma}, \ref{case-2-lemma} and \ref{case-3-lemma},
as $h$ increases we move from $N_{1}^{*},N_{2}^{*}>0$ to $N_{1}^{*}=0,N_{2}^{*}>0$
to $N_{1}^{*}=N_{2}^{*}=0$. Furthermore, for $\sigma>2/3$, $N_{1}^{*}$
and $N_{2}^{*}$ are convex in $h$ when they are both positive, and
for $\sigma$ close enough to 1, $N_{2}^{*}$ is convex in $h$ when
$N_{1}^{*}=0$. All that remains is to check that the derivative is increasing around
the points where these 3 regions meet. That is trivially satisfied
where $N_{2}^{*}$ becomes 0, since thereafter $\frac{dN^{*}}{dh}$
is zero. The derivative as $N_{1}^{*}$ approaches zero is twice the
expression in (\ref{eq:dNdh1}):
\begin{equation}
-\frac{2}{b}\left(\frac{b}{a}\right)^{1/(2\sigma-1)}\frac{1-\sigma}{2\sigma-1}h^{(1-\sigma)/(2\sigma-1)-1}\label{eq:dNonleft}
\end{equation}
and the derivative to the right of this point is given by (\ref{eq:dNdh2}):
\begin{equation}
-\frac{1}{b}\left(\frac{b}{a}\right)^{1/\sigma}\frac{1-\sigma}{\sigma}(s^{*}h)^{(1-2\sigma)/\sigma}(s^{*}+h\frac{ds^{*}}{dh})\label{eq:dNonright}
\end{equation}
We want to prove that the former is larger in magnitude (i.e. more
negative). Dividing (\ref{eq:dNonleft}) by (\ref{eq:dNonright})
gives
\[
2\frac{\sigma}{2\sigma-1}\left(\frac{b}{a}\right)^{(1-\sigma)/(\sigma(2\sigma-1))}\frac{h^{(1-\sigma)^{2}/(\sigma(2\sigma-1))}}{s^{*}(s^{*}+h\frac{ds^{*}}{dh})}
\]
Examining (\ref{eq:estar2}) shows that as $\sigma\rightarrow1$,
$s^{*}\rightarrow0.5$ and $\frac{ds^{*}}{dh}\rightarrow0$, and therefore
the above approaches
\[
2\frac{1}{(0.5)^{2}}=8.
\]
\end{proof}
We can now gather the theoretical predictions stated in Table \ref{tab:theory}.
\textbf{Prediction 1}: for $\sigma<1$, total fertility $N^{*}\equiv N_{1}^{*}+N_{2}^{*}$
is decreasing in human capital $h$.
Furthermore, for $\sigma$ close enough to 1, fertility is convex
in human capital, i.e.
\textbf{Prediction 2 part 1}: the fertility-human capital relationship is
closer to 0 at high levels of $h$.
For $\sigma<1$, education levels $s^{*}$ increase in $h$, and so
therefore do equilibrium wages $w(s^{*},h)$. This, plus fact 1, gives:
\textbf{Prediction 2 part 2}: for $\sigma<1$ and close to 1, the fertility-human
capital relationship is weaker among higher earners.
\textbf{Prediction 4}: for $\sigma<1$ and close to 1, the fertility-human
capital relationship is weaker at high levels of education.
Next, we compare people who start fertility early ($N_{1}^{*}>0$)
versus those who start fertility late ($N_{1}^{*}=0$). Again, for
$\sigma<1$ the former group have lower $h$ than the latter group.
Thus we have:
\textbf{Prediction 5}: for $\sigma<1$ and close to 1, the fertility-human
capital relationship is weaker among those who start fertility late.
Lastly, we prove prediction 3. Differentiating $dN_{t}^{*}/dh$ in (\ref{eq:dNdh1})
with respect to $b$, for when $N_{1}^{*}>0$ gives:
\begin{align*}
\frac{d^{2}N_{t}^{*}}{dhdb} & =\frac{2\sigma-2}{2\sigma-1}b^{(3-4\sigma)/(2\sigma-1)}\left(\frac{1}{a}\right)^{1/(2\sigma-1)}\frac{1-\sigma}{2\sigma-1}h^{(\sigma-1)^{2}/(\sigma(2\sigma-1))}
\end{align*}
which is negative for $0.5<\sigma<1$. When $N_{1}^{*}=0$, differentiating
$dN_{2}^{*}/dh$ in (\ref{eq:dNdh2}) gives:
\[
\frac{d^{2}N_{2}^{*}}{dhdb}=-\frac{1-\sigma}{\sigma}b^{(1-2\sigma)/\sigma}\left(\frac{1}{a}\right)^{1/\sigma}\frac{1-\sigma}{\sigma}(s^{*}h)^{(1-2\sigma)/\sigma}(s^{*}+h\frac{ds^{*}}{dh})
\]
which again is negative for $\sigma<1$. Therefore:
\textbf{Prediction 3}: for $\sigma<1$, the fertility-human capital relationship
is more negative when the burden of childcare $b$ is larger.
\subsection*{Including a money cost}
The model can be extended by adding a money cost $m$ per child. Utility is
then
\[
U = u(1 - s - bN_1 - mN_1) + u(w(s,h)(1 - bN_2) - mN_2) + a(N_1 + N_2)
\]
Figure \ref{fig:N-plot-with-m} shows a computed example with
$a = 0.4, b = 0.175, \sigma = 0.7, m = 0.075$. Fertility first declines steeply with
human capital, then rises. In addition, for parents with low AFLB ($N_1 > 0$), the
fertility-human capital relationship is negative, while for parents with
higher AFLB ($N_1 = 0$) it is positive.
\begin{figure}
\begin{centering}
\includegraphics[width=9cm, height=6cm]{N-plot-with-m}
\par\end{centering}
\caption{\label{fig:N-plot-with-m}Fertility vs. human capital in the two-period model
with money costs of children. $a=0.4,b=0.175,\sigma=0.7, m = 0.075$.}
\end{figure}
\subsection*{Concavity}
\begin{lem}
\label{lemma-concavity}For $\sigma>0.5$, $U$ in equation (\ref{eq:U})
is concave in $N_{1},N_{2}$ and $s$.
\end{lem}
\begin{proof}
We examine the Hessian matrix of utility in each period. Note that
period 1 utility is constant in $N_{2}$ and period 2 utility is constant
in $N_{1}$. For period 1 the Hessian with respect to $N_{1}$ and
$s$ is:
\[
\left[\begin{array}{cc}
d^{2}u/dN_{1}^{2} & d^{2}u/dsdN_{1}\\
d^{2}u/dsdN_{1} & d^{2}u/ds^{2}
\end{array}\right]=\left[\begin{array}{cc}
-\sigma b^{2} & -\sigma b\\
-\sigma b & -\sigma
\end{array}\right]Y_{1}^{-\sigma-1}
\]
with determinant
\[
(\sigma^{2}b^{2}-\sigma^{2}b^{2})Y_{1}^{-2\sigma-2}=0.
\]
Thus, first period utility is weakly concave. For period 2 with respect
to $N_{2}$ and $s$, the Hessian is:
\[
\left[\begin{array}{cc}
d^{2}u/dN_{2}^{2} & d^{2}u/dsdN_{2}\\
d^{2}u/dsdN_{2} & d^{2}u/ds^{2}dN_{2}
\end{array}\right]=\left[\begin{array}{cc}
-\sigma(bsh)^{2}Y_{2}^{-\sigma-1} & -(1-\sigma)bhY_{2}^{-\sigma}\\
-(1-\sigma)bhY_{2}^{-\sigma} & -\sigma[h(1-bN_{2}^{*})]^{2}Y_{2}^{-\sigma-1}
\end{array}\right]
\]
with determinant
\begin{align*}
& (-\sigma(bsh)^{2}Y_{2}^{-\sigma-1})(-\sigma[h(1-bN_{2}^{*})]^{2}Y_{2}^{-\sigma-1})-(-(1-\sigma)bhY_{2}^{-\sigma})^{2}\\
= & \sigma^{2}(bsh)^{2}[h(1-bN_{2}^{*})]^{2}Y_{2}^{-2\sigma-2}-(1-\sigma)^{2}(bh)^{2}Y_{2}^{-2\sigma}\\
= & \sigma^{2}(bh)^{2}Y_{2}^{-2\sigma}-(1-\sigma)^{2}(bh)^{2}Y_{2}^{-2\sigma}\textrm{, using that }Y_{2}=(sh)(1-bN)\\
= & (bh)^{2}Y_{2}^{-2\sigma}(\sigma^{2}-(1-\sigma)^{2})
\end{align*}
which is positive if and only if $\sigma>0.5$. Thus, if $\sigma>0.5$
then the Hessian is negative definite and thus utility is concave;
this combined with weak concavity of period 1, and linearity of $a(N_{1}+N_{2})$,
shows that (\ref{eq:U}) is concave.
\end{proof}
\subsection*{Effect of $a$}
\begin{lem}
\label{lemma-a}For $\sigma<1$, $d^2N^*/dadh > 0$, i.e. the effect of $a$
increases at higher levels of human capital.
\end{lem}
\begin{proof}
Differentiating (\ref{eq:dNdh1}) with respect to $a$ gives
\[
\frac{d^2N^*_t}{dadh} = -\frac{1}{b}\frac{1}{1-2\sigma}a^{-1}\left(\frac{a}{b}\right)^{1/(1-2\sigma)}\frac{1-\sigma}{2\sigma-1}h^{(1-\sigma)/(2\sigma-1)-1}
\]
for $t=1,2$ when $N^*_1,N^*_2>0$. For $\sigma > 0.5$ this is positive.
When $N^*_1 = 0,N^*_2>0$, differentiating (\ref{eq:dNdh2}) with respect to $a$ gives
\[
\frac{d^2N_{2}^{*}}{dadh} = \frac{1}{b}\frac{1}{\sigma}a^{-1}\left(\frac{a}{b}\right)^{-1/\sigma}\frac{1-\sigma}{\sigma}(s^{*}h)^{(1-2\sigma)/\sigma}(s^{*}+h\frac{ds^{*}}{dh})
\]
which is $-a^{-1}/\sigma$ times (\ref{eq:dNdh2}) and hence is positive.
\end{proof}