Skip to content

Latest commit

 

History

History
159 lines (134 loc) · 4.63 KB

README.md

File metadata and controls

159 lines (134 loc) · 4.63 KB

Public Topologies Downloader

The script is designed to download popular public deep learning topologies and prepare models for the Model Optimizer tool.

Prerequisites

  1. Install python3 (version 3.5.2 or higher)
  2. Install yaml and requests modules with the command
sudo -E pip3 install pyyaml requests

Usage

  • Run the script with -h key to see the help message:

    ./downloader.py -h
    
    
       usage: downloader.py [-h] [-c CONFIG] [--name NAME] [--print_all]
                            [-o OUTPUT_DIR]
    
       optional arguments:
         -h, --help            show this help message and exit
         -c CONFIG, --config CONFIG
                               path to YML configuration file
         --name NAME           name of topology for downloading
         --print_all           print all available topologies
         -o OUTPUT_DIR, --output_dir OUTPUT_DIR
                               path where to save topologies
    
       list_topologies.yml - default configuration file
  • Run the script with the default configuration file:

    ./downloader.py

    or with a custom configuration file:

    ./downloader.py -c <path_to_configuration_file>
  • Run the script with the --print_all option to see the available topologies:

    ./downloader.py --print_all
    
    densenet-121
    densenet-161
    densenet-169
    densenet-201
    squeezenet1.0
    squeezenet1.1
    mtcnn-p
    mtcnn-r
    mtcnn-o
    mobilenet-ssd
    vgg19
    vgg16
    ssd512
    ssd300
    inception-resnet-v2
    dilation
    googlenet-v1
    googlenet-v2
    googlenet-v4
    alexnet
    ssd_mobilenet_v2_coco
    resnet-50
    resnet-101
    resnet-152
    googlenet-v3
    age-gender-recognition-retail-0013
    age-gender-recognition-retail-0013-fp16
    emotions-recognition-retail-0003
    emotions-recognition-retail-0003-fp16
    face-detection-adas-0001
    face-detection-adas-0001-fp16
    face-detection-retail-0004
    face-detection-retail-0004-fp16
    face-person-detection-retail-0002
    face-person-detection-retail-0002-fp16
    face-reidentification-retail-0071
    face-reidentification-retail-0071-fp16
    facial-landmarks-35-adas-0001
    facial-landmarks-35-adas-0001-fp16
    head-pose-estimation-adas-0001
    head-pose-estimation-adas-0001-fp16
    human-pose-estimation-0001
    human-pose-estimation-0001-fp16
    landmarks-regression-retail-0009
    landmarks-regression-retail-0009-fp16
    license-plate-recognition-barrier-0001
    license-plate-recognition-barrier-0001-fp16
    pedestrian-and-vehicle-detector-adas-0001
    pedestrian-and-vehicle-detector-adas-0001-fp16
    pedestrian-detection-adas-0002
    pedestrian-detection-adas-0002-fp16
    person-attributes-recognition-crossroad-0031
    person-attributes-recognition-crossroad-0031-fp16
    person-detection-action-recognition-0003
    person-detection-action-recognition-0003-fp16
    person-detection-retail-0001
    person-detection-retail-0001-fp16
    person-detection-retail-0013
    person-detection-retail-0013-fp16
    person-reidentification-retail-0031
    person-reidentification-retail-0031-fp16
    person-reidentification-retail-0076
    person-reidentification-retail-0076-fp16
    person-reidentification-retail-0079
    person-reidentification-retail-0079-fp16
    person-vehicle-bike-detection-crossroad-0078
    person-vehicle-bike-detection-crossroad-0078-fp16
    road-segmentation-adas-0001
    road-segmentation-adas-0001-fp16
    semantic-segmentation-adas-0001
    semantic-segmentation-adas-0001-fp16
    single-image-super-resolution-0034
    single-image-super-resolution-0034-fp16
    vehicle-attributes-recognition-barrier-0039
    vehicle-attributes-recognition-barrier-0039-fp16
    vehicle-detection-adas-0002
    vehicle-detection-adas-0002-fp16
    vehicle-license-plate-detection-barrier-0106
    vehicle-license-plate-detection-barrier-0106-fp16
  • Download only one topology (mtcnn-p in the following code example):

    ./downloader.py --name mtcnn-p

Expected free space to download all the topologies with the default configuration file is around 4.3 GB.


Copyright © 2018 Intel Corporation

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.