This repository has been archived by the owner on Apr 5, 2023. It is now read-only.
forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Distributions.cu
235 lines (214 loc) · 7.61 KB
/
Distributions.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#include <ATen/Dispatch.h>
#include <ATen/ExpandUtils.h>
#include <ATen/NativeFunctions.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>
#include <ATen/AccumulateType.h>
#include <curand.h>
#include <curand_kernel.h>
#include <curand_philox4x32_x.h>
#include <utility>
#include <functional>
#include <ATen/native/Distributions.h>
#include <THC/THCGeneral.h>
#include <THC/THCTensorRandom.h>
#include <THC/THCGenerator.hpp>
#include <THC/THCApply.cuh>
#include <THC/THCDeviceUtils.cuh>
#include <cstdint>
#include <limits>
#include <utility>
#include <type_traits>
THCGenerator* THCRandom_getGenerator(THCState* state);
namespace {
// increment should be at least the number of curand() random numbers used in
// each thread.
std::pair<uint64_t, uint64_t> next_philox_seed(at::Generator* gen, uint64_t increment) {
auto gen_ = THCRandom_getGenerator(at::globalContext().getTHCState());
uint64_t offset = gen_->state.philox_seed_offset.fetch_add(increment);
return std::make_pair(gen_->state.initial_seed, offset);
}
template <typename scalar_t>
void poisson_cuda_kernel(
at::Tensor& ret,
const at::Tensor& lambda,
std::pair<uint64_t, uint64_t> seeds) {
at::cuda::CUDA_tensor_apply2<scalar_t, scalar_t>(
ret,
lambda,
[seeds] __device__(
scalar_t & ret_val, const scalar_t& lambda) {
curandStatePhilox4_32_10_t state;
curand_init(
seeds.first,
blockIdx.x * blockDim.x + threadIdx.x,
seeds.second,
&state);
ret_val = static_cast<scalar_t>(curand_poisson(&state, lambda));
});
}
template <typename scalar_t>
void gamma_cuda_kernel(
at::Tensor& ret,
const at::Tensor& alpha,
std::pair<uint64_t, uint64_t> seeds) {
using accscalar_t = at::acc_type<scalar_t, true>;
at::cuda::CUDA_tensor_apply2<scalar_t, scalar_t>(
ret,
alpha,
[seeds] __device__(
scalar_t & ret_val, const scalar_t& alpha) {
curandStatePhilox4_32_10_t state;
curand_init(
seeds.first,
blockIdx.x * blockDim.x + threadIdx.x,
seeds.second,
&state);
auto uniform_lambda = [&state] __device__ () {
return curand_uniform(&state);
};
BaseSampler<accscalar_t, decltype(uniform_lambda)> standard_uniform(uniform_lambda);
auto normal_lambda = [&state] __device__ () {
return curand_normal(&state);
};
BaseSampler<accscalar_t, decltype(normal_lambda)> standard_normal(normal_lambda);
auto sample = sample_gamma<scalar_t, accscalar_t, decltype(uniform_lambda), decltype(normal_lambda)>(alpha, standard_uniform, standard_normal);
auto min_value = std::numeric_limits<scalar_t>::lowest();
ret_val = (min_value > sample) ? min_value : sample;
});
}
template <typename scalar_t>
void gamma_grad_cuda_kernel(
at::Tensor& ret,
const at::Tensor& self,
const at::Tensor& output) {
using accscalar_t = at::acc_type<scalar_t, true>;
at::cuda::CUDA_tensor_apply3<scalar_t, scalar_t, scalar_t>(
ret, self, output,
[] __device__ (scalar_t& ret_val, const scalar_t& self_val, const scalar_t &output_val) {
ret_val = standard_gamma_grad_one<scalar_t, accscalar_t>(self_val, output_val);
});
}
template<typename scalar_t, typename prob_t>
void bernoulli_tensor_cuda_kernel(
at::Tensor& ret, const at::Tensor& p,
std::pair<uint64_t, uint64_t> seeds) {
// The template argument `4` below indicates that we want to operate on four
// element at each time. See NOTE [ CUDA_tensor_applyN helpers ] for details.
at::cuda::CUDA_tensor_apply2<scalar_t, prob_t, 4>(
ret, p,
[seeds] __device__(
int n, scalar_t& v1, scalar_t& v2, scalar_t& v3, scalar_t& v4,
const prob_t& p1, const prob_t& p2, const prob_t& p3, const prob_t& p4) {
curandStatePhilox4_32_10_t state;
curand_init(
seeds.first,
blockIdx.x * blockDim.x + threadIdx.x,
seeds.second,
&state);
float4 rand = curand_uniform4(&state);
switch (n) {
case 4: {
assert(0 <= p4 && p4 <= 1);
v4 = static_cast<scalar_t>(rand.w <= p4);
// fallthrough
}
case 3: {
assert(0 <= p3 && p3 <= 1);
v3 = static_cast<scalar_t>(rand.z <= p3);
// fallthrough
}
case 2: {
assert(0 <= p2 && p2 <= 1);
v2 = static_cast<scalar_t>(rand.y <= p2);
// fallthrough
}
case 1: {
assert(0 <= p1 && p1 <= 1);
v1 = static_cast<scalar_t>(rand.x <= p1);
}
}
}
);
}
template<typename scalar_t>
void bernoulli_scalar_cuda_kernel(
at::Tensor& ret, double p_,
std::pair<uint64_t, uint64_t> seeds) {
float p = static_cast<float>(p_);
// The template argument `4` below indicates that we want to operate on four
// element at each time. See NOTE [ CUDA_tensor_applyN helpers ] for details.
at::cuda::CUDA_tensor_apply1<scalar_t, 4>(
ret, [seeds, p] __device__(
int n, scalar_t& v1, scalar_t& v2, scalar_t& v3, scalar_t& v4) {
curandStatePhilox4_32_10_t state;
curand_init(
seeds.first,
blockIdx.x * blockDim.x + threadIdx.x,
seeds.second,
&state);
float4 rand = curand_uniform4(&state);
switch (n) {
case 4: {
v4 = static_cast<scalar_t>(rand.w <= p);
// fallthrough
}
case 3: {
v3 = static_cast<scalar_t>(rand.z <= p);
// fallthrough
}
case 2: {
v2 = static_cast<scalar_t>(rand.y <= p);
// fallthrough
}
case 1: {
v1 = static_cast<scalar_t>(rand.x <= p);
}
}
}
);
}
} // namespace
namespace at { namespace native {
Tensor _s_poisson_cuda(const Tensor& lambda, Generator* gen) {
Tensor ret = at::empty(lambda.sizes(), lambda.options());
AT_DISPATCH_FLOATING_TYPES_AND_HALF(ret.type(), "poisson", [&] {
poisson_cuda_kernel<scalar_t>(ret, lambda, next_philox_seed(gen, 20));
});
return ret;
}
Tensor _s_gamma_cuda(const Tensor& alpha, Generator* gen) {
Tensor ret = at::empty(alpha.sizes(), alpha.options());
AT_DISPATCH_FLOATING_TYPES_AND_HALF(ret.type(), "gamma", [&] {
gamma_cuda_kernel<scalar_t>(ret, alpha, next_philox_seed(gen, 10));
});
return ret;
}
Tensor _standard_gamma_grad_cuda(const Tensor& self, const Tensor& output) {
Tensor ret = at::empty(self.sizes(), self.options());
AT_DISPATCH_FLOATING_TYPES_AND_HALF(self.type(), "_standard_gamma_grad", [&] {
gamma_grad_cuda_kernel<scalar_t>(ret, self, output);
});
return ret;
}
Tensor& bernoulli_tensor_cuda_(Tensor &self, const Tensor& p_, Generator* gen) {
auto p = std::get<0>(expand_inplace(self, p_.to(kCUDA)));
AT_DISPATCH_ALL_TYPES_AND_HALF(self.type(), "bernoulli_tensor_cuda_self_", [&] {
const at::Type& p_type = p.type();
using self_t = scalar_t;
auto seeds = next_philox_seed(gen, 10);
AT_DISPATCH_FLOATING_TYPES_AND_HALF(p.type(), "bernoulli_tensor_cuda_p_", [&] {
using p_t = scalar_t;
return bernoulli_tensor_cuda_kernel<self_t, p_t>(self, p, seeds);
});
});
return self;
}
Tensor& bernoulli_scalar_cuda_(Tensor &self, double p, Generator* gen) {
AT_CHECK(0 <= p && p <= 1, "bernoulli_ expects p to be in [0, 1], but got p=", p);
AT_DISPATCH_ALL_TYPES_AND_HALF(self.type(), "bernoulli_scalar_cuda_", [&] {
auto seeds = next_philox_seed(gen, 10);
bernoulli_scalar_cuda_kernel<scalar_t>(self, p, seeds);
});
return self;
}
}} // namespace at::native