diff --git a/foss_regression_3.ipynb b/foss_regression_3.ipynb
new file mode 100644
index 0000000..d8b1275
--- /dev/null
+++ b/foss_regression_3.ipynb
@@ -0,0 +1,541 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "provenance": [],
+ "toc_visible": true
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3"
+ },
+ "language_info": {
+ "name": "python"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Feature Scaling"
+ ],
+ "metadata": {
+ "id": "iHDpbiVxfgfg"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "\n",
+ "#Reading the data for 3 columns\n",
+ "df = pd.read_csv('wines_SPA.csv', usecols=[3, 4, 7])\n",
+ "df.columns=['rating', 'number of reviews', 'price']\n",
+ "\n",
+ "df"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 424
+ },
+ "id": "DzJOENRlfhB3",
+ "outputId": "9cdabf22-1383-4c88-8aca-37d04558ab6a"
+ },
+ "execution_count": 56,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " rating number of reviews price\n",
+ "0 4.9 58 995.00\n",
+ "1 4.9 31 313.50\n",
+ "2 4.8 1793 324.95\n",
+ "3 4.8 1705 692.96\n",
+ "4 4.8 1309 778.06\n",
+ "... ... ... ...\n",
+ "7495 4.2 392 19.98\n",
+ "7496 4.2 390 16.76\n",
+ "7497 4.2 390 24.45\n",
+ "7498 4.2 389 64.50\n",
+ "7499 4.2 388 31.63\n",
+ "\n",
+ "[7500 rows x 3 columns]"
+ ],
+ "text/html": [
+ "\n",
+ "
\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " rating | \n",
+ " number of reviews | \n",
+ " price | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 4.9 | \n",
+ " 58 | \n",
+ " 995.00 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 4.9 | \n",
+ " 31 | \n",
+ " 313.50 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 4.8 | \n",
+ " 1793 | \n",
+ " 324.95 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4.8 | \n",
+ " 1705 | \n",
+ " 692.96 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 4.8 | \n",
+ " 1309 | \n",
+ " 778.06 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 7495 | \n",
+ " 4.2 | \n",
+ " 392 | \n",
+ " 19.98 | \n",
+ "
\n",
+ " \n",
+ " 7496 | \n",
+ " 4.2 | \n",
+ " 390 | \n",
+ " 16.76 | \n",
+ "
\n",
+ " \n",
+ " 7497 | \n",
+ " 4.2 | \n",
+ " 390 | \n",
+ " 24.45 | \n",
+ "
\n",
+ " \n",
+ " 7498 | \n",
+ " 4.2 | \n",
+ " 389 | \n",
+ " 64.50 | \n",
+ "
\n",
+ " \n",
+ " 7499 | \n",
+ " 4.2 | \n",
+ " 388 | \n",
+ " 31.63 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
7500 rows × 3 columns
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df",
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 7500,\n \"fields\": [\n {\n \"column\": \"rating\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.1180290345746442,\n \"min\": 4.2,\n \"max\": 4.9,\n \"num_unique_values\": 8,\n \"samples\": [\n 4.8,\n 4.4,\n 4.9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"number of reviews\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 723,\n \"min\": 25,\n \"max\": 32624,\n \"num_unique_values\": 817,\n \"samples\": [\n 115,\n 177,\n 2144\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 150.35667645268242,\n \"min\": 4.99,\n \"max\": 3119.08,\n \"num_unique_values\": 1292,\n \"samples\": [\n 168.0,\n 190.0,\n 28.7315367295517\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 56
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#here, i have plotted the graph for the taken three columns\n",
+ "number_of_reviews = df['num_reviews']\n",
+ "price = df['price']\n",
+ "rating = df['rating']\n",
+ "\n",
+ "plt.figure(figsize=(9, 4))\n",
+ "scatter = plt.scatter(rating, price, c=number_of_reviews, cmap='viridis')\n",
+ "plt.xlabel('rating')\n",
+ "plt.ylabel('Price')\n",
+ "plt.title('Wine data before feature scaling')\n",
+ "plt.legend()\n",
+ "plt.grid(True)\n",
+ "plt.show()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 427
+ },
+ "id": "uuQxMfcRic_4",
+ "outputId": "c4d17657-09be-44ea-8b9a-73dbea7821ea"
+ },
+ "execution_count": 48,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "