forked from kamyu104/LintCode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtopological-sorting.cpp
133 lines (118 loc) · 4.28 KB
/
topological-sorting.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
// Time: O(|V| + |E|)
// Space: O(|E|)
/**
* Definition for Directed graph.
* struct DirectedGraphNode {
* int label;
* vector<DirectedGraphNode *> neighbors;
* DirectedGraphNode(int x) : label(x) {};
* };
*/
// BFS
class Solution {
public:
/**
* @param graph: A list of Directed graph node
* @return: Any topological order for the given graph.
*/
vector<DirectedGraphNode *> topSort(vector<DirectedGraphNode*> graph) {
vector<DirectedGraphNode *> output;
// Find ancestors of each node by DFS
unordered_set<DirectedGraphNode *> nodes;
unordered_map<DirectedGraphNode *, int> ancestors;
for (const auto& node :graph) {
findDependencyBFS(node, nodes, ancestors);
}
// Output topological order by BFS
topSortBFS(graph, ancestors, output);
return output;
}
private:
void findDependencyBFS(DirectedGraphNode* node,
unordered_set<DirectedGraphNode *> &nodes,
unordered_map<DirectedGraphNode *, int> &ancestors) {
if (nodes.emplace(node).second) {
queue<DirectedGraphNode *> scheduled;
scheduled.emplace(node);
while (!scheduled.empty()) {
DirectedGraphNode *node = scheduled.front();
scheduled.pop();
// Update in degree of neighbors.
for (const auto& neighbor : node->neighbors) {
++ancestors[neighbor];
if (nodes.emplace(neighbor).second) {
scheduled.emplace(neighbor);
}
}
}
}
}
void topSortBFS(vector<DirectedGraphNode*>& graph,
unordered_map<DirectedGraphNode *, int> &ancestors,
vector<DirectedGraphNode *> &output) {
// Find the nodes with 0 in degree.
queue<DirectedGraphNode *> scheduled;
for (const auto& node : graph) {
if (ancestors[node] == 0) {
scheduled.emplace(node);
}
}
while (!scheduled.empty()) {
DirectedGraphNode *node = scheduled.front();
output.emplace_back(node);
scheduled.pop();
// Update in degree of neighbors.
for (const auto& neighbor : node->neighbors) {
--ancestors[neighbor];
if (ancestors[neighbor] == 0) {
scheduled.emplace(neighbor);
}
}
}
}
};
// DFS
class Solution2 {
public:
/**
* @param graph: A list of Directed graph node
* @return: Any topological order for the given graph.
*/
vector<DirectedGraphNode *> topSort(vector<DirectedGraphNode*> graph) {
vector<DirectedGraphNode *> output;
// Find ancestors of each node by DFS
unordered_set<DirectedGraphNode *> nodes;
unordered_map<DirectedGraphNode *, vector<DirectedGraphNode *>> ancestors;
for (const auto& node :graph) {
findDependencyDFS(node, nodes, ancestors);
}
// Output topological order by DFS
unordered_set<DirectedGraphNode *> scheduled;
for (const auto& node : graph) {
topSortDFS(node, ancestors, scheduled, output);
}
return output;
}
private:
void findDependencyDFS(DirectedGraphNode* node,
unordered_set<DirectedGraphNode *> &nodes,
unordered_map<DirectedGraphNode *, vector<DirectedGraphNode *>> &ancestors) {
if (nodes.emplace(node).second) {
for (const auto& neighbor : node->neighbors) {
ancestors[neighbor].emplace_back(node);
findDependencyDFS(neighbor, nodes, ancestors);
}
}
}
void topSortDFS(DirectedGraphNode *node,
unordered_map<DirectedGraphNode *, vector<DirectedGraphNode *>> &ancestors,
unordered_set<DirectedGraphNode *> &scheduled,
vector<DirectedGraphNode *> &output) {
if (scheduled.emplace(node).second) {
for (const auto& ancestor: ancestors[node]) {
topSortDFS(ancestor, ancestors, scheduled, output);
}
output.emplace_back(node);
}
}
};