-
Notifications
You must be signed in to change notification settings - Fork 2.7k
/
lab-10-7-mnist_nn_higher_level_API.py
119 lines (100 loc) · 4.23 KB
/
lab-10-7-mnist_nn_higher_level_API.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# Lab 10 MNIST and High-level TF API
from tensorflow.contrib.layers import fully_connected, batch_norm, dropout
from tensorflow.contrib.framework import arg_scope
import tensorflow as tf
import random
# import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
tf.set_random_seed(777) # reproducibility
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# Check out https://www.tensorflow.org/get_started/mnist/beginners for
# more information about the mnist dataset
# parameters
learning_rate = 0.01 # we can use large learning rate using Batch Normalization
training_epochs = 15
batch_size = 100
keep_prob = 0.7
# input place holders
X = tf.placeholder(tf.float32, [None, 784])
Y = tf.placeholder(tf.float32, [None, 10])
train_mode = tf.placeholder(tf.bool, name='train_mode')
# layer output size
hidden_output_size = 512
final_output_size = 10
xavier_init = tf.contrib.layers.xavier_initializer()
bn_params = {
'is_training': train_mode,
'decay': 0.9,
'updates_collections': None
}
# We can build short code using 'arg_scope' to avoid duplicate code
# same function with different arguments
with arg_scope([fully_connected],
activation_fn=tf.nn.relu,
weights_initializer=xavier_init,
biases_initializer=None,
normalizer_fn=batch_norm,
normalizer_params=bn_params
):
hidden_layer1 = fully_connected(X, hidden_output_size, scope="h1")
h1_drop = dropout(hidden_layer1, keep_prob, is_training=train_mode)
hidden_layer2 = fully_connected(h1_drop, hidden_output_size, scope="h2")
h2_drop = dropout(hidden_layer2, keep_prob, is_training=train_mode)
hidden_layer3 = fully_connected(h2_drop, hidden_output_size, scope="h3")
h3_drop = dropout(hidden_layer3, keep_prob, is_training=train_mode)
hidden_layer4 = fully_connected(h3_drop, hidden_output_size, scope="h4")
h4_drop = dropout(hidden_layer4, keep_prob, is_training=train_mode)
hypothesis = fully_connected(h4_drop, final_output_size, activation_fn=None, scope="hypothesis")
# define cost/loss & optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
logits=hypothesis, labels=Y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# initialize
sess = tf.Session()
sess.run(tf.global_variables_initializer())
# train my model
for epoch in range(training_epochs):
avg_cost = 0
total_batch = int(mnist.train.num_examples / batch_size)
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
feed_dict_train = {X: batch_xs, Y: batch_ys, train_mode: True}
feed_dict_cost = {X: batch_xs, Y: batch_ys, train_mode: False}
opt = sess.run(optimizer, feed_dict=feed_dict_train)
c = sess.run(cost, feed_dict=feed_dict_cost)
avg_cost += c / total_batch
print("[Epoch: {:>4}] cost = {:>.9}".format(epoch + 1, avg_cost))
#print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.9f}'.format(avg_cost))
print('Learning Finished!')
# Test model and check accuracy
correct_prediction = tf.equal(tf.argmax(hypothesis, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print('Accuracy:', sess.run(accuracy, feed_dict={
X: mnist.test.images, Y: mnist.test.labels, train_mode: False}))
# Get one and predict
r = random.randint(0, mnist.test.num_examples - 1)
print("Label: ", sess.run(tf.argmax(mnist.test.labels[r:r + 1], 1)))
print("Prediction: ", sess.run(
tf.argmax(hypothesis, 1), feed_dict={X: mnist.test.images[r:r + 1], train_mode: False}))
# plt.imshow(mnist.test.images[r:r + 1].
# reshape(28, 28), cmap='Greys', interpolation='nearest')
# plt.show()
'''
[Epoch: 1] cost = 0.519417209
[Epoch: 2] cost = 0.432551052
[Epoch: 3] cost = 0.404978843
[Epoch: 4] cost = 0.392039919
[Epoch: 5] cost = 0.382165317
[Epoch: 6] cost = 0.377987834
[Epoch: 7] cost = 0.372577601
[Epoch: 8] cost = 0.367208552
[Epoch: 9] cost = 0.365525589
[Epoch: 10] cost = 0.361964276
[Epoch: 11] cost = 0.359540287
[Epoch: 12] cost = 0.356423751
[Epoch: 13] cost = 0.354478216
[Epoch: 14] cost = 0.353212552
[Epoch: 15] cost = 0.35230893
Learning Finished!
Accuracy: 0.9826
'''