forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
static.cpp
102 lines (87 loc) · 2.77 KB
/
static.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#include <gtest/gtest.h>
#include <c10/util/irange.h>
#include <torch/detail/static.h>
#include <torch/csrc/utils/variadic.h>
#include <torch/torch.h>
#include <string>
#include <vector>
template <
typename T,
typename = torch::enable_if_t<!torch::detail::is_module<T>::value>>
bool f(T&& m) {
return false;
}
template <typename T>
torch::detail::enable_if_module_t<T, bool> f(T&& m) {
return true;
}
TEST(TestStatic, AllOf) {
ASSERT_TRUE(torch::all_of<>::value);
ASSERT_TRUE(torch::all_of<true>::value);
ASSERT_TRUE((torch::all_of<true, true, true>::value));
ASSERT_FALSE(torch::all_of<false>::value);
ASSERT_FALSE((torch::all_of<false, false, false>::value));
ASSERT_FALSE((torch::all_of<true, true, false>::value));
}
TEST(TestStatic, AnyOf) {
ASSERT_FALSE(torch::any_of<>::value);
ASSERT_TRUE(bool((torch::any_of<true>::value)));
ASSERT_TRUE(bool((torch::any_of<true, true, true>::value)));
ASSERT_FALSE(bool((torch::any_of<false>::value)));
}
TEST(TestStatic, EnableIfModule) {
ASSERT_TRUE(f(torch::nn::LinearImpl(1, 2)));
ASSERT_FALSE(f(5));
ASSERT_TRUE(torch::detail::check_not_lvalue_references<int>());
ASSERT_TRUE((torch::detail::check_not_lvalue_references<float, int, char>()));
ASSERT_FALSE(
(torch::detail::check_not_lvalue_references<float, int&, char>()));
ASSERT_TRUE(torch::detail::check_not_lvalue_references<std::string>());
ASSERT_FALSE(torch::detail::check_not_lvalue_references<std::string&>());
}
struct A : torch::nn::Module {
int forward() {
return 5;
}
};
struct B : torch::nn::Module {
std::string forward(torch::Tensor tensor) {
return "";
}
};
struct C : torch::nn::Module {
float forward(torch::Tensor& tensor) {
return 5.0;
}
};
struct D : torch::nn::Module {
char forward(torch::Tensor&& tensor) {
return 'x';
}
};
struct E : torch::nn::Module {};
// Put in a function because macros don't handle the comma between arguments to
// is_same well ...
template <typename Module, typename ExpectedType, typename... Args>
void assert_has_expected_type() {
using ReturnType =
typename torch::detail::return_type_of_forward<Module, Args...>::type;
constexpr bool is_expected_type =
std::is_same<ReturnType, ExpectedType>::value;
ASSERT_TRUE(is_expected_type) << Module().name();
}
TEST(TestStatic, ReturnTypeOfForward) {
assert_has_expected_type<A, int>();
assert_has_expected_type<B, std::string, torch::Tensor>();
assert_has_expected_type<C, float, torch::Tensor&>();
assert_has_expected_type<D, char, torch::Tensor&&>();
assert_has_expected_type<E, void>();
}
TEST(TestStatic, Apply) {
std::vector<int> v;
torch::apply([&v](int x) { v.push_back(x); }, 1, 2, 3, 4, 5);
ASSERT_EQ(v.size(), 5);
for (const auto i : c10::irange(v.size())) {
ASSERT_EQ(v.at(i), i + 1);
}
}