forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference_mode.cpp
590 lines (518 loc) · 20.3 KB
/
inference_mode.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
#include <torch/script.h>
#include <gtest/gtest.h>
#include <test/cpp/api/support.h>
using namespace torch::autograd;
using namespace torch::test;
namespace {
torch::Tensor functional_op(torch::Tensor& x) {
return x * x;
}
void inplace_op(torch::Tensor& x) {
x.mul_(1);
}
torch::Tensor view_op(torch::Tensor& x) {
return x.view({2, 3});
}
/*
Only the following combos of Autograd & ADInplaceOrView keys on tensors are valid:
- Autograd=true, ADInplaceOrView=true (normal tensor)
- Autograd=false, ADInplaceOrView=false (inference tensor)
Tensors created in InferenceMode are mostly inference tensors. The only exception
is that view of normal tensors created in InferenceMode still produce normal tensor.
*/
void assert_TLS_states(bool inference_mode) {
ASSERT_EQ(InferenceMode::is_enabled(), inference_mode);
ASSERT_FALSE(c10::impl::tls_is_dispatch_key_excluded(c10::DispatchKey::ADInplaceOrView));
ASSERT_FALSE(c10::impl::tls_is_dispatch_keyset_included(c10::autograd_dispatch_keyset));
ASSERT_EQ(c10::impl::tls_is_dispatch_keyset_excluded(c10::autograd_dispatch_keyset), inference_mode);
ASSERT_EQ(c10::impl::tls_is_dispatch_key_included(c10::DispatchKey::ADInplaceOrView), !inference_mode);
ASSERT_EQ(GradMode::is_enabled(), !inference_mode);
}
}
TEST(InferenceModeTest, TestTLSState) {
assert_TLS_states(false);
{
InferenceMode guard;
assert_TLS_states(true);
{
InferenceMode guard(false);
assert_TLS_states(false);
}
assert_TLS_states(true);
}
assert_TLS_states(false);
}
TEST(InferenceModeTest, TestInferenceTensorCreation) {
{
InferenceMode guard;
// New tensor created through constructors are inference tensors.
torch::Tensor c = torch::ones({1, 2, 3});
ASSERT_FALSE(c.requires_grad());
ASSERT_TRUE(c.is_inference());
// requires_grad doesn't change inference tensor behavior inside InferenceMode.
torch::Tensor tmp = torch::ones({1, 2, 3}).set_requires_grad(true);
ASSERT_TRUE(tmp.requires_grad());
ASSERT_TRUE(tmp.is_inference());
tmp = torch::ones({1, 2, 3}).set_requires_grad(false);
ASSERT_FALSE(tmp.requires_grad());
ASSERT_TRUE(tmp.is_inference());
}
}
TEST(InferenceModeTest, TestExistingAutogradSession) {
torch::Tensor s = torch::ones({1, 2, 3}).set_requires_grad(true);
torch::Tensor a = s.clone();
// Save `a` in an existing autograd session
torch::Tensor out = a * a;
{
InferenceMode guard;
inplace_op(a);
}
// Performing backward should trigger error since `a`'s version has been bumped.
ASSERT_THROWS_WITH(out.backward(torch::ones_like(out)),
"one of the variables needed for gradient computation has been modified by an inplace operation")
}
TEST(InferenceModeTest, TestInferenceTensorInInferenceModeFunctionalOp) {
c10::InferenceMode guard;
for (bool requires_grad : {true, false}) {
torch::Tensor c = torch::ones({1, 2, 3}).set_requires_grad(requires_grad);
torch::Tensor func_out = functional_op(c); // go through kernels: CPU
ASSERT_TRUE(func_out.is_inference());
ASSERT_FALSE(func_out.requires_grad());
}
}
TEST(InferenceModeTest, TestInferenceTensorInInferenceModeInplaceOp) {
c10::InferenceMode guard;
for (bool requires_grad : {true, false}) {
torch::Tensor c = torch::ones({1, 2, 3}).set_requires_grad(requires_grad);
inplace_op(c); // go through kernels: CPU
ASSERT_TRUE(c.is_inference());
ASSERT_EQ(c.requires_grad(), requires_grad);
}
}
TEST(InferenceModeTest, TestInferenceTensorInInferenceModeViewOp) {
c10::InferenceMode guard;
for (bool requires_grad : {true, false}) {
torch::Tensor c = torch::ones({1, 2, 3}).set_requires_grad(requires_grad);
torch::Tensor view_out = view_op(c); // go through kernels: CPU
ASSERT_TRUE(view_out.is_inference());
// Note this is different from NoGradMode but makes sense.
ASSERT_FALSE(view_out.requires_grad());
ASSERT_FALSE(view_out.is_view());
}
}
TEST(InferenceModeTest, TestInferenceTensorInNormalModeFunctionalOp) {
torch::Tensor inference_tensor;
for (bool requires_grad: {true, false}) {
{
InferenceMode guard;
inference_tensor = torch::ones({1, 2, 3}).set_requires_grad(requires_grad);
}
// Due to issue #54614, this might run slower compared to InferenceMode since
// intermediate tensors are normal tensors, and they might dispatch to VariableType
// kernels. This is fine since users can easily fix it by moving
// it inside InferenceMode block.
torch::Tensor tmp = functional_op(inference_tensor); // go through kernels: ADInplaceOrView(fallthrough), CPU
ASSERT_FALSE(tmp.is_inference());
ASSERT_FALSE(tmp.requires_grad());
}
}
TEST(InferenceModeTest, TestInferenceTensorInNormalModeInplaceOp) {
torch::Tensor inference_tensor;
for (bool requires_grad: {true, false}) {
{
InferenceMode guard;
inference_tensor = torch::ones({1, 2, 3}).set_requires_grad(requires_grad);
}
ASSERT_THROWS_WITH(inplace_op(inference_tensor), // go through kernels: ADInplaceOrView, CPU
"Inplace update to inference tensor outside InferenceMode is not allowed");
}
}
TEST(InferenceModeTest, TestInferenceTensorInNormalModeViewOp) {
torch::Tensor inference_tensor;
for (bool requires_grad: {true, false}) {
{
InferenceMode guard;
inference_tensor = torch::ones({1, 2, 3}).set_requires_grad(requires_grad);
}
torch::Tensor out = view_op(inference_tensor); // go through kernels: ADInplaceOrView, CPU
ASSERT_TRUE(out.is_inference());
ASSERT_FALSE(out.requires_grad());
ASSERT_FALSE(out.is_view());
ASSERT_TRUE(out.is_leaf());
}
}
TEST(InferenceModeTest, TestNormalTensorInplaceOutputInInferenceMode) {
for (bool requires_grad: {true, false}) {
torch::Tensor s = torch::ones({1, 2, 3}).set_requires_grad(requires_grad);
torch::Tensor a = s.clone();
{
c10::InferenceMode guard;
inplace_op(a); // go through kernels: ADInplaceOrView, CPU
ASSERT_FALSE(a.is_inference());
ASSERT_EQ(a.requires_grad(), requires_grad);
// inplace -> inplace
inplace_op(a); // go through kernels: ADInplaceOrView, CPU
ASSERT_FALSE(a.is_inference());
ASSERT_EQ(a.requires_grad(), requires_grad);
// inplace -> inplace -> view
torch::Tensor view_out = view_op(a); // go through kernels: ADInplaceOrView, CPU
ASSERT_FALSE(view_out.is_inference());
ASSERT_EQ(view_out.requires_grad(), requires_grad);
}
}
}
TEST(InferenceModeTest, TestNormalTensorInplaceOutputInNormalMode) {
for (bool requires_grad: {true, false}) {
torch::Tensor s = torch::ones({1, 2, 3}).set_requires_grad(requires_grad);
torch::Tensor a = s.clone();
{
c10::InferenceMode guard;
inplace_op(a); // go through kernels: ADInplaceOrView, CPU
ASSERT_FALSE(a.is_inference());
ASSERT_EQ(a.requires_grad(), requires_grad);
}
torch::Tensor tmp = functional_op(a); // go through kernels: VariableType, ADInplaceOrView(fallthrough), CPU
ASSERT_FALSE(tmp.is_inference());
ASSERT_EQ(tmp.requires_grad(), requires_grad);
inplace_op(a); // go through kernels: VariableType, ADInplaceOrView, CPU
ASSERT_FALSE(a.is_inference());
ASSERT_EQ(a.requires_grad(), requires_grad);
tmp = view_op(a); // go through kernels: VariableType, ADInplaceOrView, CPU
ASSERT_FALSE(tmp.is_inference());
ASSERT_EQ(tmp.requires_grad(), requires_grad);
}
}
TEST(InferenceModeTest, TestNormalTensorViewOutputInInferenceMode) {
for (bool requires_grad: {true, false}) {
torch::Tensor s = torch::ones({1, 2, 3}).set_requires_grad(requires_grad);
torch::Tensor a = s.clone();
torch::Tensor view_out, tmp;
{
c10::InferenceMode guard;
// View ops on normal tensor produce normal tensors as output.
// - For view ops it has both dispatch keys since due to the way we create
// view Tensors in alias_with_sizes_and_strides:
// ```
// auto impl = c10::make_intrusive<TensorImpl>(
// Storage(self.storage()), self.key_set(), self.dtype());
// ```
// In addition, these view output tensors are normal in the sense they
// have both Autograd and ADInplaceOrView keys. But they're still special
// since they'll have CreationMeta::INFERENCE_MODE. In other words they behave
// exactly the same as a view tensor created in no_grad mode.
view_out = view_op(a); // go through kernels: ADInplaceOrView, CPU
ASSERT_FALSE(view_out.is_inference());
assert_tensor_creation_meta(view_out, CreationMeta::INFERENCE_MODE);
ASSERT_EQ(view_out.requires_grad(), requires_grad);
ASSERT_TRUE(view_out.is_leaf());
// view -> view
tmp = view_op(view_out); // go through kernels: ADInplaceOrView, CPU
ASSERT_FALSE(tmp.is_inference());
assert_tensor_creation_meta(tmp, CreationMeta::INFERENCE_MODE);
ASSERT_EQ(tmp.requires_grad(), requires_grad);
ASSERT_TRUE(tmp.is_leaf());
// view -> view -> inplace
inplace_op(tmp); // kernels: ADInplaceOrView, CPU
assert_tensor_creation_meta(tmp, CreationMeta::INFERENCE_MODE);
ASSERT_FALSE(tmp.is_inference());
ASSERT_EQ(tmp.requires_grad(), requires_grad);
ASSERT_TRUE(tmp.is_leaf());
ASSERT_EQ(a._version(), tmp._version());
}
}
}
TEST(InferenceModeTest, TestNormalTensorViewOutputInNormalMode) {
for (bool requires_grad: {true, false}) {
torch::Tensor s = torch::ones({1, 2, 3}).set_requires_grad(requires_grad);
torch::Tensor a = s.clone();
torch::Tensor view_out, tmp;
{
c10::InferenceMode guard;
view_out = view_op(a); // go through kernels: ADInplaceOrView, CPU
ASSERT_FALSE(view_out.is_inference());
assert_tensor_creation_meta(view_out, CreationMeta::INFERENCE_MODE);
ASSERT_EQ(view_out.requires_grad(), requires_grad);
ASSERT_TRUE(view_out.is_leaf());
}
tmp = functional_op(view_out);
ASSERT_FALSE(view_out.is_inference());
ASSERT_EQ(tmp.requires_grad(), requires_grad);
if (requires_grad) {
ASSERT_THROWS_WITH(inplace_op(view_out), // go through kernels: VariableType, ADInplaceOrView, CPU
"A view was created in inference mode and is being modified inplace")
} else {
inplace_op(view_out);
}
tmp = view_op(view_out);
ASSERT_FALSE(view_out.is_inference());
ASSERT_EQ(tmp.requires_grad(), requires_grad);
}
}
TEST(InferenceModeTest, TestMixInferenceAndNormalTensorFunctionalOp) {
for (bool requires_grad: {true, false}) {
torch::Tensor s = torch::ones({1, 2, 3}).set_requires_grad(requires_grad);
torch::Tensor c;
{
InferenceMode guard;
c = torch::ones({1, 2, 3}).set_requires_grad(requires_grad);
}
// add(Tensor, Tensor) is safe with inference tensor since it doesn't save any variable for backward.
torch::Tensor out = c.add(s); // go through kernels: VariableType, ADInplaceOrView(fallthrough), CPU
ASSERT_FALSE(out.is_inference());
ASSERT_EQ(out.requires_grad(), requires_grad);
if (requires_grad) {
// leaf inference tensor with requires_grad=true can still have gradient.
// Note this behavior is different from NoGradMode which has empty grad.
out.backward(torch::ones_like(out));
assert_tensor_equal(c.grad(), torch::ones_like(c));
}
if (requires_grad) {
// mul(self, other) saves variable when requires_grad=true
ASSERT_THROWS_WITH(c.mul(s),
"Inference tensors cannot be saved for backward.");
// Inference tensor in TensorList input
std::vector<torch::Tensor> inputs = {s, c};
ASSERT_THROWS_WITH(torch::stack(inputs), // go through kernels: VariableType(ERROR)!, ADInplaceOrView(fallthrough), CPU
"Inference tensors cannot be saved for backward.")
}
}
}
TEST(InferenceModeTest, TestMixInferenceAndNormalTensorInplaceOp) {
for (bool requires_grad: {true, false}) {
torch::Tensor s = torch::ones({1, 2, 3}).set_requires_grad(requires_grad);
torch::Tensor a = s.clone();
torch::Tensor c;
{
InferenceMode guard;
c = torch::ones({1, 2, 3});
}
if (requires_grad) {
ASSERT_THROWS_WITH(a.mul_(c), // go through kernels: VariableType(ERROR!), InferenceMode, CPU
"Inference tensors cannot be saved for backward.");
ASSERT_THROWS_WITH(torch::mul_out(/*out=*/c, s, s), // go through kernels: VariableType(ERROR!), ADInplaceOrView, CPU
"out=... arguments don't support automatic differentiation, but one of the arguments requires grad")
} else {
a.mul_(c);
ASSERT_THROWS_WITH(torch::mul_out(/*out=*/c, s, s), // go through kernels: VariableType, ADInplaceOrView(ERROR!), CPU
"Inplace update to inference tensor outside InferenceMode is not allowed");
}
}
}
TEST(InferenceModeTest, TestMixInferenceAndNormalTensorViewOp) {
for (bool requires_grad: {true, false}) {
torch::Tensor s = torch::ones({1, 2, 3}).set_requires_grad(requires_grad);
torch::Tensor c;
{
InferenceMode guard;
c = torch::ones({1, 2, 3});
}
// view_as is a composite op which calls view() with only one tensor argument.
// So there isn't a mixed inference tensor and normal tensor inputs for view ops.
torch::Tensor tmp1 = c.view_as(s); // go through kernels: ADInplaceOrView, CPU
ASSERT_TRUE(tmp1.is_inference());
ASSERT_FALSE(tmp1.requires_grad());
// This is fine since it's equivalent as s.view(c.sizes()) which
// isn't a mixed input scenario.
torch::Tensor tmp2 = s.view_as(c); // go through kernels: VariableType, ADInplaceOrView, CPU
ASSERT_FALSE(tmp2.is_inference());
ASSERT_EQ(tmp2.requires_grad(), requires_grad);
}
}
TEST(InferenceModeTest, TestHandleDirectViewOnRebase) {
for (bool requires_grad: {true, false}) {
torch::Tensor s = torch::ones({1, 2, 3}).set_requires_grad(requires_grad);
torch::Tensor a = s.clone();
torch::Tensor view_out;
{
InferenceMode guard;
view_out = view_op(a); // go through kernels: ADInplaceOrView, CPU
}
if (requires_grad) {
ASSERT_THROWS_WITH(inplace_op(view_out),
"A view was created in inference mode and is being modified inplace")
} else {
inplace_op(view_out);
}
}
}
TEST(InferenceModeTest, TestHandleInDirectViewOnRebase) {
for (bool requires_grad: {true, false}) {
torch::Tensor s = torch::ones({1, 2, 3}).set_requires_grad(requires_grad);
torch::Tensor a = s.clone();
torch::Tensor view_out;
{
InferenceMode guard;
view_out = view_op(a); // go through kernels: ADInplaceOrView, CPU
}
inplace_op(a);
if (requires_grad) {
ASSERT_THROWS_WITH(view_out.grad_fn(),
"A view was created in inference mode and its base or another view of its base has been modified inplace");
} else {
view_out.grad_fn();
}
}
}
TEST(InferenceModeTest, TestCreationMetaPropagation) {
torch::Tensor s = torch::ones({1, 2, 3}).set_requires_grad(true);
torch::Tensor b, c;
{
InferenceMode guard;
b = s.view_as(s);
}
ASSERT_THROWS_WITH(b.add_(1),
"A view was created in inference mode and is being modified inplace");
{
AutoGradMode mode(false);
c = b.view_as(b);
}
ASSERT_THROWS_WITH(c.add_(1),
"A view was created in inference mode and is being modified inplace");
}
TEST(InferenceModeTest, TestCreationMetaPropagationInput) {
torch::Tensor s = torch::ones({2, 2, 3}).set_requires_grad(true);
auto s_view = s.view_as(s);
std::vector<at::Tensor> b, c;
{
InferenceMode guard;
b = s_view.split_with_sizes({1, 1});
s = s.view_as(s);
c = s.split_with_sizes({1, 1});
}
for (auto& b_el: b) {
assert_tensor_creation_meta(b_el, CreationMeta::INFERENCE_MODE);
ASSERT_THROWS_WITH(b_el.add_(1),
"A view was created in inference mode and is being modified inplace");
}
for (auto& c_el: c) {
assert_tensor_creation_meta(c_el, CreationMeta::INFERENCE_MODE);
ASSERT_THROWS_WITH(c_el.add_(1),
"A view was created in inference mode and is being modified inplace");
}
}
TEST(InferenceModeTest, TestInplaceCopyOnInferenceTensor) {
for (bool requires_grad: {true, false}) {
torch::Tensor s = torch::ones({1, 2, 3}).set_requires_grad(requires_grad);
torch::Tensor t;
{
InferenceMode guard;
t = torch::ones({1, 2, 3});
t.copy_(s);
ASSERT_TRUE(t.is_inference());
ASSERT_FALSE(t.requires_grad());
}
ASSERT_THROWS_WITH(t.copy_(s),
"Inplace update to inference tensor outside InferenceMode is not allowed");
}
}
TEST(InferenceModeTest, TestSetRequiresGradInNormalMode) {
torch::Tensor t;
{
InferenceMode guard;
t = torch::ones({1, 2, 3});
}
t.set_requires_grad(false);
ASSERT_THROWS_WITH(t.set_requires_grad(true),
"Setting requires_grad=True on inference tensor outside InferenceMode is not allowed.");
}
TEST(InferenceModeTest, TestAccessVersionCounter) {
torch::Tensor t;
{
InferenceMode guard;
t = torch::ones({1, 2, 3});
ASSERT_THROWS_WITH(t.unsafeGetTensorImpl()->version_counter().current_version(),
"Inference tensors do not track version counter.");
t.unsafeGetTensorImpl()->bump_version();
}
ASSERT_THROWS_WITH(t.unsafeGetTensorImpl()->version_counter().current_version(),
"Inference tensors do not track version counter.");
ASSERT_THROWS_WITH(t.unsafeGetTensorImpl()->bump_version(),
"Inplace update to inference tensor outside InferenceMode is not allowed.");
// Suggested workaround
torch::Tensor c = t.clone();
uint32_t v = c.unsafeGetTensorImpl()->version_counter().current_version();
c.unsafeGetTensorImpl()->bump_version();
ASSERT_EQ(c.unsafeGetTensorImpl()->version_counter().current_version(), v + 1);
}
TEST(InferenceModeTest, TestInplaceUpdateInferenceTensorWithNormalTensor) {
torch::Tensor s = torch::ones({1, 2, 3});
torch::Tensor t;
{
InferenceMode guard;
t = torch::ones({1, 2, 3});
// Testing both copy_ from VariableTypeManual and add_ from generated code.
s.copy_(t);
s.add_(t);
t.add_(s);
t.copy_(s);
}
s.copy_(t);
s.add_(t);
ASSERT_THROWS_WITH(t.copy_(s),
"Inplace update to inference tensor outside InferenceMode is not allowed");
ASSERT_THROWS_WITH(t.add_(s),
"Inplace update to inference tensor outside InferenceMode is not allowed");
}
TEST(InferenceModeTest, TestComplexViewInInferenceMode) {
torch::Tensor s = torch::ones({3, 3, 2});
torch::Tensor t = torch::view_as_complex(s);
{
InferenceMode guard;
torch::Tensor tmp;
tmp = torch::view_as_real(t);
ASSERT_FALSE(tmp.is_inference());
tmp = torch::view_as_complex(s);
ASSERT_FALSE(tmp.is_inference());
torch::Tensor e = torch::ones({3, 3, 2});
tmp = torch::view_as_complex(e);
ASSERT_TRUE(tmp.is_inference());
tmp = torch::view_as_real(tmp);
ASSERT_TRUE(tmp.is_inference());
}
}
TEST(InferenceModeTest, TestComplexViewInNormalMode) {
torch::Tensor s;
{
InferenceMode guard;
s = torch::ones({3, 3, 2});
}
torch::Tensor tmp = torch::view_as_complex(s);
ASSERT_TRUE(tmp.is_inference());
tmp = torch::view_as_real(tmp);
ASSERT_TRUE(tmp.is_inference());
}
TEST(InferenceModeTest, TestCustomFunction) {
struct MyFunction : public Function<MyFunction> {
static Variable forward(AutogradContext *ctx, Variable var1, int mul, Variable var2) {
ctx->saved_data["mul"] = mul;
ctx->save_for_backward({var1, var2});
return var1 + mul*var2 + var1*var2;
}
static variable_list backward(AutogradContext *ctx, variable_list grad_output) {
int mul = ctx->saved_data["mul"].toInt();
auto saved = ctx->get_saved_variables();
auto var1 = saved[0];
auto var2 = saved[1];
variable_list output = {grad_output[0] + grad_output[0]*var2, Variable(), grad_output[0] * mul + grad_output[0] * var1};
return output;
}
};
{
InferenceMode guard;
torch::Tensor var1 = torch::ones({3, 3}).set_requires_grad(true);
auto var2 = var1.clone();
int mul = 2;
// If InferenceMode didn't set NoGradGuard automatically, this line
// would error out when trying to save `var1` and `var2` for backward.
auto y = MyFunction::apply(var1, mul, var2);
torch::Tensor expected = var1 + mul * var2 + var1 * var2;
assert_tensor_equal(y, expected);
}
}
TEST(InferenceModeTest, TestLegacyAutoNonVariableTypeModeWarning) {
c10::Warning::WarnAlways warn_always(true);
WarningCapture warnings;
at::AutoNonVariableTypeMode guard;
ASSERT_TRUE(
warnings.str().find("AutoNonVariableTypeMode is deprecated") != std::string::npos);
}