-
Notifications
You must be signed in to change notification settings - Fork 380
/
data_generator.py
37 lines (34 loc) · 1.49 KB
/
data_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import os
import numpy as np
from keras.preprocessing import image
from keras.applications.vgg16 import preprocess_input
import cfg
def gen(batch_size=cfg.batch_size, is_val=False):
img_h, img_w = cfg.max_train_img_size, cfg.max_train_img_size
x = np.zeros((batch_size, img_h, img_w, cfg.num_channels), dtype=np.float32)
pixel_num_h = img_h // cfg.pixel_size
pixel_num_w = img_w // cfg.pixel_size
y = np.zeros((batch_size, pixel_num_h, pixel_num_w, 7), dtype=np.float32)
if is_val:
with open(os.path.join(cfg.data_dir, cfg.val_fname), 'r') as f_val:
f_list = f_val.readlines()
else:
with open(os.path.join(cfg.data_dir, cfg.train_fname), 'r') as f_train:
f_list = f_train.readlines()
while True:
for i in range(batch_size):
# random gen an image name
random_img = np.random.choice(f_list)
img_filename = str(random_img).strip().split(',')[0]
# load img and img anno
img_path = os.path.join(cfg.data_dir,
cfg.train_image_dir_name,
img_filename)
img = image.load_img(img_path)
img = image.img_to_array(img)
x[i] = preprocess_input(img, mode='tf')
gt_file = os.path.join(cfg.data_dir,
cfg.train_label_dir_name,
img_filename[:-4] + '_gt.npy')
y[i] = np.load(gt_file)
yield x, y