forked from ReshotAI/gaussian-painters
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_dataset3.py
90 lines (64 loc) · 2.88 KB
/
create_dataset3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import os
import ffmpeg
import json
import shutil
import math
import numpy as np
from pathlib import Path
import argparse
import subprocess
from PIL import Image
def create_dataset(args):
data_dir = Path(args.output_dir)
data_dir.mkdir(exist_ok=True)
images_dir = data_dir / "images"
images_dir.mkdir(exist_ok=True)
sparse_dir = data_dir / "sparse" / "0"
sparse_dir.mkdir(exist_ok=True, parents=True)
img_path = Path(args.img_path)
img_path2 = Path(args.img_path2)
img_path3 = Path(args.img_path3)
shutil.copy2(img_path, images_dir)
shutil.copy2(img_path2, images_dir)
shutil.copy2(img_path3, images_dir)
img = Image.open(args.img_path)
width, height = img.size
focal = math.sqrt(width**2 + height**2)
img2 = Image.open(args.img_path2)
width2, height2 = img2.size
focal2 = math.sqrt(width2**2 + height2**2)
img3 = Image.open(args.img_path3)
width3, height3 = img3.size
focal3 = math.sqrt(width3**2 + height3**2)
# create black image
black_img = Image.new("RGB", (width, height), (0, 0, 0))
black_img.save(images_dir / "black.jpg")
with open(sparse_dir / "cameras.txt", "w") as f:
f.write(f"1 PINHOLE {width} {height} {focal} {focal} {width/2} {height/2}\n")
f.write(f"2 PINHOLE {width2} {height2} {focal2} {focal2} {width2/2} {height2/2}\n")
f.write(f"3 PINHOLE {width3} {height3} {focal3} {focal3} {width3/2} {height3/2}\n")
with open(sparse_dir / "images.txt", "w") as f:
f.write(f"1 1 0 0 0 0 0 {focal} 1 {img_path.name}\n\n")
f.write(f"2 {math.sqrt(2+math.sqrt(2))/2} 0 {-math.sqrt(2-math.sqrt(2))/2} 0 0 0 {focal2} 2 {img_path2.name}\n\n")
f.write(f"3 {math.sqrt(2+math.sqrt(2))/2} 0 {math.sqrt(2-math.sqrt(2))/2} 0 0 0 {focal3} 3 {img_path3.name}\n\n")
f.write(f"4 {math.sqrt(2)/2} 0 {math.sqrt(2)/2} 0 0 0 {focal} 1 black.jpg\n\n")
with open(sparse_dir / "points3D.txt", "w") as f:
BLOCKS = 10
idx = 0
for i in range(0, BLOCKS):
for j in range(0, BLOCKS):
idx += 1
x = i / BLOCKS * width
y = j / BLOCKS * height
rgb = img.getpixel((x, y))
xyz = np.array([-width / 2, -height / 2, 0]) + np.array([x, y, 0])
f.write(f"{idx} {' '.join(map(str, xyz.tolist()))} {' '.join(map(str, rgb))} 0\n")
subprocess.run(["colmap", "model_converter", "--input_path", sparse_dir, "--output_path", sparse_dir, "--output_type", "BIN"])
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--img_path", type=str, required=True)
parser.add_argument("--img_path2", type=str, required=True)
parser.add_argument("--img_path3", type=str, required=True)
parser.add_argument("--output_dir", type=str, required=True)
args = parser.parse_args()
create_dataset(args)