forked from SAITPublic/MLPerf_Training_v1.1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbind_pyt.py
137 lines (114 loc) · 5.53 KB
/
bind_pyt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import subprocess
import os
import socket
from argparse import ArgumentParser, REMAINDER
import torch
def parse_args():
"""
Helper function parsing the command line options
@retval ArgumentParser
"""
parser = ArgumentParser(description="PyTorch distributed training launch "
"helper utilty that will spawn up "
"multiple distributed processes")
# Optional arguments for the launch helper
parser.add_argument("--nnodes", type=int, default=1,
help="The number of nodes to use for distributed "
"training")
parser.add_argument("--node_rank", type=int, default=0,
help="The rank of the node for multi-node distributed "
"training")
parser.add_argument("--nproc_per_node", type=int, default=1,
help="The number of processes to launch on each node, "
"for GPU training, this is recommended to be set "
"to the number of GPUs in your system so that "
"each process can be bound to a single GPU.")
parser.add_argument("--master_addr", default="127.0.0.1", type=str,
help="Master node (rank 0)'s address, should be either "
"the IP address or the hostname of node 0, for "
"single node multi-proc training, the "
"--master_addr can simply be 127.0.0.1")
parser.add_argument("--master_port", default=29500, type=int,
help="Master node (rank 0)'s free port that needs to "
"be used for communciation during distributed "
"training")
parser.add_argument('--no_hyperthreads', action='store_true',
help='Flag to disable binding to hyperthreads')
parser.add_argument('--no_membind', action='store_true',
help='Flag to disable memory binding')
# non-optional arguments for binding
parser.add_argument("--nsockets_per_node", type=int, required=True,
help="Number of CPU sockets on a node")
parser.add_argument("--ncores_per_socket", type=int, required=True,
help="Number of CPU cores per socket")
# positional
parser.add_argument("training_script", type=str,
help="The full path to the single GPU training "
"program/script to be launched in parallel, "
"followed by all the arguments for the "
"training script")
# rest from the training program
parser.add_argument('training_script_args', nargs=REMAINDER)
return parser.parse_args()
def main():
args = parse_args()
# variables for numactrl binding
NSOCKETS = args.nsockets_per_node
NGPUS_PER_SOCKET = (args.nproc_per_node // args.nsockets_per_node) + (1 if (args.nproc_per_node % args.nsockets_per_node) else 0)
NCORES_PER_GPU = args.ncores_per_socket // NGPUS_PER_SOCKET
# world size in terms of number of processes
dist_world_size = args.nproc_per_node * args.nnodes
# set PyTorch distributed related environmental variables
current_env = os.environ.copy()
current_env["MASTER_ADDR"] = args.master_addr
current_env["MASTER_PORT"] = str(args.master_port)
current_env["WORLD_SIZE"] = str(dist_world_size)
current_env["TASK_NNODES"] = str(args.nnodes)
processes = []
for local_rank in range(0, args.nproc_per_node):
# each process's rank
dist_rank = args.nproc_per_node * args.node_rank + local_rank
current_env["RANK"] = str(dist_rank)
# form numactrl binding command
cpu_ranges = [
local_rank * NCORES_PER_GPU,
(local_rank + 1) * NCORES_PER_GPU - 1,
local_rank * NCORES_PER_GPU + (NCORES_PER_GPU * NGPUS_PER_SOCKET * NSOCKETS),
(local_rank + 1) * NCORES_PER_GPU + (NCORES_PER_GPU * NGPUS_PER_SOCKET * NSOCKETS) - 1
]
numactlargs = []
if args.no_hyperthreads:
numactlargs += ["--physcpubind={}-{}".format(*cpu_ranges[0:2])]
else:
numactlargs += ["--physcpubind={}-{},{}-{}".format(*cpu_ranges)]
if not args.no_membind:
memnode = local_rank
numactlargs += ["--membind={}".format(memnode)]
# spawn the processes
cmd = ["/usr/bin/numactl"] \
+ numactlargs \
+ [ sys.executable,
"-u",
args.training_script,
"--local_rank={}".format(local_rank)
] \
+ args.training_script_args
process = subprocess.Popen(cmd, env=current_env)
processes.append(process)
for process in processes:
process.wait()
if __name__ == "__main__":
main()