-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbnb_sedunov.py
277 lines (224 loc) · 9.69 KB
/
bnb_sedunov.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
from datetime import datetime
import sys
from math import floor
import cplex
import networkx as nx
import numpy as np
sys.setrecursionlimit(1000)
path_to_benchs = "benchs/max_clique_txt/DIMACS_all_ascii/"
def get_non_zero_values_idx(values):
return np.nonzero(values)[0]
def get_non_zero_values(values):
return [x for x in values if x != 0]
def check_clique(solution, graph):
subgraph = graph.subgraph(solution)
num_of_edges = subgraph.number_of_edges()
return num_of_edges == int(subgraph.number_of_nodes() * (num_of_edges - 1) / 2)
def print_solution(objective_value, true_obj, path, time, is_clique):
print(f"graph: {path}")
print(f"objective value: {objective_value}")
print(f"\ntime exec: {time}")
path_pr = path.split('\\')[-1]
print(f"{path_pr}, {objective_value}, {true_obj}, {time}, {is_clique}")
def arguments():
import argparse
parser = argparse.ArgumentParser(
description='Compute maximum clique for a given graph')
parser.add_argument('--path', type=str, required=False, default=None,
help='Path to dimacs-format graph file')
parser.add_argument('--method', type=str, required=True, choices=["LP", "ILP", "BnB"],
help='Solve problem by LP or ILP statement')
return parser.parse_args()
def get_ind_sets(graph: nx.Graph):
strategies = [nx.coloring.strategy_largest_first,
nx.coloring.strategy_random_sequential,
nx.coloring.strategy_independent_set,
nx.coloring.strategy_connected_sequential_bfs,
nx.coloring.strategy_connected_sequential_dfs,
nx.coloring.strategy_saturation_largest_first]
ind_sets = []
for strategy in strategies:
d = nx.coloring.greedy_color(graph, strategy=strategy)
for color in set(color for node, color in d.items()):
ind_sets.append(
[key for key, value in d.items() if value == color])
return ind_sets
def get_list_ind_sets(graph: nx.Graph):
ind_sets = get_ind_sets(graph)
list_ind_sets = []
for ind_set in ind_sets:
for x in ind_set:
list_ind_sets.append(int(x))
return list_ind_sets
def read_dimacs_graph(file_path, verbosity: bool):
"""
Parse .col file and return graph object
"""
edges = []
with open(file_path, 'r') as file:
for line in file:
if line.startswith('c'): # graph description
if verbosity:
print(*line.split()[1:])
# first line: p name num_of_vertices num_of_edges
elif line.startswith('p'):
_, name, vertices_num, edges_num = line.split()
if verbosity:
print('{0} {1} {2}'.format(name, vertices_num, edges_num))
elif line.startswith('e'):
_, v1, v2 = line.split()
edges.append((v1, v2))
else:
continue
return nx.Graph(edges)
def get_problem(graph: nx.Graph, solve_integer: bool):
one = 1 if solve_integer else 1.0
zero = 0 if solve_integer else 0.0
ind_sets = get_ind_sets(graph)
not_connected_edges_list = list(nx.complement(graph).edges)
list_nodes = list(graph.nodes)
list_nodes_int = [int(i) for i in list_nodes]
list_nodes_int.sort()
names = ['x' + str(i) for i in list_nodes_int]
objective = [one] * max(list_nodes_int)
lower_bounds = [zero] * max(list_nodes_int)
upper_bounds = [one] * max(list_nodes_int)
problem = cplex.Cplex()
problem.objective.set_sense(problem.objective.sense.maximize)
problem.variables.add(obj=objective,
lb=lower_bounds,
ub=upper_bounds,
names=names)
constraints = [[['x' + edges_pair[0], 'x' + edges_pair[1]], [one, one]] for edges_pair in not_connected_edges_list]
for ind_set in ind_sets:
constraints.append([['x{0}'.format(x) for x in ind_set], [1.0] * len(ind_set)])
constraint_names = ["c" + str(i) for i in range(len(constraints))]
rhs = [one] * len(constraints)
constraint_senses = ["L"] * len(constraints)
# print(constraints)
problem.linear_constraints.add(lin_expr=constraints,
senses=constraint_senses,
rhs=rhs,
names=constraint_names)
for i in list_nodes_int:
if solve_integer:
problem.variables.set_types(i - 1, problem.variables.type.binary)
else:
problem.variables.set_types(i - 1, problem.variables.type.continuous)
return problem
class BranchAndBound:
def __init__(self, graph: nx.Graph):
self.graph = graph
self.problem = get_problem(graph=self.graph, solve_integer=False)
self.list_ind_sets = get_list_ind_sets(self.graph)
self.problem.set_log_stream(None)
self.problem.set_results_stream(None)
self.upper_bound = 0
self.best_values = [None]
self.used_vars = np.zeros(graph.number_of_nodes(), dtype=bool)
self.eps = 10e-6
self.best_curr_solution = self.heuristic()
self.branch_num = 0
def heuristic(self):
# greedy heuristic on sorted nodes by degree
G = self.graph
clique = []
sorted_nodes = list(sorted(G.degree, key=lambda x: x[1], reverse=True))
clique.append(sorted_nodes[0][0])
for vert in sorted_nodes[1:]:
if vert[0] in clique:
continue
add_to_clique = True
for c in clique:
if any([c == edge[1] for edge in G.edges(vert[0])]):
continue
else:
add_to_clique = False
break
if add_to_clique:
clique.append(vert[0])
return len(clique)
def choose_closest_to_int(self, solution: list):
min_dist = 1
closest_to_int_idx = None
for idx, value in enumerate(solution):
if value - self.eps > 0 and value + self.eps < 1 and self.used_vars[idx] != 1:
curr_min_frac_part = min(value, abs(1 - value))
if curr_min_frac_part < min_dist:
closest_to_int_idx = idx
min_dist = curr_min_frac_part
return closest_to_int_idx
def is_integer(self, solution: list):
for idx, value in enumerate(solution):
if value - self.eps > 0 or value + self.eps < 1:
return False
return True
def get_solution(self):
return self.best_values, self.best_curr_solution
def solve(self):
def add_constraint(bv: int, rhs: float, curr_branch: int):
self.problem.linear_constraints.add(lin_expr=[[[f'x{bv}'], [1.0]]],
senses=['E'],
rhs=[rhs],
names=['branch_{0}'.format(curr_branch)])
try:
self.problem.solve()
values = self.problem.solution.get_values()
objective_value = self.problem.solution.get_objective_value()
except cplex.exceptions.CplexSolverError:
return
if floor(objective_value + self.eps) <= self.best_curr_solution:
return
if self.is_integer(values):
if not check_clique(values, self.graph):
return
self.best_values = values
self.best_curr_solution = objective_value
return
branching_variable = self.choose_closest_to_int(values)
if branching_variable is None:
return
self.branch_num += 1
cur_branch = self.branch_num
branchs = [0.0, 1.0] if values[branching_variable] < 0.5 else [1.0, 0.0]
for branch in branchs:
add_constraint(branching_variable + 1, branch, cur_branch)
self.used_vars[branching_variable] = 1
self.solve()
self.problem.linear_constraints.delete('branch_{0}'.format(cur_branch))
self.used_vars[branching_variable] = 0
return
def main():
args = arguments()
verbosity = False
paths, graphs = [], []
solve_integer = False if args.method == 'LP' else True
if args.path:
verbosity = True
paths.append(args.path) # u may insert here ur list of paths
for path in paths:
graph = read_dimacs_graph(path, verbosity)
if args.method in ['LP', 'ILP']:
start = datetime.now()
problem_max_clique = get_problem(graph, solve_integer)
problem_max_clique.set_log_stream(None)
problem_max_clique.set_results_stream(None)
problem_max_clique.solve()
values = problem_max_clique.solution.get_values()
objective_value = problem_max_clique.solution.get_objective_value()
print_solution(objective_value, objective_value, path, (datetime.now() - start).total_seconds(),
check_clique(values, graph))
elif args.method == 'BnB':
problem_max_clique = get_problem(graph, solve_integer)
problem_max_clique.set_log_stream(None)
problem_max_clique.set_results_stream(None)
problem_max_clique.solve()
objective_value_true = problem_max_clique.solution.get_objective_value()
start = datetime.now()
bnb = BranchAndBound(graph)
bnb.solve()
values, objective_value = bnb.get_solution()
print_solution(objective_value, objective_value_true, path, (datetime.now() - start).total_seconds(),
check_clique(values, graph))
if __name__ == '__main__':
main()