forked from kamyu104/LintCode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaximum-subarray-iii.cpp
77 lines (66 loc) · 2.57 KB
/
maximum-subarray-iii.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
// Time: O(k * n^2)
// Space: O(k * n)
class Solution {
public:
/**
* @param nums: A list of integers
* @param k: An integer denote to find k non-overlapping subarrays
* @return: An integer denote the sum of max k non-overlapping subarrays
*/
int maxSubArray(vector<int> nums, int k) {
const int n = nums.size();
// sums[x][y] means the max sum in range [0, x - 1] with k non-overlapping subarrays
vector<vector<int>> sums(n + 1, vector<int>(k + 1, INT_MIN));
for (int i = 0; i <= n; ++i) {
sums[i][0] = 0;
}
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= min(i, k); ++j) {
sums[i][j] = sums[i - 1][j];
int max_sum_from_p = 0;
for (int p = i; p > j - 1; --p) {
max_sum_from_p = max(0, max_sum_from_p) + nums[p - 1];
// max sum in range[0, i - 1] with j subarrays equals to
// max sum in max(range [0, p - 2] with j - 1 subarrys plus
// max sum of the subarray which starts from p - 1
sums[i][j] = max(sums[i][j], sums[p - 1][j - 1] + max_sum_from_p);
}
}
}
return sums[n][k];
}
};
// Time: O(k * n^2)
// Space: O(k * n^2)
class Solution2 {
public:
/**
* @param nums: A list of integers
* @param k: An integer denote to find k non-overlapping subarrays
* @return: An integer denote the sum of max k non-overlapping subarrays
*/
int maxSubArray(vector<int> nums, int k) {
const int n = nums.size();
// sums[x][y] means the max sum in range [0, x - 1] with k non-overlapping subarrays
vector<vector<int>> sums(n + 1, vector<int>(k + 1, INT_MIN));
for (int i = 0; i <= n; ++i) {
sums[i][0] = 0;
}
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= min(i, k); ++j) {
sums[i][j] = sums[i - 1][j];
int sum = 0, max_sum = INT_MIN;
for (int p = i; p > j - 1; --p) {
sum += nums[p - 1];
max_sum = max(max_sum, sum);
sum = max(0, sum);
// max sum in range[0, i - 1] with j subarrays equals to
// max sum in max(range [0, p - 2] with j - 1 subarrys plus
// max sum in range [p - 1, i - 1] with 1 subarray
sums[i][j] = max(sums[i][j], sums[p - 1][j - 1] + max_sum);
}
}
}
return sums[n][k];
}
};