Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

run python demo.py -p MobileNetV3_large.pth error #17

Open
yangbohust opened this issue Oct 28, 2022 · 5 comments
Open

run python demo.py -p MobileNetV3_large.pth error #17

yangbohust opened this issue Oct 28, 2022 · 5 comments

Comments

@yangbohust
Copy link

I run python demo.py -p MobileNetV3_large.pth , got error, how can i fix it?

python demo.py -p MobileNetV3_large.pth
C:\anaconda\envs\gestures2\lib\site-packages\torchvision\models\_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.
  warnings.warn(
C:\anaconda\envs\gestures2\lib\site-packages\torchvision\models\_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=None`.
  warnings.warn(msg)
Traceback (most recent call last):
  File "C:\Ascend\code\hagrid-master\demo.py", line 204, in <module>
    model = _load_model(os.path.expanduser(args.path_to_model), args.device)
  File "C:\Ascend\code\hagrid-master\demo.py", line 165, in _load_model
    ssd_mobilenet.load_state_dict(model_path, map_location=device)
  File "C:\Ascend\code\hagrid-master\detector\ssd_mobilenetv3.py", line 67, in load_state_dict
    self.torchvision_model.load_state_dict(torch.load(checkpoint_path, map_location=map_location))
  File "C:\anaconda\envs\gestures2\lib\site-packages\torch\nn\modules\module.py", line 1667, in load_state_dict
    raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
RuntimeError: Error(s) in loading state_dict for SSD:
        Missing key(s) in state_dict: "backbone.features.0.0.0.weight", "backbone.features.0.0.1.weight", "backbone.features.0.0.1.bias", "backbone.features.0.0.1.running_mean", "backbone.features.0.0.1.running_var", "backbone.features.0.1.block.0.0.weight", "backbone.features.0.1.block.0.1.weight", "backbone.features.0.1.block.0.1.bias", "backbone.features.0.1.block.0.1.running_mean", "backbone.features.0.1.block.0.1.running_var", "backbone.features.0.1.block.1.0.weight", "backbone.features.0.1.block.1.1.weight", "backbone.features.0.1.block.1.1.bias", "backbone.features.0.1.block.1.1.running_mean", "backbone.features.0.1.block.1.1.running_var", "backbone.features.0.2.block.0.0.weight", "backbone.features.0.2.block.0.1.weight", "backbone.features.0.2.block.0.1.bias", "backbone.features.0.2.block.0.1.running_mean", "backbone.features.0.2.block.0.1.running_var", "backbone.features.0.2.block.1.0.weight", "backbone.features.0.2.block.1.1.weight", "backbone.features.0.2.block.1.1.bias", "backbone.features.0.2.block.1.1.running_mean", "backbone.features.0.2.block.1.1.running_var", "backbone.features.0.2.block.2.0.weight", "backbone.features.0.2.block.2.1.weight", "backbone.features.0.2.block.2.1.bias", "backbone.features.0.2.block.2.1.running_mean", "backbone.features.0.2.block.2.1.running_var", "backbone.features.0.3.block.0.0.weight", "backbone.features.0.3.block.0.1.weight", "backbone.features.0.3.block.0.1.bias", "backbone.features.0.3.block.0.1.running_mean", "backbone.features.0.3.block.0.1.running_var", "backbone.features.0.3.block.1.0.weight", "backbone.features.0.3.block.1.1.weight", "backbone.features.0.3.block.1.1.bias", "backbone.features.0.3.block.1.1.running_mean", "backbone.features.0.3.block.1.1.running_var", "backbone.features.0.3.block.2.0.weight", "backbone.features.0.3.block.2.1.weight", "backbone.features.0.3.block.2.1.bias", "backbone.features.0.3.block.2.1.running_mean", "backbone.features.0.3.block.2.1.running_var", "backbone.features.0.4.block.0.0.weight", "backbone.features.0.4.block.0.1.weight", "backbone.features.0.4.block.0.1.bias", "backbone.features.0.4.block.0.1.running_mean", "backbone.features.0.4.block.0.1.running_var", "backbone.features.0.4.block.1.0.weight", "backbone.features.0.4.block.1.1.weight", "backbone.features.0.4.block.1.1.bias", "backbone.features.0.4.block.1.1.running_mean", "backbone.features.0.4.block.1.1.running_var", "backbone.features.0.4.block.2.fc1.weight", "backbone.features.0.4.block.2.fc1.bias", "backbone.features.0.4.block.2.fc2.weight", "backbone.features.0.4.block.2.fc2.bias", "backbone.features.0.4.block.3.0.weight", "backbone.features.0.4.block.3.1.weight", "backbone.features.0.4.block.3.1.bias", "backbone.features.0.4.block.3.1.running_mean", "backbone.features.0.4.block.3.1.running_var", "backbone.features.0.5.block.0.0.weight", "backbone.features.0.5.block.0.1.weight", "backbone.features.0.5.block.0.1.bias", "backbone.features.0.5.block.0.1.running_mean", "backbone.features.0.5.block.0.1.running_var", "backbone.features.0.5.block.1.0.weight", "backbone.features.0.5.block.1.1.weight", "backbone.features.0.5.block.1.1.bias", "backbone.features.0.5.block.1.1.running_mean", "backbone.features.0.5.block.1.1.running_var", "backbone.features.0.5.block.2.fc1.weight", "backbone.features.0.5.block.2.fc1.bias", "backbone.features.0.5.block.2.fc2.weight", "backbone.features.0.5.block.2.fc2.bias", "backbone.features.0.5.block.3.0.weight", "backbone.features.0.5.block.3.1.weight", "backbone.features.0.5.block.3.1.bias", "backbone.features.0.5.block.3.1.running_mean", "backbone.features.0.5.block.3.1.running_var", "backbone.features.0.6.block.0.0.weight", "backbone.features.0.6.block.0.1.weight", "backbone.features.0.6.block.0.1.bias", "backbone.features.0.6.block.0.1.running_mean", "backbone.features.0.6.block.0.1.running_var", "backbone.features.0.6.block.1.0.weight", "backbone.features.0.6.block.1.1.weight", "backbone.features.0.6.block.1.1.bias", "backbone.features.0.6.block.1.1.running_mean", "backbone.features.0.6.block.1.1.running_var", "backbone.features.0.6.block.2.fc1.weight", "backbone.features.0.6.block.2.fc1.bias", "backbone.features.0.6.block.2.fc2.weight", "backbone.features.0.6.block.2.fc2.bias", "backbone.features.0.6.block.3.0.weight", "backbone.features.0.6.block.3.1.weight", "backbone.features.0.6.block.3.1.bias", "backbone.features.0.6.block.3.1.running_mean", "backbone.features.0.6.block.3.1.running_var", "backbone.features.0.7.block.0.0.weight", "backbone.features.0.7.block.0.1.weight", "backbone.features.0.7.block.0.1.bias", "backbone.features.0.7.block.0.1.running_mean", "backbone.features.0.7.block.0.1.running_var", "backbone.features.0.7.block.1.0.weight", "backbone.features.0.7.block.1.1.weight", "backbone.features.0.7.block.1.1.bias", "backbone.features.0.7.block.1.1.running_mean", "backbone.features.0.7.block.1.1.running_var", "backbone.features.0.7.block.2.0.weight", "backbone.features.0.7.block.2.1.weight", "backbone.features.0.7.block.2.1.bias", "backbone.features.0.7.block.2.1.running_mean", "backbone.features.0.7.block.2.1.running_var", "backbone.features.0.8.block.0.0.weight", "backbone.features.0.8.block.0.1.weight", "backbone.features.0.8.block.0.1.bias", "backbone.features.0.8.block.0.1.running_mean", "backbone.features.0.8.block.0.1.running_var", "backbone.features.0.8.block.1.0.weight", "backbone.features.0.8.block.1.1.weight", "backbone.features.0.8.block.1.1.bias", "backbone.features.0.8.block.1.1.running_mean", "backbone.features.0.8.block.1.1.running_var", "backbone.features.0.8.block.2.0.weight", "backbone.features.0.8.block.2.1.weight", "backbone.features.0.8.block.2.1.bias", "backbone.features.0.8.block.2.1.running_mean", "backbone.features.0.8.block.2.1.running_var", "backbone.features.0.9.block.0.0.weight", "backbone.features.0.9.block.0.1.weight", "backbone.features.0.9.block.0.1.bias", "backbone.features.0.9.block.0.1.running_mean", "backbone.features.0.9.block.0.1.running_var", "backbone.features.0.9.block.1.0.weight", "backbone.features.0.9.block.1.1.weight", "backbone.features.0.9.block.1.1.bias", "backbone.features.0.9.block.1.1.running_mean", "backbone.features.0.9.block.1.1.running_var", "backbone.features.0.9.block.2.0.weight", "backbone.features.0.9.block.2.1.weight", "backbone.features.0.9.block.2.1.bias", "backbone.features.0.9.block.2.1.running_mean", "backbone.features.0.9.block.2.1.running_var", "backbone.features.0.10.block.0.0.weight", "backbone.features.0.10.block.0.1.weight", "backbone.features.0.10.block.0.1.bias", "backbone.features.0.10.block.0.1.running_mean", "backbone.features.0.10.block.0.1.running_var", "backbone.features.0.10.block.1.0.weight", "backbone.features.0.10.block.1.1.weight", "backbone.features.0.10.block.1.1.bias", "backbone.features.0.10.block.1.1.running_mean", "backbone.features.0.10.block.1.1.running_var", "backbone.features.0.10.block.2.0.weight", "backbone.features.0.10.block.2.1.weight", "backbone.features.0.10.block.2.1.bias", "backbone.features.0.10.block.2.1.running_mean", "backbone.features.0.10.block.2.1.running_var", "backbone.features.0.11.block.0.0.weight", "backbone.features.0.11.block.0.1.weight", "backbone.features.0.11.block.0.1.bias", "backbone.features.0.11.block.0.1.running_mean", "backbone.features.0.11.block.0.1.running_var", "backbone.features.0.11.block.1.0.weight", "backbone.features.0.11.block.1.1.weight", "backbone.features.0.11.block.1.1.bias", "backbone.features.0.11.block.1.1.running_mean", "backbone.features.0.11.block.1.1.running_var", "backbone.features.0.11.block.2.fc1.weight", "backbone.features.0.11.block.2.fc1.bias", "backbone.features.0.11.block.2.fc2.weight", "backbone.features.0.11.block.2.fc2.bias", "backbone.features.0.11.block.3.0.weight", "backbone.features.0.11.block.3.1.weight", "backbone.features.0.11.block.3.1.bias", "backbone.features.0.11.block.3.1.running_mean", "backbone.features.0.11.block.3.1.running_var", "backbone.features.0.12.block.0.0.weight", "backbone.features.0.12.block.0.1.weight", "backbone.features.0.12.block.0.1.bias", "backbone.features.0.12.block.0.1.running_mean", "backbone.features.0.12.block.0.1.running_var", "backbone.features.0.12.block.1.0.weight", "backbone.features.0.12.block.1.1.weight", "backbone.features.0.12.block.1.1.bias", "backbone.features.0.12.block.1.1.running_mean", "backbone.features.0.12.block.1.1.running_var", "backbone.features.0.12.block.2.fc1.weight", "backbone.features.0.12.block.2.fc1.bias", "backbone.features.0.12.block.2.fc2.weight", "backbone.features.0.12.block.2.fc2.bias", "backbone.features.0.12.block.3.0.weight", "backbone.features.0.12.block.3.1.weight", "backbone.features.0.12.block.3.1.bias", "backbone.features.0.12.block.3.1.running_mean", "backbone.features.0.12.block.3.1.running_var", "backbone.features.0.13.0.weight", "backbone.features.0.13.1.weight", "backbone.features.0.13.1.bias", "backbone.features.0.13.1.running_mean", "backbone.features.0.13.1.running_var", "backbone.features.1.0.1.0.weight", "backbone.features.1.0.1.1.weight", "backbone.features.1.0.1.1.bias", "backbone.features.1.0.1.1.running_mean", "backbone.features.1.0.1.1.running_var", "backbone.features.1.0.2.fc1.weight", "backbone.features.1.0.2.fc1.bias", "backbone.features.1.0.2.fc2.weight", "backbone.features.1.0.2.fc2.bias", "backbone.features.1.0.3.0.weight", "backbone.features.1.0.3.1.weight", "backbone.features.1.0.3.1.bias", "backbone.features.1.0.3.1.running_mean", "backbone.features.1.0.3.1.running_var", "backbone.features.1.1.block.0.0.weight", "backbone.features.1.1.block.0.1.weight", "backbone.features.1.1.block.0.1.bias", "backbone.features.1.1.block.0.1.running_mean", "backbone.features.1.1.block.0.1.running_var", "backbone.features.1.1.block.1.0.weight", "backbone.features.1.1.block.1.1.weight", "backbone.features.1.1.block.1.1.bias", "backbone.features.1.1.block.1.1.running_mean", "backbone.features.1.1.block.1.1.running_var", "backbone.features.1.1.block.2.fc1.weight", "backbone.features.1.1.block.2.fc1.bias", "backbone.features.1.1.block.2.fc2.weight", "backbone.features.1.1.block.2.fc2.bias", "backbone.features.1.1.block.3.0.weight", "backbone.features.1.1.block.3.1.weight", "backbone.features.1.1.block.3.1.bias", "backbone.features.1.1.block.3.1.running_mean", "backbone.features.1.1.block.3.1.running_var", "backbone.features.1.2.block.0.0.weight", "backbone.features.1.2.block.0.1.weight", "backbone.features.1.2.block.0.1.bias", "backbone.features.1.2.block.0.1.running_mean", "backbone.features.1.2.block.0.1.running_var", "backbone.features.1.2.block.1.0.weight", "backbone.features.1.2.block.1.1.weight", "backbone.features.1.2.block.1.1.bias", "backbone.features.1.2.block.1.1.running_mean", "backbone.features.1.2.block.1.1.running_var", "backbone.features.1.2.block.2.fc1.weight", "backbone.features.1.2.block.2.fc1.bias", "backbone.features.1.2.block.2.fc2.weight", "backbone.features.1.2.block.2.fc2.bias", "backbone.features.1.2.block.3.0.weight", "backbone.features.1.2.block.3.1.weight", "backbone.features.1.2.block.3.1.bias", "backbone.features.1.2.block.3.1.running_mean", "backbone.features.1.2.block.3.1.running_var", "backbone.features.1.3.0.weight", "backbone.features.1.3.1.weight", "backbone.features.1.3.1.bias", "backbone.features.1.3.1.running_mean", "backbone.features.1.3.1.running_var", "backbone.extra.0.0.0.weight", "backbone.extra.0.0.1.weight", "backbone.extra.0.0.1.bias", "backbone.extra.0.0.1.running_mean", "backbone.extra.0.0.1.running_var", "backbone.extra.0.1.0.weight", "backbone.extra.0.1.1.weight", "backbone.extra.0.1.1.bias", "backbone.extra.0.1.1.running_mean", "backbone.extra.0.1.1.running_var", "backbone.extra.0.2.0.weight", "backbone.extra.0.2.1.weight", "backbone.extra.0.2.1.bias", "backbone.extra.0.2.1.running_mean", "backbone.extra.0.2.1.running_var", "backbone.extra.1.0.0.weight", "backbone.extra.1.0.1.weight", "backbone.extra.1.0.1.bias", "backbone.extra.1.0.1.running_mean", "backbone.extra.1.0.1.running_var", "backbone.extra.1.1.0.weight", "backbone.extra.1.1.1.weight", "backbone.extra.1.1.1.bias", "backbone.extra.1.1.1.running_mean", "backbone.extra.1.1.1.running_var", "backbone.extra.1.2.0.weight", "backbone.extra.1.2.1.weight", "backbone.extra.1.2.1.bias", "backbone.extra.1.2.1.running_mean", "backbone.extra.1.2.1.running_var", "backbone.extra.2.0.0.weight", "backbone.extra.2.0.1.weight", "backbone.extra.2.0.1.bias", "backbone.extra.2.0.1.running_mean", "backbone.extra.2.0.1.running_var", "backbone.extra.2.1.0.weight", "backbone.extra.2.1.1.weight", "backbone.extra.2.1.1.bias", "backbone.extra.2.1.1.running_mean", "backbone.extra.2.1.1.running_var", "backbone.extra.2.2.0.weight", "backbone.extra.2.2.1.weight", "backbone.extra.2.2.1.bias", "backbone.extra.2.2.1.running_mean", "backbone.extra.2.2.1.running_var", "backbone.extra.3.0.0.weight", "backbone.extra.3.0.1.weight", "backbone.extra.3.0.1.bias", "backbone.extra.3.0.1.running_mean", "backbone.extra.3.0.1.running_var", "backbone.extra.3.1.0.weight", "backbone.extra.3.1.1.weight", "backbone.extra.3.1.1.bias", "backbone.extra.3.1.1.running_mean", "backbone.extra.3.1.1.running_var", "backbone.extra.3.2.0.weight", "backbone.extra.3.2.1.weight", "backbone.extra.3.2.1.bias", "backbone.extra.3.2.1.running_mean", "backbone.extra.3.2.1.running_var", "head.classification_head.module_list.0.0.0.weight", "head.classification_head.module_list.0.0.1.weight", "head.classification_head.module_list.0.0.1.bias", "head.classification_head.module_list.0.0.1.running_mean", "head.classification_head.module_list.0.0.1.running_var", "head.classification_head.module_list.0.1.weight", "head.classification_head.module_list.0.1.bias", "head.classification_head.module_list.1.0.0.weight", "head.classification_head.module_list.1.0.1.weight", "head.classification_head.module_list.1.0.1.bias", "head.classification_head.module_list.1.0.1.running_mean", "head.classification_head.module_list.1.0.1.running_var", "head.classification_head.module_list.1.1.weight", "head.classification_head.module_list.1.1.bias", "head.classification_head.module_list.2.0.0.weight", "head.classification_head.module_list.2.0.1.weight", "head.classification_head.module_list.2.0.1.bias", "head.classification_head.module_list.2.0.1.running_mean", "head.classification_head.module_list.2.0.1.running_var", "head.classification_head.module_list.2.1.weight", "head.classification_head.module_list.2.1.bias", "head.classification_head.module_list.3.0.0.weight", "head.classification_head.module_list.3.0.1.weight", "head.classification_head.module_list.3.0.1.bias", "head.classification_head.module_list.3.0.1.running_mean", "head.classification_head.module_list.3.0.1.running_var", "head.classification_head.module_list.3.1.weight", "head.classification_head.module_list.3.1.bias", "head.classification_head.module_list.4.0.0.weight", "head.classification_head.module_list.4.0.1.weight", "head.classification_head.module_list.4.0.1.bias", "head.classification_head.module_list.4.0.1.running_mean", "head.classification_head.module_list.4.0.1.running_var", "head.classification_head.module_list.4.1.weight", "head.classification_head.module_list.4.1.bias", "head.classification_head.module_list.5.0.0.weight", "head.classification_head.module_list.5.0.1.weight", "head.classification_head.module_list.5.0.1.bias", "head.classification_head.module_list.5.0.1.running_mean", "head.classification_head.module_list.5.0.1.running_var", "head.classification_head.module_list.5.1.weight", "head.classification_head.module_list.5.1.bias", "head.regression_head.module_list.0.0.0.weight", "head.regression_head.module_list.0.0.1.weight", "head.regression_head.module_list.0.0.1.bias", "head.regression_head.module_list.0.0.1.running_mean", "head.regression_head.module_list.0.0.1.running_var", "head.regression_head.module_list.0.1.weight", "head.regression_head.module_list.0.1.bias", "head.regression_head.module_list.1.0.0.weight", "head.regression_head.module_list.1.0.1.weight", "head.regression_head.module_list.1.0.1.bias", "head.regression_head.module_list.1.0.1.running_mean", "head.regression_head.module_list.1.0.1.running_var", "head.regression_head.module_list.1.1.weight", "head.regression_head.module_list.1.1.bias", "head.regression_head.module_list.2.0.0.weight", "head.regression_head.module_list.2.0.1.weight", "head.regression_head.module_list.2.0.1.bias", "head.regression_head.module_list.2.0.1.running_mean", "head.regression_head.module_list.2.0.1.running_var", "head.regression_head.module_list.2.1.weight", "head.regression_head.module_list.2.1.bias", "head.regression_head.module_list.3.0.0.weight", "head.regression_head.module_list.3.0.1.weight", "head.regression_head.module_list.3.0.1.bias", "head.regression_head.module_list.3.0.1.running_mean", "head.regression_head.module_list.3.0.1.running_var", "head.regression_head.module_list.3.1.weight", "head.regression_head.module_list.3.1.bias", "head.regression_head.module_list.4.0.0.weight", "head.regression_head.module_list.4.0.1.weight", "head.regression_head.module_list.4.0.1.bias", "head.regression_head.module_list.4.0.1.running_mean", "head.regression_head.module_list.4.0.1.running_var", "head.regression_head.module_list.4.1.weight", "head.regression_head.module_list.4.1.bias", "head.regression_head.module_list.5.0.0.weight", "head.regression_head.module_list.5.0.1.weight", "head.regression_head.module_list.5.0.1.bias", "head.regression_head.module_list.5.0.1.running_mean", "head.regression_head.module_list.5.0.1.running_var", "head.regression_head.module_list.5.1.weight", "head.regression_head.module_list.5.1.bias".
        Unexpected key(s) in state_dict: "state_dict", "optimizer_state_dict", "epoch", "config".
@yangbohust
Copy link
Author

run python demo.py -p SSDLite.pth --landmarks got error too.

python demo.py -p SSDLite.pth --landmarks
C:\anaconda\envs\gestures2\lib\site-packages\torchvision\models\_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.
  warnings.warn(
C:\anaconda\envs\gestures2\lib\site-packages\torchvision\models\_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=None`.
  warnings.warn(msg)
Traceback (most recent call last):
  File "C:\Ascend\code\hagrid-master\demo.py", line 204, in <module>
    model = _load_model(os.path.expanduser(args.path_to_model), args.device)
  File "C:\Ascend\code\hagrid-master\demo.py", line 165, in _load_model
    ssd_mobilenet.load_state_dict(model_path, map_location=device)
  File "C:\Ascend\code\hagrid-master\detector\ssd_mobilenetv3.py", line 67, in load_state_dict
    self.torchvision_model.load_state_dict(torch.load(checkpoint_path, map_location=map_location))
  File "C:\anaconda\envs\gestures2\lib\site-packages\torch\nn\modules\module.py", line 1667, in load_state_dict
    raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
RuntimeError: Error(s) in loading state_dict for SSD:
        size mismatch for backbone.features.1.0.3.0.weight: copying a param with shape torch.Size([80, 672, 1, 1]) from checkpoint, the shape in current model is torch.Size([160, 672, 1, 1]).
        size mismatch for backbone.features.1.0.3.1.weight: copying a param with shape torch.Size([80]) from checkpoint, the shape in current model is torch.Size([160]).
        size mismatch for backbone.features.1.0.3.1.bias: copying a param with shape torch.Size([80]) from checkpoint, the shape in current model is torch.Size([160]).
        size mismatch for backbone.features.1.0.3.1.running_mean: copying a param with shape torch.Size([80]) from checkpoint, the shape in current model is torch.Size([160]).
        size mismatch for backbone.features.1.0.3.1.running_var: copying a param with shape torch.Size([80]) from checkpoint, the shape in current model is torch.Size([160]).
        size mismatch for backbone.features.1.1.block.0.0.weight: copying a param with shape torch.Size([480, 80, 1, 1]) from checkpoint, the shape in current model is torch.Size([960, 160, 1, 1]).
        size mismatch for backbone.features.1.1.block.0.1.weight: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for backbone.features.1.1.block.0.1.bias: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for backbone.features.1.1.block.0.1.running_mean: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for backbone.features.1.1.block.0.1.running_var: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for backbone.features.1.1.block.1.0.weight: copying a param with shape torch.Size([480, 1, 5, 5]) from checkpoint, the shape in current model is torch.Size([960, 1, 5, 5]).
        size mismatch for backbone.features.1.1.block.1.1.weight: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for backbone.features.1.1.block.1.1.bias: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for backbone.features.1.1.block.1.1.running_mean: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for backbone.features.1.1.block.1.1.running_var: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for backbone.features.1.1.block.2.fc1.weight: copying a param with shape torch.Size([120, 480, 1, 1]) from checkpoint, the shape in current model is torch.Size([240, 960, 1, 1]).
        size mismatch for backbone.features.1.1.block.2.fc1.bias: copying a param with shape torch.Size([120]) from checkpoint, the shape in current model is torch.Size([240]).
        size mismatch for backbone.features.1.1.block.2.fc2.weight: copying a param with shape torch.Size([480, 120, 1, 1]) from checkpoint, the shape in current model is torch.Size([960, 240, 1, 1]).
        size mismatch for backbone.features.1.1.block.2.fc2.bias: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for backbone.features.1.1.block.3.0.weight: copying a param with shape torch.Size([80, 480, 1, 1]) from checkpoint, the shape in current model is torch.Size([160, 960, 1, 1]).
        size mismatch for backbone.features.1.1.block.3.1.weight: copying a param with shape torch.Size([80]) from checkpoint, the shape in current model is torch.Size([160]).
        size mismatch for backbone.features.1.1.block.3.1.bias: copying a param with shape torch.Size([80]) from checkpoint, the shape in current model is torch.Size([160]).
        size mismatch for backbone.features.1.1.block.3.1.running_mean: copying a param with shape torch.Size([80]) from checkpoint, the shape in current model is torch.Size([160]).
        size mismatch for backbone.features.1.1.block.3.1.running_var: copying a param with shape torch.Size([80]) from checkpoint, the shape in current model is torch.Size([160]).
        size mismatch for backbone.features.1.2.block.0.0.weight: copying a param with shape torch.Size([480, 80, 1, 1]) from checkpoint, the shape in current model is torch.Size([960, 160, 1, 1]).
        size mismatch for backbone.features.1.2.block.0.1.weight: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for backbone.features.1.2.block.0.1.bias: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for backbone.features.1.2.block.0.1.running_mean: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for backbone.features.1.2.block.0.1.running_var: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for backbone.features.1.2.block.1.0.weight: copying a param with shape torch.Size([480, 1, 5, 5]) from checkpoint, the shape in current model is torch.Size([960, 1, 5, 5]).
        size mismatch for backbone.features.1.2.block.1.1.weight: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for backbone.features.1.2.block.1.1.bias: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for backbone.features.1.2.block.1.1.running_mean: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for backbone.features.1.2.block.1.1.running_var: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for backbone.features.1.2.block.2.fc1.weight: copying a param with shape torch.Size([120, 480, 1, 1]) from checkpoint, the shape in current model is torch.Size([240, 960, 1, 1]).
        size mismatch for backbone.features.1.2.block.2.fc1.bias: copying a param with shape torch.Size([120]) from checkpoint, the shape in current model is torch.Size([240]).
        size mismatch for backbone.features.1.2.block.2.fc2.weight: copying a param with shape torch.Size([480, 120, 1, 1]) from checkpoint, the shape in current model is torch.Size([960, 240, 1, 1]).
        size mismatch for backbone.features.1.2.block.2.fc2.bias: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for backbone.features.1.2.block.3.0.weight: copying a param with shape torch.Size([80, 480, 1, 1]) from checkpoint, the shape in current model is torch.Size([160, 960, 1, 1]).
        size mismatch for backbone.features.1.2.block.3.1.weight: copying a param with shape torch.Size([80]) from checkpoint, the shape in current model is torch.Size([160]).
        size mismatch for backbone.features.1.2.block.3.1.bias: copying a param with shape torch.Size([80]) from checkpoint, the shape in current model is torch.Size([160]).
        size mismatch for backbone.features.1.2.block.3.1.running_mean: copying a param with shape torch.Size([80]) from checkpoint, the shape in current model is torch.Size([160]).
        size mismatch for backbone.features.1.2.block.3.1.running_var: copying a param with shape torch.Size([80]) from checkpoint, the shape in current model is torch.Size([160]).
        size mismatch for backbone.features.1.3.0.weight: copying a param with shape torch.Size([480, 80, 1, 1]) from checkpoint, the shape in current model is torch.Size([960, 160, 1, 1]).
        size mismatch for backbone.features.1.3.1.weight: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for backbone.features.1.3.1.bias: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for backbone.features.1.3.1.running_mean: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for backbone.features.1.3.1.running_var: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for backbone.extra.0.0.0.weight: copying a param with shape torch.Size([256, 480, 1, 1]) from checkpoint, the shape in current model is torch.Size([256, 960, 1, 1]).
        size mismatch for head.classification_head.module_list.1.0.0.weight: copying a param with shape torch.Size([480, 1, 3, 3]) from checkpoint, the shape in current model is torch.Size([960, 1, 3, 3]).
        size mismatch for head.classification_head.module_list.1.0.1.weight: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for head.classification_head.module_list.1.0.1.bias: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for head.classification_head.module_list.1.0.1.running_mean: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for head.classification_head.module_list.1.0.1.running_var: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for head.classification_head.module_list.1.1.weight: copying a param with shape torch.Size([120, 480, 1, 1]) from checkpoint, the shape in current model is torch.Size([120, 960, 1, 1]).
        size mismatch for head.regression_head.module_list.1.0.0.weight: copying a param with shape torch.Size([480, 1, 3, 3]) from checkpoint, the shape in current model is torch.Size([960, 1, 3, 3]).
        size mismatch for head.regression_head.module_list.1.0.1.weight: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for head.regression_head.module_list.1.0.1.bias: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for head.regression_head.module_list.1.0.1.running_mean: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for head.regression_head.module_list.1.0.1.running_var: copying a param with shape torch.Size([480]) from checkpoint, the shape in current model is torch.Size([960]).
        size mismatch for head.regression_head.module_list.1.1.weight: copying a param with shape torch.Size([24, 480, 1, 1]) from checkpoint, the shape in current model is torch.Size([24, 960, 1, 1]).

@nagadit
Copy link
Collaborator

nagadit commented Nov 2, 2022

Hello @yangbohust !
Maybe you are using a different version of torchvision pkg. We are using torchvision==0.12.0 from requirements.txt.

Can you please provide a version of torchvision you are using?

@zaheenSyed
Copy link

I have had the same error with Resnet18

Unexpected key(s) in state_dict: "state_dict", "optimizer_state_dict", "epoch", "config".

All modules are as defined in the requirement

@MagicXiaoBai1
Copy link

MobileNetV3_large.pth描述的是一个分类模型,应该用demo_ff.py来查看效果。

正确的完整过程如下:
1、新建环境、安装requirements.txt中的所有包
2、下载MobileNetV3_large.pth 放在项目目录下(与demo_ff.py同目录)
3、进入configs文件夹并打开MobileNetV3_large.yaml
4、在该文件中找到

model:
    name: MobileNetV3_large
    pretrained: False
    pretrained_backbone: False
    checkpoint: null

5、将其修改为:

model:
    name: MobileNetV3_large
    pretrained: False
    pretrained_backbone: False
    checkpoint: MobileNetV3_large.pth

6、执行命令:python demo_ff.py -p configs/MobileNetV3_large.yaml

@Zhangjw0211
Copy link

MobileNetV3_large.pth描述的是一个分类模型,应该用demo_ff.py来查看效果。

正确的完整过程如下: 1、新建环境、安装requirements.txt中的所有包 2、下载MobileNetV3_large.pth 放在项目目录下(与demo_ff.py同目录) 3、进入configs文件夹并打开MobileNetV3_large.yaml 4、在该文件中找到

model:
    name: MobileNetV3_large
    pretrained: False
    pretrained_backbone: False
    checkpoint: null

5、将其修改为:

model:
    name: MobileNetV3_large
    pretrained: False
    pretrained_backbone: False
    checkpoint: MobileNetV3_large.pth

6、执行命令:python demo_ff.py -p configs/MobileNetV3_large.yaml

请问如何用YOLOv10x的预训练模型呢?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

5 participants