-
Notifications
You must be signed in to change notification settings - Fork 5
/
Train_resnet.py
202 lines (165 loc) · 6.43 KB
/
Train_resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#!/usr/bin/env python3
#-*- coding:utf-8 -*-
import argparse
import logging
import os
import numpy as np
import torch
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from tensorboardX import SummaryWriter
from DataLoader.resnet import MyDatasets
from Models.resnet import resnet18
from Loss.resnet import ResnetLoss
from Utils.utils import AverageMeter
# from utils.parallel import DataParallelModel, DataParallelCriterion
def print_args(args):
for arg in vars(args):
s = arg + ': ' + str(getattr(args, arg))
logging.info(s)
def save_checkpoint(state, filename='checkpoint.pth.tar'):
torch.save(state, filename)
logging.info('Save checkpoint to {0:}'.format(filename))
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected')
def train(train_loader, resnet_backbone, criterion, optimizer, cur_epoch):
losses = AverageMeter()
for img, landmark_gt in train_loader:
img.requires_grad = False
img = img.cuda(non_blocking=True)
landmark_gt.requires_grad = False
landmark_gt = landmark_gt.cuda(non_blocking=True)
resnet_backbone = resnet_backbone.cuda()
landmarks = resnet_backbone(img)
loss = criterion(landmark_gt, landmarks, args.train_batchsize)
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses.update(loss.item())
return loss
def validate(my_val_dataloader, resnet_backbone, criterion, cur_epoch):
resnet_backbone.eval()
losses = []
with torch.no_grad():
for img, landmark_gt in my_val_dataloader:
img.requires_grad = False
img = img.cuda(non_blocking=True)
landmark_gt.requires_grad = False
landmark_gt = landmark_gt.cuda(non_blocking=True)
resnet_backbone = resnet_backbone.cuda()
landmark = resnet_backbone(img)
loss = torch.mean(
torch.sum((landmark_gt - landmark)**2,axis=1))
losses.append(loss.cpu().numpy())
return np.mean(losses)
def main(args):
# Step 1: parse args config
logging.basicConfig(
format=
'[%(asctime)s] [p%(process)s] [%(pathname)s:%(lineno)d] [%(levelname)s] %(message)s',
level=logging.INFO,
handlers=[
logging.FileHandler(args.log_file, mode='w'),
logging.StreamHandler()
])
print_args(args)
# Step 2: model, criterion, optimizer, scheduler
resnet_backbone = resnet18(num_classes=42).cuda()
if args.resume != '':
logging.info('Load the checkpoint:{}'.format(args.resume))
checkpoint = torch.load(args.resume)
resnet_backbone.load_state_dict(checkpoint['resnet_backbone'])
criterion = ResnetLoss()
optimizer = torch.optim.Adam(
[{
'params': resnet_backbone.parameters()
}],
lr=args.base_lr,
weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', patience=args.lr_patience, verbose=True)
# step 3: data
# argumetion
transform = transforms.Compose([transforms.ToTensor()])
mydataset = MyDatasets(args.dataroot, transform)
dataloader = DataLoader(
mydataset,
batch_size=args.train_batchsize,
shuffle=True,
num_workers=args.workers,
drop_last=False)
my_val_dataset = MyDatasets(args.val_dataroot, transform)
my_val_dataloader = DataLoader(
my_val_dataset,
batch_size=args.val_batchsize,
shuffle=False,
num_workers=args.workers)
# step 4: run
writer = SummaryWriter(args.tensorboard)
for epoch in range(args.start_epoch, args.end_epoch + 1):
train_loss = train(dataloader, resnet_backbone, criterion, optimizer, epoch)
filename = os.path.join(
str(args.snapshot), "checkpoint_epoch_" + str(epoch) + '.pth.tar')
save_checkpoint({
'epoch': epoch,
'resnet_backbone': resnet_backbone.state_dict()
}, filename)
val_loss = validate(my_val_dataloader, resnet_backbone, criterion, epoch)
scheduler.step(val_loss)
# 第一个参数可以简单理解为保存图的名称,第二个参数是可以理解为Y轴数据,第三个参数可以理解为X轴数据
# weighted_loss带权重计算的 train loss
# train_loss 单纯L2 loss
# val_loss 验证数据集的loss
writer.add_scalars('data/loss', {'val loss': val_loss, 'train loss': train_loss}, epoch)
writer.close()
def parse_args():
parser = argparse.ArgumentParser(description='Face Alignment Project Trainning')
# general
parser.add_argument('-j', '--workers', default=8, type=int)
parser.add_argument('--devices_id', default='1', type=str) #TBD
parser.add_argument('--test_initial', default='false', type=str2bool) #TBD
# training
# -- optimizer
parser.add_argument('--base_lr', default=0.0001, type=int)
parser.add_argument('--weight-decay', '--wd', default=1e-6, type=float)
# -- lr
parser.add_argument("--lr_patience", default=40, type=int)
# -- epoch
parser.add_argument('--start_epoch', default=1, type=int)
parser.add_argument('--end_epoch', default=1000, type=int)
# -- snapshot、tensorboard log and checkpoint
parser.add_argument(
'--snapshot',
default='./CheckPoints/snapshot_resnet/',
type=str,
metavar='PATH')
parser.add_argument(
'--log_file', default="./CheckPoints/train_resnet.logs", type=str)
parser.add_argument(
'--tensorboard', default="./CheckPoints/tensorboard_resnet", type=str)
# -- load snapshot
parser.add_argument(
'--resume', default='', type=str, metavar='PATH') # TBD
# --dataset
parser.add_argument(
'--dataroot',
default='./Data/ODATA/TrainData/labels.txt',
type=str,
metavar='PATH')
parser.add_argument(
'--val_dataroot',
default='./Data/ODATA/TestData/labels.txt',
type=str,
metavar='PATH')
parser.add_argument('--train_batchsize', default=64, type=int)
parser.add_argument('--val_batchsize', default=8, type=int)
args = parser.parse_args()
return args
if __name__ == "__main__":
# torch.cuda.set_device(id)
args = parse_args()
main(args)