forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_ops.py
902 lines (754 loc) · 45.4 KB
/
test_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
# Owner(s): ["module: unknown"]
from collections.abc import Sequence
from functools import partial
import warnings
import unittest
import itertools
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_dtype import floating_and_complex_types_and, all_types_and_complex_and
from torch.testing._internal.common_utils import \
(TestCase, is_iterable_of_tensors, run_tests, IS_SANDCASTLE, clone_input_helper,
IS_IN_CI, suppress_warnings, noncontiguous_like,
TEST_WITH_ASAN, IS_WINDOWS, IS_FBCODE, first_sample)
from torch.testing._internal.common_methods_invocations import \
(op_db, _NOTHING, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo)
from torch.testing._internal.common_device_type import \
(deviceCountAtLeast, instantiate_device_type_tests, ops, onlyCPU,
onlyCUDA, onlyNativeDeviceTypes, OpDTypes, skipMeta)
import torch.testing._internal.opinfo_helper as opinfo_helper
from torch.testing._internal import composite_compliance
TEST_ROCM = torch.cuda.is_available() and torch.version.hip is not None
# TODO: fixme https://github.com/pytorch/pytorch/issues/68972
torch.set_default_dtype(torch.float32)
# variant testing is only done with torch.float and torch.cfloat to avoid
# excessive test times and maximize signal to noise ratio
_variant_ops = partial(ops, dtypes=OpDTypes.supported,
allowed_dtypes=(torch.float, torch.cfloat))
# Get names of all the operators which have ref in their entry in OpInfo (testing infra)
# except for Unary Ufuncs (separately implemented in test/test_unary_ufuncs.py)
# and Spectral Functions (separately implemented for only 1D as of now, in test/test_spectral_ops.py)
_ref_test_ops = list(filter(lambda op: not isinstance(op, (UnaryUfuncInfo, ReductionOpInfo,
SpectralFuncInfo)) and op.ref is not None and op.ref is not _NOTHING, op_db))
# Tests that apply to all operators and aren't related to any particular
# system
class TestCommon(TestCase):
exact_dtype = True
# Verifies, on teardown, that no OpInfo is still using dynamic dtypes in CI
@classmethod
def tearDownClass(cls):
super().tearDownClass()
if IS_IN_CI:
err_msg = ("The operator(s) below is(are) using dynamic_dtypes in the OpInfo entries."
"This is OK for testing, but be sure to set the dtypes manually before landing your PR!")
# Assure no opinfo entry has dynamic_dtypes
filtered_ops = list(filter(opinfo_helper.is_dynamic_dtype_set, op_db))
for op in filtered_ops:
fmt_str = opinfo_helper.str_format_dynamic_dtype(op)
err_msg += "\n" + fmt_str
assert len(filtered_ops) == 0, err_msg
# Validates that each OpInfo specifies its forward and backward dtypes
# correctly for CPU and CUDA devices
@skipMeta
@onlyNativeDeviceTypes
@ops(op_db, dtypes=OpDTypes.none)
def test_dtypes(self, device, op):
# Check complex32 support only if the op claims.
# TODO: Once the complex32 support is better, we should add check for complex32 unconditionally.
include_complex32 = ((torch.complex32,) if op.supports_dtype(torch.complex32, device) else ())
# dtypes to try to backward in
allowed_backward_dtypes = floating_and_complex_types_and(
*((torch.half, torch.bfloat16) + include_complex32))
# lists for (un)supported dtypes
supported_dtypes = []
unsupported_dtypes = []
supported_backward_dtypes = []
unsupported_backward_dtypes = []
def unsupported(dtype):
unsupported_dtypes.append(dtype)
if dtype in allowed_backward_dtypes:
unsupported_backward_dtypes.append(dtype)
for dtype in all_types_and_complex_and(
*((torch.half, torch.bfloat16, torch.bool) + include_complex32)):
# tries to acquire samples - failure indicates lack of support
requires_grad = (dtype in allowed_backward_dtypes and op.supports_autograd)
try:
samples = list(op.sample_inputs(device, dtype, requires_grad=requires_grad))
except Exception as e:
unsupported(dtype)
continue
# Counts number of successful backward attempts
# NOTE: This exists as a kludge because this only understands how to
# request a gradient if the output is a tensor or a sequence with
# a tensor as its first element.
num_backward_successes = 0
for sample in samples:
# tries to call operator with the sample - failure indicates
# lack of support
try:
result = op(sample.input, *sample.args, **sample.kwargs)
except Exception as e:
# NOTE: some ops will fail in forward if their inputs
# require grad but they don't support computing the gradient
# in that type! This is a bug in the op!
unsupported(dtype)
# Short-circuits testing this dtype -- it doesn't work
if dtype in unsupported_dtypes:
break
# Short-circuits if the dtype isn't a backward dtype or
# it's already identified as not supported
if dtype not in allowed_backward_dtypes or dtype in unsupported_backward_dtypes:
continue
# Checks for backward support in the same dtype
try:
result = sample.output_process_fn_grad(result)
if isinstance(result, torch.Tensor):
backward_tensor = result
elif isinstance(result, Sequence) and isinstance(result[0], torch.Tensor):
backward_tensor = result[0]
else:
continue
# Note: this grad may not have the same dtype as dtype
# For functions like complex (float -> complex) or abs
# (complex -> float) the grad tensor will have a
# different dtype than the input.
# For simplicity, this is still modeled as these ops
# supporting grad in the input dtype.
grad = torch.randn_like(backward_tensor)
backward_tensor.backward(grad)
num_backward_successes += 1
except Exception as e:
unsupported_backward_dtypes.append(dtype)
if dtype not in unsupported_dtypes:
supported_dtypes.append(dtype)
if num_backward_successes > 0 and dtype not in unsupported_backward_dtypes:
supported_backward_dtypes.append(dtype)
# Checks that dtypes are listed correctly and generates an informative
# error message
device_type = torch.device(device).type
claimed_supported = set(op.supported_dtypes(device_type))
supported_dtypes = set(supported_dtypes)
supported_but_unclaimed = supported_dtypes - claimed_supported
claimed_but_unsupported = claimed_supported - supported_dtypes
msg = """The supported dtypes for {0} on {1} according to its OpInfo are
{2}, but the detected supported dtypes are {3}.
""".format(op.name, device_type, claimed_supported, supported_dtypes)
if len(supported_but_unclaimed) > 0:
msg += "The following dtypes should be added to the OpInfo: {0}. ".format(supported_but_unclaimed)
if len(claimed_but_unsupported) > 0:
msg += "The following dtypes should be removed from the OpInfo: {0}.".format(claimed_but_unsupported)
self.assertEqual(supported_dtypes, claimed_supported, msg=msg)
# Checks that backward dtypes are listed correctly and generates an
# informative error message
# NOTE: this code is nearly identical to the check + msg generation
claimed_backward_supported = set(op.supported_backward_dtypes(device_type))
supported_backward_dtypes = set(supported_backward_dtypes)
supported_but_unclaimed = supported_backward_dtypes - claimed_backward_supported
claimed_but_unsupported = claimed_backward_supported - supported_backward_dtypes
msg = """The supported backward dtypes for {0} on {1} according to its OpInfo are
{2}, but the detected supported backward dtypes are {3}.
""".format(op.name, device_type, claimed_backward_supported, supported_backward_dtypes)
if len(supported_but_unclaimed) > 0:
msg += "The following backward dtypes should be added to the OpInfo: {0}. ".format(supported_but_unclaimed)
if len(claimed_but_unsupported) > 0:
msg += "The following backward dtypes should be removed from the OpInfo: {0}.".format(claimed_but_unsupported)
self.assertEqual(supported_backward_dtypes, claimed_backward_supported, msg=msg)
# Validates that each OpInfo works correctly on different CUDA devices
@onlyCUDA
@deviceCountAtLeast(2)
@ops(op_db, allowed_dtypes=(torch.float32, torch.long))
def test_multiple_devices(self, devices, dtype, op):
for cuda_device_str in devices:
cuda_device = torch.device(cuda_device_str)
# NOTE: only tests on first sample
samples = op.sample_inputs(cuda_device, dtype)
sample = first_sample(self, samples)
result = op(sample.input, *sample.args, **sample.kwargs)
if isinstance(result, torch.Tensor):
self.assertTrue(result.device == cuda_device)
elif is_iterable_of_tensors(result):
self.assertTrue(all(map(lambda t: t.device == cuda_device, result)))
else:
self.skipTest("Skipped! Only supports single tensor or iterable of tensor outputs.")
# Tests that the function and its (ndarray-accepting) reference produce the same
# values on the tensors from sample_inputs func for the corresponding op.
# This test runs in double and complex double precision because
# NumPy does computation internally using double precision for many functions
# resulting in possible equality check failures.
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@onlyNativeDeviceTypes
@suppress_warnings
@ops(_ref_test_ops, allowed_dtypes=(torch.float64, torch.long, torch.complex128))
def test_reference_testing(self, device, dtype, op):
try:
# Sets the default dtype to NumPy's default dtype of double
cur_default = torch.get_default_dtype()
torch.set_default_dtype(torch.double)
reference_inputs = op.reference_inputs(device, dtype)
for sample_input in reference_inputs:
self.compare_with_reference(op, op.ref, sample_input, exact_dtype=(dtype is not torch.long))
finally:
torch.set_default_dtype(cur_default)
@skipMeta
@onlyNativeDeviceTypes
@ops([op for op in op_db if op.error_inputs_func is not None], dtypes=OpDTypes.none)
def test_errors(self, device, op):
error_inputs = op.error_inputs(device)
for ei in error_inputs:
si = ei.sample_input
with self.assertRaisesRegex(ei.error_type, ei.error_regex):
op(si.input, *si.args, **si.kwargs)
# Tests that the function produces the same result when called with
# noncontiguous tensors.
# TODO: get working with Windows by addressing failing operators
# TODO: get working with ASAN by addressing failing operators
@unittest.skipIf(IS_WINDOWS, "Skipped under Windows")
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@onlyNativeDeviceTypes
@suppress_warnings
@ops(op_db, allowed_dtypes=(torch.float32, torch.long, torch.complex64))
def test_noncontiguous_samples(self, device, dtype, op):
test_grad = dtype in op.supported_backward_dtypes(torch.device(device).type)
sample_inputs = op.sample_inputs(device, dtype, requires_grad=test_grad)
for sample_input in sample_inputs:
t_inp, t_args, t_kwargs = sample_input.input, sample_input.args, sample_input.kwargs
n_inp, n_args, n_kwargs = sample_input.noncontiguous()
# Verifies sample input tensors should have no grad or history
sample_tensor = t_inp if isinstance(t_inp, torch.Tensor) else t_inp[0]
assert sample_tensor.grad is None
assert sample_tensor.grad_fn is None
# validates forward
expected = op(t_inp, *t_args, **t_kwargs)
actual = op(n_inp, *n_args, **n_kwargs)
self.assertEqual(actual, expected)
# Validate backward
# Short-circuits if the op doesn't support grad in this device x dtype
if not test_grad:
continue
expected = sample_input.output_process_fn_grad(expected)
actual = sample_input.output_process_fn_grad(actual)
if isinstance(expected, torch.Tensor):
grad_for_expected = torch.randn_like(expected)
grad_for_actual = noncontiguous_like(grad_for_expected)
elif isinstance(expected, Sequence):
# Filter output elements that do not require grad
expected = [t for t in expected
if isinstance(t, torch.Tensor) and t.requires_grad]
actual = [n for n in actual
if isinstance(n, torch.Tensor) and n.requires_grad]
grad_for_expected = [torch.randn_like(t) for t in expected]
grad_for_actual = [noncontiguous_like(n) for n in grad_for_expected]
else:
# Nothing to do if it returns a scalar or things like that
continue
# Concatenate inputs into a tuple
t_inputs = (t_inp,) + t_args if isinstance(t_inp, torch.Tensor) else tuple(t_inp) + t_args
n_inputs = (n_inp,) + n_args if isinstance(n_inp, torch.Tensor) else tuple(n_inp) + n_args
# Filter the elemnts that are tensors that require grad
t_input_tensors = [t for t in t_inputs if isinstance(t, torch.Tensor) and t.requires_grad]
n_input_tensors = [n for n in n_inputs if isinstance(n, torch.Tensor) and n.requires_grad]
self.assertEqual(len(t_input_tensors), len(n_input_tensors))
# Some functions may not use all the inputs to generate gradients. One of the
# few examples of this "odd" behaviour is F.hinge_embedding_loss
t_grads = torch.autograd.grad(expected, t_input_tensors, grad_for_expected, allow_unused=True)
n_grads = torch.autograd.grad(actual, n_input_tensors, grad_for_actual, allow_unused=True)
msg = "Got different gradients for contiguous / non-contiguous inputs wrt input {}."
for i, (t, n) in enumerate(zip(t_grads, n_grads)):
self.assertEqual(t, n, msg=msg.format(i))
# Separates one case from the following test_out because many ops don't properly implement the
# incorrectly sized out parameter warning properly yet
# Cases test here:
# - out= with the correct dtype and device, but the wrong shape
@ops(op_db, dtypes=OpDTypes.none)
def test_out_warning(self, device, op):
# Prefers running in float32 but has a fallback for the first listed supported dtype
supported_dtypes = op.supported_dtypes(self.device_type)
if len(supported_dtypes) == 0:
self.skipTest("Skipped! Op has not supported dtypes on this device.")
dtype = torch.float32 if torch.float32 in supported_dtypes else list(supported_dtypes)[0]
samples = op.sample_inputs(device, dtype)
for sample in samples:
# calls it normally to get the expected result
expected = op(sample.input, *sample.args, **sample.kwargs)
op_out = partial(op, sample.input, *sample.args, **sample.kwargs)
# Short-circuits if output is not a single tensor or an
# iterable of tensors
if not isinstance(expected, torch.Tensor) and not is_iterable_of_tensors(expected, include_empty=True):
self.skipTest("Skipped! Only supports single tensor or iterable of tensor outputs.")
# Validates the op doesn't support out if it claims not to
if not op.supports_out:
with self.assertRaises(Exception):
assert op_out(out=expected) != NotImplemented
return
# A wrapper around map that works with single tensors and always
# instantiates the map. Used below to apply transforms to
# single tensor and iterable tensor outputs.
def _apply_out_transform(fn, out):
if isinstance(out, torch.Tensor):
return fn(out)
# assumes (see above) that out is an iterable of tensors
return tuple(map(fn, out))
# Extracts strides from a tensor or iterable of tensors into a tuple
def _extract_strides(out):
if isinstance(out, torch.Tensor):
return (out.stride(),)
# assumes (see above) that out is an iterable of tensors
return tuple(map(lambda t: t.stride(), out))
# Extracts data pointers from a tensor or iterable of tensors into a tuple
# NOTE: only extracts on the CPU and CUDA device types since some
# device types don't have storage
def _extract_data_ptrs(out):
if self.device_type != 'cpu' and self.device_type != 'cuda':
return ()
if isinstance(out, torch.Tensor):
return (out.data_ptr(),)
# assumes (see above) that out is an iterable of tensors
return tuple(map(lambda t: t.data_ptr(), out))
@suppress_warnings
def _compare_out(transform, *, compare_strides_and_data_ptrs=True):
out = _apply_out_transform(transform, expected)
original_strides = _extract_strides(out)
original_ptrs = _extract_data_ptrs(out)
op_out(out=out)
final_strides = _extract_strides(out)
final_ptrs = _extract_data_ptrs(out)
self.assertEqual(expected, out)
if compare_strides_and_data_ptrs:
stride_msg = "Strides are not the same! Original strides were {0} and strides are now {1}".format(
original_strides, final_strides)
self.assertEqual(original_strides, final_strides, msg=stride_msg)
self.assertEqual(original_ptrs, final_ptrs)
# Case Zero: out= with the correct dtype and device, but the wrong shape
# Expected behavior: if nonempty, resize with a warning.
def _case_zero_transform(t):
wrong_shape = list(t.shape)
if len(wrong_shape) == 0:
# Handles scalar tensor case (empty list)
wrong_shape = [2]
else:
wrong_shape[-1] = wrong_shape[-1] + 1
return make_tensor(wrong_shape, dtype=t.dtype, device=t.device)
# Verifies the out values are correct
_compare_out(_case_zero_transform, compare_strides_and_data_ptrs=False)
# Additionally validates that the appropriate warning is thrown if a nonempty
# tensor is resized.
def _any_nonempty(out):
if isinstance(out, torch.Tensor):
return out.numel() > 0
return any(x.numel() > 0 for x in out)
out = _apply_out_transform(_case_zero_transform, expected)
msg_fail = "Resized a non-empty tensor but did not warn about it."
if _any_nonempty(out):
with self.assertWarnsRegex(UserWarning, "An output with one or more elements", msg=msg_fail):
op_out(out=out)
# Validates ops implement the correct out= behavior
# See https://github.com/pytorch/pytorch/wiki/Developer-FAQ#how-does-out-work-in-pytorch
# for a description of the correct behavior
# Validates the following cases:
# - Case 0: out has the correct shape, dtype, and device but is full of extremal values
# - Case 1: out has the correct shape, dtype, and device but is noncontiguous
# - Case 2: out has the correct dtype and device, but is zero elements
# - Case 3: out has the correct shape and dtype, but is on a different device type
# - Case 4: out has the with correct shape and device, but a dtype that cannot
# "safely" cast to
@ops(op_db, dtypes=OpDTypes.none)
def test_out(self, device, op):
# Prefers running in float32 but has a fallback for the first listed supported dtype
supported_dtypes = op.supported_dtypes(self.device_type)
if len(supported_dtypes) == 0:
self.skipTest("Skipped! Op has not supported dtypes on this device.")
dtype = torch.float32 if torch.float32 in supported_dtypes else list(supported_dtypes)[0]
samples = op.sample_inputs(device, dtype)
for sample in samples:
# calls it normally to get the expected result
expected = op(sample.input, *sample.args, **sample.kwargs)
op_out = partial(op, sample.input, *sample.args, **sample.kwargs)
# Short-circuits if output is not a single tensor or an
# iterable of tensors
if not isinstance(expected, torch.Tensor) and not is_iterable_of_tensors(expected, include_empty=True):
self.skipTest("Skipped! Only supports single tensor or iterable of tensor outputs.")
# Validates the op doesn't support out if it claims not to
if not op.supports_out:
with self.assertRaises(Exception):
assert op_out(out=expected) != NotImplemented
return
# A wrapper around map that works with single tensors and always
# instantiates the map. Used below to apply transforms to
# single tensor and iterable tensor outputs.
def _apply_out_transform(fn, out):
if isinstance(out, torch.Tensor):
return fn(out)
# assumes (see above) that out is an iterable of tensors
return tuple(map(fn, out))
# Extracts strides from a tensor or iterable of tensors into a tuple
def _extract_strides(out):
if isinstance(out, torch.Tensor):
return (out.stride(),)
# assumes (see above) that out is an iterable of tensors
return tuple(map(lambda t: t.stride(), out))
# Extracts data pointers from a tensor or iterable of tensors into a tuple
# NOTE: only extracts on the CPU and CUDA device types since some
# device types don't have storage
def _extract_data_ptrs(out):
if self.device_type != 'cpu' and self.device_type != 'cuda':
return ()
if isinstance(out, torch.Tensor):
return (out.data_ptr(),)
# assumes (see above) that out is an iterable of tensors
return tuple(map(lambda t: t.data_ptr(), out))
def _compare_out(transform, *, compare_strides_and_data_ptrs=True):
out = _apply_out_transform(transform, expected)
original_strides = _extract_strides(out)
original_ptrs = _extract_data_ptrs(out)
op_out(out=out)
final_strides = _extract_strides(out)
final_ptrs = _extract_data_ptrs(out)
self.assertEqual(expected, out)
if compare_strides_and_data_ptrs:
stride_msg = "Strides are not the same! Original strides were {0} and strides are now {1}".format(
original_strides, final_strides)
self.assertEqual(original_strides, final_strides, msg=stride_msg)
self.assertEqual(original_ptrs, final_ptrs)
# Case 0: out= with the correct shape, dtype, and device
# but NaN values for floating point and complex tensors, and
# maximum values for integer tensors.
# Expected behavior: out= values have no effect on the computation.
def _case_zero_transform(t):
try:
info = torch.iinfo(t.dtype)
return torch.full_like(t, info.max)
except TypeError as te:
# for non-integer types fills with NaN
return torch.full_like(t, float('nan'))
_compare_out(_case_zero_transform)
# Case 1: out= with the correct shape, dtype, and device,
# but noncontiguous.
# Expected behavior: strides are respected and `out` storage is not changed.
def _case_one_transform(t):
return make_tensor(t.shape,
dtype=t.dtype,
device=t.device,
noncontiguous=True)
_compare_out(_case_one_transform)
# Case 2: out= with the correct dtype and device, but has no elements.
# Expected behavior: resize without warning.
def _case_two_transform(t):
return make_tensor((0,), dtype=t.dtype, device=t.device)
_compare_out(_case_two_transform, compare_strides_and_data_ptrs=False)
# Also validates that no warning is thrown when this out is resized
out = _apply_out_transform(_case_two_transform, expected)
with warnings.catch_warnings(record=True) as caught:
warnings.simplefilter("always")
op_out(out=out)
# Verifies no warning is a resize warning
for w in caught:
if "An output with one or more elements" in str(w.message):
self.fail("Resizing an out= argument with no elements threw a resize warning!")
# Case 3: out= with correct shape and dtype, but wrong device.
wrong_device = None
if torch.device(device).type != 'cpu':
wrong_device = 'cpu'
elif torch.cuda.is_available():
wrong_device = 'cuda'
if wrong_device is not None:
def _case_three_transform(t):
return make_tensor(t.shape, dtype=t.dtype, device=wrong_device)
out = _apply_out_transform(_case_three_transform, expected)
msg_fail = f"Expected RuntimeError when calling with input.device={device} and out.device={wrong_device}"
with self.assertRaises(RuntimeError, msg=msg_fail):
op_out(out=out)
# Case 4: out= with correct shape and device, but a dtype
# that output cannot be "safely" cast to (long).
# Expected behavior: error.
# NOTE: this case is filtered by dtype since some ops produce
# bool tensors, for example, which can be safely cast to any
# dtype. It is applied when single tensors are floating point or complex
# dtypes, or if an op returns multiple tensors when at least one such
# tensor is a floating point or complex dtype.
_dtypes = floating_and_complex_types_and(torch.float16, torch.bfloat16)
if (isinstance(expected, torch.Tensor) and expected.dtype in _dtypes or
(not isinstance(expected, torch.Tensor) and any(t.dtype in _dtypes for t in expected))):
def _case_four_transform(t):
return make_tensor(t.shape, dtype=torch.long, device=t.device)
out = _apply_out_transform(_case_four_transform, expected)
msg_fail = "Expected RuntimeError when doing an unsafe cast!"
msg_fail = msg_fail if not isinstance(expected, torch.Tensor) else \
("Expected RuntimeError when doing an unsafe cast from a result of dtype "
f"{expected.dtype} into an out= with dtype torch.long")
with self.assertRaises(RuntimeError, msg=msg_fail):
op_out(out=out)
# Tests that the forward and backward passes of operations produce the
# same values for the cross-product of op variants (method, inplace)
# against eager's gold standard op function variant
@_variant_ops(op_db)
def test_variant_consistency_eager(self, device, dtype, op):
# Acquires variants (method variant, inplace variant, aliases)
method = op.method_variant
inplace = op.inplace_variant
# list of all inplace ops: inplace variant + alias inplace variants if exist
inplace_ops = [inplace, ]
variants = [method, inplace]
for a_op in op.aliases:
variants.append(a_op.op)
variants.append(a_op.method_variant)
variants.append(a_op.inplace_variant)
inplace_ops.append(a_op.inplace_variant)
inplace_variants = tuple(filter(None, inplace_ops))
variants = tuple(filter(None, variants))
_requires_grad = (op.supports_autograd and
(dtype.is_floating_point or op.supports_complex_autograd(torch.device(device).type)))
include_conjugated_inputs = op.test_conjugated_samples and dtype.is_complex
samples = op.sample_inputs(device, dtype, requires_grad=_requires_grad, include_conjugated_inputs=include_conjugated_inputs)
samples = list(samples)
def _test_consistency_helper(samples, variants):
for sample in samples:
# TODO: Check grad for all Tensors requiring grad if sample.input is TensorList
tensor = sample.input if isinstance(sample.input, torch.Tensor) else sample.input[0]
# Computes function forward and backward values
tensor.grad = None
expected_forward = op(sample.input, *sample.args, **sample.kwargs)
expected_grad = None
output_process_fn_grad = sample.output_process_fn_grad if sample.output_process_fn_grad \
else lambda x: x
# Skips inplace variants if the output dtype is not the same as
# the input dtype
skip_inplace = False
if (isinstance(expected_forward, torch.Tensor) and
expected_forward.dtype is not tensor.dtype):
skip_inplace = True
# TODO: backward consistency only supported for single tensor outputs
# TODO: backward consistency only checked on sample.input, not all
# tensor inputs
# TODO: update to handle checking grads of all tensor inputs as
# derived from each tensor output
if (op.supports_autograd and isinstance(expected_forward, torch.Tensor)
and (dtype.is_floating_point or op.supports_complex_autograd(torch.device(device).type))):
output_process_fn_grad(expected_forward).sum().backward()
expected_grad = tensor.grad
# Test eager consistency
for variant in variants:
# Skips inplace ops
if variant in inplace_ops and skip_inplace:
continue
# Compares variant's forward
# Note: copies the to-be-modified input when testing the inplace variant
tensor.grad = None
cloned = clone_input_helper(sample.input) if variant in inplace_ops else sample.input
if variant in inplace_ops and sample.broadcasts_input:
with self.assertRaises(RuntimeError,
msg=('inplace variant either incorrectly allowed '
'resizing or you have marked the sample {}'
' incorrectly with `broadcasts_self=True'.format(sample.summary()))):
variant_forward = variant(cloned,
*sample.args,
**sample.kwargs)
continue
variant_forward = variant(cloned,
*sample.args,
**sample.kwargs)
self.assertEqual(expected_forward, variant_forward)
# Compares variant's backward
if expected_grad is not None and \
(variant not in inplace_ops or op.supports_inplace_autograd):
output_process_fn_grad(variant_forward).sum().backward()
self.assertEqual(expected_grad, tensor.grad)
_test_consistency_helper(samples, variants)
def _test_inplace_preserve_storage(samples, variants):
for sample in samples:
# Skips inplace variants if the output dtype is not the same as
# the input dtype
expected_forward = op(sample.input, *sample.args, **sample.kwargs)
tensor = sample.input if isinstance(sample.input, torch.Tensor) else sample.input[0]
skip_inplace = False
if (isinstance(expected_forward, torch.Tensor) and
expected_forward.dtype is not tensor.dtype):
skip_inplace = True
if skip_inplace:
return
for variant in variants:
cloned = clone_input_helper(sample.input) if variant in inplace_ops else sample.input
inp_tensor = cloned if isinstance(cloned, torch.Tensor) else cloned[0]
data_ptr = inp_tensor.data_ptr()
variant_forward = variant(cloned,
*sample.args,
**sample.kwargs)
# TODO Support non-tensor outputs if they exist for inplace ops
if (isinstance(variant_forward, torch.Tensor)):
self.assertEqual(data_ptr, variant_forward.data_ptr(), atol=0, rtol=0)
else:
self.assertTrue(False, "Non-tensor outputs for inplace ops are not supported")
if len(inplace_ops) > 0:
inplace_samples = list(filter(lambda sample: not sample.broadcasts_input, samples))
_test_inplace_preserve_storage(inplace_samples, inplace_variants)
@onlyCPU
@ops(op_db, allowed_dtypes=(torch.float,))
def test_floating_inputs_are_differentiable(self, device, dtype, op):
# Nothing to check if the operation it's not differentiable
if not op.supports_autograd:
return
floating_dtypes = list(floating_and_complex_types_and(torch.bfloat16, torch.float16))
def check_tensor_floating_is_differentiable(t):
if isinstance(t, torch.Tensor) and t.dtype in floating_dtypes:
msg = (f"Found a sampled tensor of floating-point dtype {t.dtype} sampled with "
"requires_grad=False. If this is intended, please skip/xfail this test. "
"Remember that sampling operations are executed under a torch.no_grad contextmanager.")
self.assertTrue(t.requires_grad, msg)
samples = op.sample_inputs(device, dtype, requires_grad=True)
for sample in samples:
check_tensor_floating_is_differentiable(sample.input)
for arg in sample.args:
check_tensor_floating_is_differentiable(arg)
for arg in sample.kwargs.values():
check_tensor_floating_is_differentiable(arg)
# Reference testing for operations in complex32 against complex64.
# NOTE: We test against complex64 as NumPy doesn't have a complex32 equivalent dtype.
@ops(op_db, allowed_dtypes=(torch.complex32,))
def test_complex_half_reference_testing(self, device, dtype, op):
if not op.supports_dtype(torch.complex32, device):
unittest.skip("Does not support complex32")
for sample in op.sample_inputs(device, dtype):
actual = op(sample.input, *sample.args, **sample.kwargs)
(inp, args, kwargs) = sample.transform(lambda x: x.to(torch.complex64))
expected = op(inp, *args, **kwargs)
self.assertEqual(actual, expected, exact_dtype=False)
class TestCompositeCompliance(TestCase):
# Checks if the operator (if it is composite) is written to support most
# backends and Tensor subclasses. See "CompositeImplicitAutograd Compliance"
# in aten/src/ATen/native/README.md for more details
@unittest.skipIf(IS_FBCODE or IS_SANDCASTLE, '__torch_dispatch__ does not work in fbcode')
@ops(op_db, allowed_dtypes=(torch.float,))
def test_operator(self, device, dtype, op):
samples = op.sample_inputs(device, dtype, requires_grad=False)
for sample in samples:
args = [sample.input] + list(sample.args)
kwargs = sample.kwargs
composite_compliance.check_with_mode(op, args, kwargs)
composite_compliance.check_all_permutations(op, args, kwargs)
# There are some weird unexpected successe here that imply rocm goes down
# a different path than CUDA sometimes. There's not an easy way to describe
# this in OpInfo so we're just going to skip all ROCM tests...
@unittest.skipIf(TEST_ROCM, "The CUDA tests give sufficient signal")
@unittest.skipIf(IS_FBCODE or IS_SANDCASTLE, '__torch_dispatch__ does not work in fbcode')
@ops([op for op in op_db if op.supports_autograd], allowed_dtypes=(torch.float,))
def test_backward(self, device, dtype, op):
samples = op.sample_inputs(device, dtype, requires_grad=True)
for sample in samples:
args = [sample.input] + list(sample.args)
kwargs = sample.kwargs
composite_compliance.check_backward_formula(op, args, kwargs)
class TestMathBits(TestCase):
# Tests that
# 1. The operator's output for physically conjugated/negated tensors and conjugate/negative view tensors
# produces the same value
# 2. The gradients are same in both cases mentioned in (1)
# 3. If the operator's inplace variant is supported, tests that the inplace operation
# produces the correct value when called on a conjugate/negative view tensor and that the output
# has its conj/neg bit set to true
# This test only runs for C -> R and C -> C functions
# TODO: add tests for `R->C` functions
# Note: This test runs for functions that take both tensors and tensorlists as input.
def _test_math_view(self, device, dtype, op, samples, math_op_physical, math_op_view, is_bit_set, out_type):
inplace_variant = op.inplace_variant
# helper function to clone and conjugate/negate the input if its a tensor
# else clone the sequence and conjugate/negate the first element in the sequence
# If a requires_grad argument is provided the tensor being conjugated/negated will
# have its requires_grad set to that value.
def clone_and_perform_view(input, **kwargs):
if isinstance(input, torch.Tensor):
requires_grad = kwargs.get('requires_grad', input.requires_grad)
with torch.no_grad():
# Ensure view represents the original sample input
input = math_op_physical(input)
# Note: .conj() is not called under no_grad mode since it's not allowed to modify a
# view created in no_grad mode. Here it's ok to do so, so as a workaround we call conj
# before resetting the requires_grad field for input
input = math_op_view(input)
assert input.is_leaf
return input.requires_grad_(requires_grad)
if isinstance(input, Sequence):
out = list(map(clone_input_helper, input))
out[0] = clone_and_perform_view(out[0])
return tuple(out)
for sample in samples:
tensor = sample.input if isinstance(sample.input, torch.Tensor) else sample.input[0]
cloned1 = clone_and_perform_view(sample.input)
# Computes function forward value with a physically conjugated/negated tensor and
# a conj/neg view tensor and verifies that the output in both case are equal.
expected_forward = op(sample.input, *sample.args, **sample.kwargs)
forward_with_mathview = op(cloned1, *sample.args, **sample.kwargs)
self.assertEqual(expected_forward, forward_with_mathview)
# If the op has an inplace variant, and the input doesn't require broadcasting
# and has the same dtype as output, verify that the inplace operation on a conjugated/negated
# input produces correct output, and the output tensor has the conj/neg bit set to True
if inplace_variant is not None and not sample.broadcasts_input:
cloned2 = clone_and_perform_view(tensor, requires_grad=False)
if (isinstance(expected_forward, torch.Tensor) and
expected_forward.dtype is tensor.dtype):
inplace_forward = inplace_variant(cloned2, *sample.args, **sample.kwargs)
self.assertTrue(is_bit_set(inplace_forward))
self.assertEqual(inplace_forward, expected_forward)
# TODO: backward consistency only supported for single tensor outputs
# TODO: backward consistency only checked on sample.input, not all
# tensor inputs
# TODO: update to handle checking grads of all tensor inputs as
# derived from each tensor output
if isinstance(expected_forward, torch.Tensor) and expected_forward.requires_grad:
output_process_fn_grad = sample.output_process_fn_grad or (lambda x: x)
expected_forward = output_process_fn_grad(expected_forward)
forward_with_mathview = output_process_fn_grad(forward_with_mathview)
tensor = sample.input if isinstance(sample.input, torch.Tensor) else sample.input[0]
expected_forward.sum().backward(retain_graph=True)
forward_with_mathview.sum().backward(retain_graph=True)
if tensor.grad is not None:
cloned1_tensor = cloned1 if isinstance(cloned1, torch.Tensor) else cloned1[0]
self.assertEqual(tensor.grad, cloned1_tensor.grad)
tensor.grad, cloned1_tensor.grad = None, None
# a repeat of the above test if output is not complex valued
if (out_type(expected_forward)):
grad = torch.randn_like(expected_forward)
expected_forward.backward(grad)
forward_with_mathview.backward(math_op_view(math_op_physical(grad)))
self.assertEqual(tensor.grad, cloned1_tensor.grad)
@ops(op_db, allowed_dtypes=(torch.cfloat,))
def test_conj_view(self, device, dtype, op):
if not op.test_conjugated_samples:
self.skipTest("Operation doesn't support conjugated inputs.")
math_op_physical = torch.conj_physical
math_op_view = torch.conj
_requires_grad = (op.supports_autograd and op.supports_complex_autograd(torch.device(device).type))
is_bit_set = torch.is_conj
samples = op.sample_inputs(device, dtype, requires_grad=_requires_grad)
self._test_math_view(device, dtype, op, samples, math_op_physical, math_op_view, is_bit_set, torch.is_complex)
@ops(op_db, allowed_dtypes=(torch.double,))
def test_neg_view(self, device, dtype, op):
if not op.test_neg_view:
self.skipTest("Operation not tested with tensors with negative bit.")
math_op_physical = torch.neg
math_op_view = torch._neg_view
is_bit_set = torch.is_neg
samples = op.sample_inputs(device, dtype, requires_grad=op.supports_autograd)
self._test_math_view(device, dtype, op, samples, math_op_physical, math_op_view, is_bit_set,
lambda x: True)
@ops(op_db, allowed_dtypes=(torch.cdouble,))
def test_neg_conj_view(self, device, dtype, op):
if not op.test_neg_view:
self.skipTest("Operation not tested with tensors with negative bit.")
if not op.test_conjugated_samples:
self.skipTest("Operation doesn't support conjugated inputs.")
def math_op_physical(x):
return -x.conj_physical()
def math_op_view(x):
return torch._neg_view(x).conj()
def is_bit_set(x):
return torch.is_neg(x) and torch.is_conj(x)
_requires_grad = (op.supports_autograd and op.supports_complex_autograd(torch.device(device).type))
samples = op.sample_inputs(device, dtype, requires_grad=_requires_grad)
# Only test one sample
samples = itertools.islice(samples, 1)
self._test_math_view(device, dtype, op, samples, math_op_physical, math_op_view, is_bit_set,
torch.is_complex)
instantiate_device_type_tests(TestCommon, globals())
instantiate_device_type_tests(TestCompositeCompliance, globals())
instantiate_device_type_tests(TestMathBits, globals())
if __name__ == '__main__':
run_tests()