-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathquasiAnaliticalSolver.m
executable file
·249 lines (236 loc) · 11.3 KB
/
quasiAnaliticalSolver.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
function [X,U,PHI]=quasiAnaliticalSolver(varargin)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Quasi-analytical solutions for scalar nonlinear conservation models
% Here these models are assumed to be of the form:
%
% u_t - f(u)_x = 0, {x>R, t>0}
%
% Coded by Manuel A. Diaz, ISNA, 2018.07.20
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Ref.:
% [1] Coulouvrat, François. "A quasi-analytical shock solution for general
% nonlinear progressive waves." Wave Motion 46.2 (2009): 97-107.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% NOTE: We follow the sign convention of the flux function as in Ref.[1].
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%clear; close all; clc;
switch nargin
case 0 % Manually set base parameters
fluxFunc = 'buckley';
t = 2.4; % output time
debug = true;
case 4
x=varargin{1};
u0=varargin{2};
t=varargin{3};
fluxFunc=varargin{4};
debug = false;
case 5
x=varargin{1};
u0=varargin{2};
t=varargin{3};
fluxFunc=varargin{4};
debug=varargin{5};
otherwise
error('Incorrect input arguments')
end
%% 0. Flux functions and their exact derivatives
switch fluxFunc
case 'burgers' % inviscid burgers' equation (traditional sign)
f = @(u) -u.^2/2; % the flux function
df= @(u) -u; % the derivative f'(u)
Df= @(u) -u.^2/2; % and Df: u*f'(u)-f(u)
I = @(u) -u.^3/3; % I(u): energy flux
case 'burgers+' % inviscid burgers' equation (Couluovrat convention)
f = @(u) u.^2/2; % the flux function
df= @(u) u; % the derivative f'(u)
Df= @(u) u.^2/2; % and Df: u*f'(u)-f(u)
I = @(u) u.^3/3; % I(u): energy flux
case 'cubic' % inviscid burgers' equation (traditional sign)
f = @(u) -u.^3/3; % the flux function
df= @(u) -u.^2; % the derivative f'(u)
Df= @(u) -2*u.^3/3; % and Df: u*f'(u)-f(u)
I = @(u) -u.^4/4; % I(u): energy flux
case 'cubic+' % inviscid burgers' equation (Couluovrat convention)
f = @(u) u.^3/3; % the flux function
df= @(u) u.^2; % the derivative f'(u)
Df= @(u) 2*u.^3/3; % and Df: u*f'(u)-f(u)
I = @(u) u.^4/4; % I(u): energy flux
case 'buckley' % buckley-leverett equation (traditional sign, but not working yet!)
a = 0.5; % constant parameter
f = @(u) -(u.^2)./(u.^2 + a*(1-u).^2); % the flux function
df= @(u) -2*a*u.*(1-u)./(u.^2 + a*(1-u).^2).^2; % the derivative f'(u)
Df= @(u) (a*(u.^2-4*u+3).*u.^2+u.^4)./(u.^2 + a*(1-u).^2).^2; % and Df: u*f'(u)-f(u)
w = @(u) (a+1)*u/sqrt(a)-sqrt(a); % dummy function
I = @(u) (sqrt(a)/(1+a)^2)*(w(u)+(a-1)*atan(w(u))+sqrt(a)*log(1+w(u).^2)); % I(u): energy flux
case 'buckley+' % buckley-leverett equation (Couluovrat convention)
a = 0.5; % constant parameter
f = @(u) (u.^2)./(u.^2 + a*(1-u).^2); % the flux function
df= @(u) 2*a*u.*(1-u)./(u.^2 + a*(1-u).^2).^2; % the derivative f'(u)
Df= @(u) (u.^2).*(a-(1+a)*u.^2)./(u.^2 + a*(1-u).^2).^2; % and Df: u*f'(u)-f(u)
w = @(u) (a+1)*u/sqrt(a)-sqrt(a); % dummy function
I = @(u) (sqrt(a)/(1+a)^2)*(w(u)+(a-1)*atan(w(u))+sqrt(a)*log(1+w(u).^2)); % I(u): energy flux
otherwise
error('case not set');
end
%% 1. Set initial conditions for the scalar (u) and potential (Ø) equation
if nargin==0
dx=pi/100; x=(-5*pi:dx:5*pi); nx=numel(x);
u0 = zeros(1,nx) + sin(x).*exp(-x.^2/50).*(abs(x) < 4*pi);
else
nx=numel(x); dx=max(x(2:nx)-x(1:nx-1));
end
phi0=zeros(1,nx); for j=1:nx, phi0(j)=phi0(j)+sum(dx*u0(1:j)); end;
if debug, figure(1); end
if debug, subplot(321); plot(x,u0,'.k'); ylabel('u(x,t)'); end
if debug, subplot(322); plot(x,phi0,'.k'); ylabel('\phi(x,t)'); end
%% 2. The Poisson solution
% The Poisson problem tell us that the solution is left similar and it can
% obtained by simply shifting the abscisas of the original profile.
% Therefore, the new y-coordinates and the phi-operator are computed as
y = x-t*df(u0); phi=phi0-t*Df(u0);
if debug; subplot(323); plot(y,u0,':k'); hold on; end
if debug; subplot(324); plot(y,phi,':k'); hold on; end
%% 3. Identify positive branches
% 3.1 Check the monotonicity of y-absissas
TVD=y(2:nx)-y(1:nx-1)<0; y(TVD)=NaN; % If i-cell is TVD, set y(i)=NaN
% 3.2 Find indexes of the positive branches
idx=find(diff(isnan(y(1:nx-1)))); nShocks=numel(idx)/2; nBranches=nShocks+1;
idxBranches=[0,idx,nx]; Branches=reshape(idxBranches,[2,nBranches]);
Branches(1,:)=Branches(1,:)+1; % Correct for the initial index of each branch
if isnan(prod(y(Branches(:))))
nBranches=numel(idx)/2; nShocks=nBranches-1;
idxBranches=idx; Branches=reshape(idxBranches,[2,nBranches]);
Branches(1,:)=Branches(1,:)+1;
end
if debug; subplot(323); plot(y(Branches),u0(Branches),'o'); hold on; end
if debug; subplot(324); plot(y(Branches),phi(Branches),'o'); hold on; end
%% 4. Interpolation of positive branches
Branch{nBranches}.x=[];
Branch{nBranches}.u=[];
Branch{nBranches}.phi=[];
Branch{nBranches}.x_sh=[];
Branch{nBranches}.EC=[];
for j = 1:nBranches
Branch{j}.x = x(x>=y(Branches(2*j-1)) & x<=y(Branches(2*j)));
Branch{j}.u = interp1(y(Branches(2*j-1):Branches(2*j)),u0(Branches(2*j-1):Branches(2*j)),Branch{j}.x,'linear');
Branch{j}.phi=interp1(y(Branches(2*j-1):Branches(2*j)),phi(Branches(2*j-1):Branches(2*j)),Branch{j}.x,'linear');
if debug; subplot(323); plot(Branch{j}.x,Branch{j}.u); hold on; end
if debug; subplot(324); plot(Branch{j}.x,Branch{j}.phi); hold on; end
end
%% 5. Identify intersections of positive branches
for j=1:nBranches-1
intersection = NaN*ones(1,nBranches);
up_sh = NaN*ones(1,nBranches);
un_sh = NaN*ones(1,nBranches);
entropyCondition = zeros(1,nBranches);
for k=j+1:nBranches
[x,jB,kB]=intersect(Branch{j}.x,Branch{k}.x); % Evaluate if branches x-range intersect
% If phi-branches intersect in the solution grid
if numel(x)>0
% Ø-Ø1 = (Ø2 -Ø1 )/(x2-x1).(x-x1) : line Eq.(1),
% Ø-Ø1*= (Ø2*-Ø1*)/(x2-x1).(x-x1) : line Eq.(2),
x1=x(1:end-1); phi1=Branch{j}.phi(jB(1:end-1)); phi1s=Branch{k}.phi(kB(1:end-1));
x2=x( 2:end ); phi2=Branch{j}.phi(jB( 2:end )); phi2s=Branch{k}.phi(kB( 2:end ));
% The intersection is computed as:
% Ø1*-Ø1= ((Ø2-Ø1)-(Ø2*-Ø1*))/(x2-x1).(x-x1) : Eq.(1) - Eq.(2).
x = x1 + (phi1s-phi1).*(x2-x1)./((phi2-phi1)-(phi2s-phi1s));
if numel(x(x>x1 & x<x2))>0
intersection(k) = x(x>x1 & x<x2); % then
up_sh(k)= interp1(y(Branches(2*k-1):Branches(2*k)),u0(Branches(2*k-1):Branches(2*k)),intersection(k),'linear');
un_sh(k)= interp1(y(Branches(2*j-1):Branches(2*j)),u0(Branches(2*j-1):Branches(2*j)),intersection(k),'linear');
phi_sh = interp1(y(Branches(2*k-1):Branches(2*k)),phi(Branches(2*k-1):Branches(2*k)),intersection(k),'linear');
entropyCondition(k) = (I(up_sh(k))-I(un_sh(k))) > ((f(up_sh(k))-f(un_sh(k))).*(up_sh(k)+un_sh(k))/2);
if debug; subplot(323); plot([intersection(k),intersection(k)],[up_sh(k),un_sh(k)],'.-k'); hold on; end
if debug; subplot(324); plot(intersection(k),phi_sh,'.k'); hold on; end
end
end
% If phi-branches do not explicitly in the solution grid
if j==k-1 && Branch{j}.x(end)-Branch{k}.x(1)<dx
intersection(k) = (Branch{j}.x(end)+Branch{k}.x(1))/2; % then
up_sh(k)= interp1(y(Branches(2*k-1):Branches(2*k)),u0(Branches(2*k-1):Branches(2*k)),intersection(k),'linear');
un_sh(k)= interp1(y(Branches(2*j-1):Branches(2*j)),u0(Branches(2*j-1):Branches(2*j)),intersection(k),'linear');
phi_sh = interp1(y(Branches(2*k-1):Branches(2*k)),phi(Branches(2*k-1):Branches(2*k)),intersection(k),'linear');
entropyCondition(k) = (I(up_sh(k))-I(un_sh(k))) > ((f(up_sh(k))-f(un_sh(k))).*(up_sh(k)+un_sh(k))/2);
if debug; subplot(323); plot([intersection(k),intersection(k)],[up_sh(k),un_sh(k)],'.-k'); hold on; end
if debug; subplot(324); plot(intersection(k),phi_sh,'.k'); hold on; end
end
end
Branch{j}.x_sh = intersection;
Branch{j}.up_sh= up_sh;
Branch{j}.un_sh= un_sh;
Branch{j}.EC=entropyCondition;
end
if debug; subplot(323); hold off; ylabel('u(x,t)'); end
if debug; subplot(324); hold off; ylabel('\phi(x,t)'); end
%% 6. Selection of admisible shocks
% Among all possible intersections jumping from a branch j to a branch k>j,
% rule out:
% (a) those which do not satisfy the entropy condition Eq.(20) in Ref.[1];
% (b) those which do not cross a branch of higher number;
% (c) similarly, those which do come from a branch that does not cross a
% previously lower branch.
%
% Examing the full path (The simplest solution first!)
path = nchoosek(1:nBranches,nBranches);
shocks = zeros(1,nShocks);
for p = 1:size(path,1)
for b = 1:nShocks
from=path(p,b); to=path(p,b+1);
shocks(p,b) = Branch{from}.x_sh(to);
end
end
if issorted(shocks) % if shocks are in order: the full path is the solution
solutionPath=path;
intersections=shocks;
else % if the full solution path is not the solution then,
i=0; idx=[];
while numel(idx)==0
i = i+1;
path = nchoosek(1:nBranches,nBranches-i); % List all possible paths
shocks= NaN*ones(size(path,1),nShocks-i);
index = ones(size(path,1),1);
for p = 1:size(path,1)
if path(p,1)==1 && path(p,nBranches-i)==nBranches
for b = 1:nShocks-i
from=path(p,b); to=path(p,b+1);
shocks(p,b) = Branch{from}.x_sh(to);
end
end
end
for b=1:nShocks-1-i
index = index.*(shocks(:,b) < shocks(:,b+1));
end
idx=find(index);
end
solutionPath=path(idx,:);
intersections=shocks(idx,:);
end
%% 7. Build (and plot) the Solution Profile
X=[]; U=[]; PHI=[];
if numel(Branch)==1
X=[X, Branch{1}.x];
U=[U, Branch{1}.u];
PHI=[PHI, Branch{1}.phi];
else
for i = 1:length(solutionPath)
if i ==1
X=[X, Branch{1}.x(Branch{1}.x<=intersections(1))]; %#ok<*AGROW>
U=[U, Branch{1}.u(Branch{1}.x<=intersections(1))];
PHI=[PHI, Branch{1}.phi(Branch{1}.x<=intersections(1))];
elseif i==length(solutionPath)
X=[X, Branch{nBranches}.x(Branch{ nBranches }.x>=intersections(i-1))];
U=[U, Branch{nBranches}.u(Branch{ nBranches }.x>=intersections(i-1))];
PHI=[PHI, Branch{nBranches}.phi(Branch{ nBranches }.x>=intersections(i-1))];
else
X=[X, Branch{solutionPath(i)}.x(Branch{solutionPath(i)}.x>intersections(i-1) & Branch{solutionPath(i)}.x<intersections(i))];
U=[U, Branch{solutionPath(i)}.u(Branch{solutionPath(i)}.x>intersections(i-1) & Branch{solutionPath(i)}.x<intersections(i))];
PHI=[PHI, Branch{solutionPath(i)}.phi(Branch{solutionPath(i)}.x>intersections(i-1) & Branch{solutionPath(i)}.x<intersections(i))];
end
end
end
if debug; subplot(325); plot(X,U,'-k'); ylabel('u(x,t)'); xlabel('x'); end
if debug; subplot(326); plot(X,PHI,'-k'); ylabel('\phi(x,t)'); xlabel('x'); end
% Manuel A. Diaz, ISNA 2018, Santa Fe, NM.