From ca8d71c69f55585af449692b931ee9f66187ce95 Mon Sep 17 00:00:00 2001 From: LegrandNico Date: Mon, 8 Jul 2024 16:30:37 +0200 Subject: [PATCH] update tutorial --- docs/source/notebooks/3-Multilevel_HGF.ipynb | 432 +++++++++++++------ docs/source/refs.bib | 11 + 2 files changed, 317 insertions(+), 126 deletions(-) diff --git a/docs/source/notebooks/3-Multilevel_HGF.ipynb b/docs/source/notebooks/3-Multilevel_HGF.ipynb index 015942dcb..a69efee8a 100644 --- a/docs/source/notebooks/3-Multilevel_HGF.ipynb +++ b/docs/source/notebooks/3-Multilevel_HGF.ipynb @@ -12,7 +12,7 @@ }, "source": [ "(multilevel_hgf)=\n", - "# Embeding Hierarchical Gaussian Filters in a multilevel Bayesian model" + "# Hierarchical Bayesian modelling with probabilistic neural networks" ] }, { @@ -37,7 +37,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "id": "ba34f2ab-bca8-499d-bfd5-f2c022409b50", "metadata": { "editable": true, @@ -59,7 +59,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "id": "b2718c0d-5a41-4f56-89be-80318f9ab728", "metadata": { "editable": true, @@ -85,9 +85,10 @@ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pymc as pm\n", + "import pytensor.tensor as pt\n", "import seaborn as sns\n", "from pyhgf import load_data\n", - "from pyhgf.distribution import HGFDistribution\n", + "from pyhgf.distribution import HGFDistribution, HGFPointwise\n", "from pyhgf.model import HGF\n", "from pyhgf.response import binary_softmax_inverse_temperature\n", "\n", @@ -96,7 +97,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "id": "20aba0ed-e8c6-4276-8778-496528d41232", "metadata": {}, "outputs": [], @@ -109,7 +110,7 @@ "id": "dbef25ef-44e0-4d35-bfa4-5be3bb3a393e", "metadata": {}, "source": [ - "In the previous tutorials, we discussed using binary, categorical and continuous Hierarchical Gaussian Filters (HGF) with different levels of volatility. By creating HGF networks this way, we were simulating computations occurring at the agent level (i.e. both the observations and actions were made by one agent, and we estimated the posterior density distribution of parameters for that agent). However, many situations in experimental neuroscience and computational psychiatry will require us to go one step further and to make inferences at the population level, therefore fitting many models at the same time and estimating the density distribution of hyper-priors (see for example case studies from {cite:p}`2014:lee`). \n", + "In the previous tutorials, we have fitted the binary, categorical and continuous Hierarchical Gaussian Filters (HGF) to observations to infer the values of specific parameters of the networks. proceeding this way, we were simulating computations occurring at the agent level (i.e. both the observations and actions were made by one agent, and we estimated the posterior density distribution of parameters for that agent). However, many situations in experimental neuroscience and computational psychiatry will require us to go one step further and to make inferences at the population level, therefore fitting many models at the same time and estimating the density distribution of hyper-priors (see for example case studies from {cite:p}`2014:lee`). \n", "\n", "Luckily, we already have all the components in place to do that. We already used Bayesian networks in the previous sections when we were inferring the distribution of some parameters. Here, we only had one agent (i.e. one participant), and therefore did not need any hyperprior. We need to extend this approach a bit, and explicitly state that we want to fit many models (participants) simultaneously, and draw the values of some parameters from a hyper-prior (i.e. the group-level distribution).\n", "\n", @@ -126,12 +127,12 @@ "metadata": {}, "source": [ "## Simulate a dataset\n", - "We start by simulating a dataset that would containt the decisions from a group of participants undergoing a standard one-armed bandit task. We use the same binary time series as reference than from the previous tutorials. This would represent the association between the stimuli and the outcome, this is controlled by the experimenter and here we assume all participants are presented with the same sequence of association." + "We start by simulating a dataset containing the decisions from a group of participants undergoing a standard one-armed bandit task. We use the same binary time series as a reference as the previous tutorials. This would represent the association between the stimuli and the outcome, the experimenter controls this and here we assume all participants are presented with the same sequence of association." ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "id": "14bd6de6-10d1-4440-861b-f6af6fe940c9", "metadata": {}, "outputs": [], @@ -144,7 +145,7 @@ "id": "38710a5d-57d8-48b7-9257-862fd2c9236c", "metadata": {}, "source": [ - "Using the same reasoning as in the previous tutorial {ref}`custom_response_functions`, we simulate the trajectories of beliefs from participants being presented with this sequence of observation. Here, we vary one parameter in the perceptual model, we assume that the tonic volatility from the second level is sampled from a population distribution such as: \n", + "Using the same reasoning as in the previous tutorial {ref}`custom_response_functions`, we simulate the trajectories of beliefs from participants being presented with this sequence of observation. Here, we vary one parameter in the perceptual model, we assume that the tonic volatility ($\\omega$) from the second level is sampled from a population distribution such as: \n", "\n", "$$\n", "\\omega_{2_i} \\sim \\mathcal{N}(-4.0, 1.0)\n", @@ -156,12 +157,17 @@ "P(A|\\mu, t) = \\frac{\\mu^t}{\\mu^t + (1-\\mu)^t}\n", "$$\n", "\n", - "Where $A$ is a positive association between the stimulus and the outcome, $\\mu = \\hat{\\mu}_1^{(k)}$, the expected probability from the first level and $t$ is the temperature parameter." + "Where $A$ is a positive association between the stimulus and the outcome, $\\mu = \\hat{\\mu}_1^{(k)}$, the expected probability from the first level and $t$ is the temperature parameter. We sample the temperature parameter from a log-normal distribution to ensure positivity such as:\n", + "\n", + "$$\n", + "z_{i} \\sim \\mathcal{N}(0.5, 0.5) \\\\\n", + "temperature = e^z\n", + "$$" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "id": "e590009e-89c1-410a-a05b-8a2c34e10b65", "metadata": {}, "outputs": [], @@ -173,7 +179,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "id": "710fa85f-ea28-4405-97f5-43a93e1850b9", "metadata": { "editable": true, @@ -188,7 +194,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGxCAYAAACwbLZkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACZSUlEQVR4nOzdd3yN1x/A8c/Nzd4yRGLvvRpblaKIGKX2iqI/apcOSltU6VC1lVbtvWeM2kprlNp7xAhZZK977/P7I3KJJEgkeTK+79crrfvkGd+be/Pcb875nnM0iqIoCCGEEEKoxETtAIQQQgiRt0kyIoQQQghVSTIihBBCCFVJMiKEEEIIVUkyIoQQQghVSTIihBBCCFVJMiKEEEIIVUkyIoQQQghVSTIihBBCCFVJMiIylUajea2vAwcOcODAATQaDevWrVM77DS7ffs2Go2GRYsWGbcdPXqUcePG8eTJE9Xiyi0aNWpEo0aN1A7jpVJ6D6Rm3LhxaDSa1zrv2LFjKVKkCKampjg6Or5ZkG9oxYoVTJs2LcXvaTQaxo0bl6XxiNzDVO0ARO527NixJI+//fZb9u/fz759+5Jsr1ChAv/++29Whpah3N3dOXbsGCVLljRuO3r0KOPHj6d3796qf4jkdHPmzFE7hFdK6T3wpjZv3sx3333HmDFj8PLywsLCIsPOnR4rVqzg/PnzDB8+PNn3jh07RqFChbI+KJErSDIiMlWdOnWSPHZ1dcXExCTZ9pzOwsIi1z2n1xEVFYW1tXWmX6dChQqZfo03lRnvgfPnzwMwdOhQ8ufPn6Hnzmh58f0vMo5004hsJz4+njFjxuDh4YG9vT1NmzblypUryfb7888/adKkCfb29lhbW1O/fn327t37yvMvWrQIjUbD7du3k2xP7CY6cOCAcVujRo2oVKkSJ06coEGDBlhbW1OiRAm+//57DAaDcb8Xm+jHjRvHZ599BkDx4sWTdEel5ubNm3Tp0gUPDw8sLCxwc3OjSZMmnDlzJsnP5vPPP6dAgQJYW1vz9ttvc/z4cYoVK0bv3r2N+6XWDZDSc1+9ejXNmjXD3d0dKysrypcvz6hRo4iMjExybO/evbG1teXcuXM0a9YMOzs7mjRpAkBcXBwTJ06kXLlyWFhY4OrqyocffkhgYGCqzzctzzulbpp79+7RoUMH7OzscHR0pHv37pw4cSJZV0li3JcvX6Z58+bY2Njg7u7O999/D8Dff//N22+/jY2NDWXKlGHx4sXJYjx//jxt27YlX758WFpaUq1atWT7pdZNs337dqpVq4aFhQXFixdnypQpr/yZABQrVoyxY8cC4ObmlqQbJLUukRffB4mv9/79+/n4449xcXHB2dmZ9u3b8+DBg2THr1ixgrp162Jra4utrS3VqlVjwYIFQMJrsH37du7cuZOkizVRSjG9zs8t8fdu5cqVr/V7L3InaRkR2c6XX35J/fr1+f333wkLC+OLL76gdevWXLp0Ca1WC8CyZcvo1asXbdu2ZfHixZiZmTFv3jyaN2/Orl27jB+SGeHhw4d0796dkSNH8s0337Bx40ZGjx6Nh4cHvXr1SvGYfv36ERISwsyZM9mwYQPu7u7Ay//Cb9myJXq9nh9//JEiRYoQFBTE0aNHk9ScfPTRRyxZsoRPP/2U9957j/Pnz9O+fXvCw8PT/fyuXbtGy5YtGT58ODY2Nly+fJkffviB48ePJ+tOi4uLo02bNvTv359Ro0ah0+kwGAy0bduWw4cP8/nnn1OvXj3u3LnDN998Q6NGjTh58iRWVlZv9LxfFBkZybvvvktISAg//PADpUqVYufOnXTu3DnF/ePj42nfvj0DBgzgs88+Y8WKFYwePZqwsDDWr1/PF198QaFChZg5cya9e/emUqVKeHp6AnDlyhXq1atH/vz5mTFjBs7OzixbtozevXvz6NEjPv/881Tj3Lt3L23btqVu3bqsWrXK+DwfPXr0klckwcaNG5k9ezYLFixg586dODg4pLsbpF+/fnh7e7NixQru3r3LZ599Ro8ePZK8vl9//TXffvst7du3Z+TIkTg4OHD+/Hnu3LkDJHSV/e9//+PGjRts3LjxlddM68/tdX7vRS6mCJGFfHx8FBsbmxS/t3//fgVQWrZsmWT7mjVrFEA5duyYoiiKEhkZqTg5OSmtW7dOsp9er1eqVq2q1KpV66UxLFy4UAGUW7dupXj9/fv3G7c1bNhQAZR//vknyb4VKlRQmjdvbnx869YtBVAWLlxo3PbTTz+leJ2UBAUFKYAybdq0VPe5dOmSAiiffPJJku3Lly9XAMXHx8e47ZtvvlFS+vVO7bknMhgMSnx8vHLw4EEFUP777z/j93x8fBRA+eOPP5Ics3LlSgVQ1q9fn2T7iRMnFECZM2dOqs/pdZ63oiS8Dg0bNjQ+nj17tgIovr6+Sfbr379/stchMe7n44uPj1dcXV0VQPn333+N24ODgxWtVquMGDHCuK1Lly6KhYWF4ufnl+RaXl5eirW1tfLkyRNFUVJ+D9SuXVvx8PBQoqOjjdvCwsIUJyenFF+fFyW+joGBgUm2A8o333yTbP+iRYsmeR8kvt4DBw5Mst+PP/6oAIq/v7+iKIpy8+ZNRavVKt27d39pPN7e3krRokVT/N6LMb3uz+11f+9F7ibdNCLbadOmTZLHVapUATD+hXb06FFCQkLw8fFBp9MZvwwGAy1atODEiRPJuhjeRIECBahVq1aymBLjyQhOTk6ULFmSn376ialTp3L69Okk3UAA+/fvB6B79+5Jtnfq1AlT0/Q3ct68eZNu3bpRoEABtFotZmZmNGzYEIBLly4l2/+DDz5I8njbtm04OjrSunXrJK9HtWrVKFCgwEu7pl7neafk4MGD2NnZ0aJFiyTbu3btmuL+Go2Gli1bGh+bmppSqlQp3N3dqV69epJ48ufPn+S13bdvH02aNKFw4cJJztm7d2+ioqKSFWknioyM5MSJE7Rv3x5LS0vjdjs7O1q3bv3K55iRXvU7tWfPHvR6PYMGDcqwa6b15/aqGEXuJsmIyHacnZ2TPE4cQRAdHQ1gbOLu0KEDZmZmSb5++OEHFEUhJCQk0+JJjCkxnoyg0WjYu3cvzZs358cff+Stt97C1dWVoUOHGrtggoODgYTk6HmmpqYpxvg6IiIiaNCgAf/88w8TJ07kwIEDnDhxgg0bNgAke47W1tbY29sn2fbo0SOePHmCubl5stfj4cOHBAUFvdHzTklwcDBubm7Jtqe0LTHu5xMCAHNzc5ycnJLta25uTkxMTJJrJXazPc/Dw8P4/ZQ8fvwYg8GQ7PWC5K9hZnvV71RibU9GjoZJ68/tVTGK3E1qRkSO4+LiAsDMmTNTreBP7UMJMH4oxcbGJtn+sg/NrFC0aFFjseDVq1dZs2YN48aNIy4ujl9//dV4s3748CEFCxY0HqfT6ZLd2J9/js8PB33xOe7bt48HDx5w4MABY2sIkGq9RkpFsYlFkTt37kzxGDs7u9SeMvDq550SZ2dnjh8/nmz7w4cPX3qt9HB2dsbf3z/Z9sQC0MT344vy5cuHRqNJMaY3jdPCwiLZ+xdST4xexdXVFUgoCn6xJSO90vtzE3mTtIyIHKd+/fo4Ojpy8eJFatSokeKXubl5qscXK1YMgLNnzybZvmXLlgyN803+sitTpgxjx46lcuXKxvlXEkeTLF++PMm+a9asQafTJdmW2nPcunVrkseJycWL81fMmzfvtWNt1aoVwcHB6PX6FF+LsmXLvva5UnreKWnYsCHh4eH4+vom2b5q1arXvtbratKkiTFpe96SJUuwtrZONSG2sbGhVq1abNiwIUlLS3h4eLLXIa2KFSuW7LXdt28fERER6Tpfs2bN0Gq1zJ0796X7paVFML0/N5E3ScuIyHFsbW2ZOXMmPj4+hISE0KFDB/Lnz09gYCD//fcfgYGBL72p1qxZk7Jly/Lpp5+i0+nIly8fGzdu5MiRIxkaZ+XKlQGYPn06Pj4+mJmZUbZs2RRbCs6ePcvgwYPp2LEjpUuXxtzcnH379nH27FlGjRoFQPny5enRowfTpk3DzMyMpk2bcv78eaZMmZKs66Rly5Y4OTnRt29fJkyYgKmpKYsWLeLu3btJ9qtXrx758uVjwIABfPPNN5iZmbF8+XL++++/136eXbp0Yfny5bRs2ZJhw4ZRq1YtzMzMuHfvHvv376dt27a0a9cuxWNf53mnxMfHh19++YUePXowceJESpUqha+vL7t27QLAxCTj/s765ptv2LZtG++++y5ff/01Tk5OLF++nO3bt/Pjjz/i4OCQ6rHffvstLVq04L333mPkyJHo9Xp++OEHbGxs3qgrsWfPnnz11Vd8/fXXNGzYkIsXLzJr1qyXxvIyxYoV48svv+Tbb78lOjqarl274uDgwMWLFwkKCmL8+PFAwnt6w4YNzJ07F09PT0xMTKhRo0aK53yTn5vIg9SuoBV5y+uMplm7dm2S7SmNUlAURTl48KDi7e2tODk5KWZmZkrBggUVb2/vZMen5OrVq0qzZs0Ue3t7xdXVVRkyZIiyffv2FEfTVKxYMcXn8fyogtRiHD16tOLh4aGYmJgkO/fzHj16pPTu3VspV66cYmNjo9ja2ipVqlRRfvnlF0Wn0xn3i42NVUaOHKnkz59fsbS0VOrUqaMcO3Ys2SgKRVGU48ePK/Xq1VNsbGyUggULKt98843y+++/JxtNc/ToUaVu3bqKtbW14urqqvTr10/5999/UxyVktprFx8fr0yZMkWpWrWqYmlpqdja2irlypVT+vfvr1y7di3FY9LyvF8cTaMoiuLn56e0b99esbW1Vezs7JQPPvhA2bFjhwIomzdvfmXcqb22RYsWVby9vZNsO3funNK6dWvFwcFBMTc3V6pWrZrstU7tPbBlyxalSpUqirm5uVKkSBHl+++/T3W004tSG00TGxurfP7550rhwoUVKysrpWHDhsqZM2dSHU1z4sSJJMenNHJMURRlyZIlSs2aNY2vYfXq1ZM8n5CQEKVDhw6Ko6OjotFokjwHUhjh8zo/t7T+3ovcSaMoipLlGZAQIkMVK1aMRo0avda6KLnZpEmTGDt2LH5+fjI1uRA5iHTTCCFypFmzZgFQrlw54uPj2bdvHzNmzKBHjx6SiAiRw0gyIoTIkaytrfnll1+4ffs2sbGxFClShC+++MI4hboQIueQbhohhBBCqEqG9gohhBBCVZKMCCGEEEJVkowIIYQQQlU5IhlRFIWwsDCkvEUIIYTIfXJEMhIeHo6Dg8NLF84SQgghRM6UI5IRIYQQQuRekowIIYQQQlWSjAghhBBCVZKMCCGEEEJVkowIIYQQQlW5Zm0aRVHQ6XTo9Xq1QxGp0Gq1mJqaotFo1A5FCCFENpIrkpG4uDj8/f2JiopSOxTxCtbW1ri7u2Nubq52KEIIIbKJHJ+MGAwGbt26hVarxcPDA3Nzc/nLOxtSFIW4uDgCAwO5desWpUuXxsREegmFEELkgmQkLi4Og8FA4cKFsba2Vjsc8RJWVlaYmZlx584d4uLisLS0VDskIYQQ2UCu+dNU/srOGeR1EkII8SL5ZBBCCCGEqiQZEUIIIYSq0pyMHDp0iNatW+Ph4YFGo2HTpk2vPObgwYN4enpiaWlJiRIl+PXXX9MTqxBCCCFyoTQnI5GRkVStWpVZs2a91v63bt2iZcuWNGjQgNOnT/Pll18ydOhQ1q9fn+Zgc6OxY8diYWFBt27d1A5FCCGEUEWaR9N4eXnh5eX12vv/+uuvFClShGnTpgFQvnx5Tp48yZQpU/jggw9SPCY2NpbY2Fjj47CwsLSGmWN8/vnnuLu7M3jwYCZMmECpUqUy/Bpz5szhp59+wt/fn4oVKzJt2jQaNGjw0mPGjRvH+PHjk2xzc3Pj4cOHGR6fEK9LURT0gUHEXb6GPiAYJTISQ2QU6PUoigLJvuDpf0QGUxTAYMCgN4A+4f+K3oCi1z/9/9MvgwEMoCgGMCgJxxn/raAYEl4r4/8VBQzK02s8fe0SX0fl+es//7q++L0X//Hiv43/yRYUlUMJ9g8iNjwa+z4f8NYnvVSJIdOH9h47doxmzZol2da8eXMWLFhAfHw8ZmZmyY6ZPHlysg/C3Mre3p4+ffowdOhQzp07l+HJyOrVqxk+fDhz5syhfv36zJs3Dy8vLy5evEiRIkVeemzFihX5888/jY+1Wm2GxibE61IUhSjfPwlduALdLT+1wxEZRPP0S6irIIAFnN16OPcmIw8fPsTNzS3JNjc3N3Q6HUFBQbi7uyc7ZvTo0YwYMcL4OCwsjMKFC7/W9RRFISY65s2CTidLK8t0Tbim0+mwtrbm/PnztGvXLkNjmjp1Kn379qVfv34ATJs2jV27djF37lwmT5780mNNTU0pUKBAhsYjRFopisLjSb8QsXF7wgatCWbFi2Ja0B0TWxs01tZoTE3BRAOaZ18a478hr37kKYpCfFgUcSERxIdGEh8ehS48mvjwKOLDo9FHxr76JK9Jo9WAVouJ1gSNqRaN1uTZl0YDJs9eE41J4mOThP+baNBogMTHSV47nt1Xn38tNaDh+e0kHPPi957//tN9np1Gk1ffGuh1egJv+hMdnjBzebxiIF+HOqrFkyWTnr34AZ3YvJbaB7eFhQUWFhbpulZMdAwNS7VI17Fv6uD1nVhZW6X5uLFjxxIREcH58+dT3WfSpElMmjTppefx9fVN0v0SFxfHqVOnGDVqVJL9mjVrxtGjR18Z17Vr1/Dw8MDCwoLatWszadIkSpQo8crjhMhI4SvWJyQiJiY4/M8Huy7tMLG1UTusbCcuNJInZ2/x+MxNQs/fJvzaA8Jv+GOIjU/lCLOEL40GCyc7LFzsMXe2x8LFHgtnO8wcbDCztcLUzgozOytMbZ/+/+m/tVbmaC3M0FqYY2JhikbmEMoxrh09z4phswgP1GBu5cQ9sxiuBT3kj2Z1VYsp05ORAgUKJKszCAgIwNTUFGdn58y+fLZ36tQpfv31V7y9vV+ajAwYMIBOnTq99FwFCxZM8jgoKAi9Xp9iy9Sraj9q167NkiVLKFOmDI8ePWLixInUq1ePCxcuyOsmsoz+SSih85cAkG/EQOy6ZGzLYU4WdTeQgCMXCPrrIiGnbxBxwz/F/UwszLAr6Y5NMTesC7lgXcgFq4LOCf/3cMbCyQ6NVhKJvMCgN7Br+nr2zNyAoigUKFMIn9nD6d6mPwB29raqxZbpyUjdunXZunVrkm27d++mRo0aKdaLvClLK0sOXt+Z4ed93WunhcFgoH///gwePJjatWvTvXt34uLiUlxEzsnJCScnp3TFlVLL1Ku6k54vUq5cuTJ169alZMmSLF68OEkXmhCZKWLtZpTISMzKlMS2U1u1w1GVIV5H0LFLPNhxkkf7/yPyTkCyfayLuJKvWknyVSmOXdlC2JfxwLqQqyQbgtBHISwbNovrf18EoE6XxrT7xgdTCzMiwiIBsHXIQclIREQE169fNz6+desWZ86cwcnJiSJFijB69Gju37/PkiUJf80MGDCAWbNmMWLECD766COOHTvGggULWLlyZcY9i+doNJp0dZWoYebMmQQGBjJhwgT8/PzQ6XRcuXKFypUrJ9s3Pd00Li4uaLXaFFumXmwteRUbGxsqV67MtWvX0nScEG8ias9BAOy6dciT3QCKwUDgkQv4rTmM/55/iQ99tjK5RmtCvrdK4fp2BZxrliVf1eJYONurGK3Iri4f+o/ln8wmIjgMCxtLOk7qh2fbtwGICIswlk7Y2qnX/ZnmZOTkyZO8++67xseJfyX7+PiwaNEi/P398fN7Vu1evHhxduzYwSeffMLs2bPx8PBgxowZqQ7rzSvu37/PV199xcqVK7GxsaF06dJYWFhw/vz5FJOR9HTTmJub4+npyZ49e5IUxu7Zs4e2bdP2V2ZsbCyXLl165ZBgITJK/G0/4m/eBlNTrBvWUzucLBV1N5Dbqw5yZ9Uhou8HGbdbONvj3sIT9+aeuNQrj5ltzvjDS6hDr9Ozc+oa/pyzGQCP8kXxmT2M/CU8jPuEh0UAYGFpjoVl+mo1M0Kak5FGjRq9ML47qUWLFiXb1rBhQ/7999+0XipXGzp0KF5eXnh7ewMJI1fKly+fat1IertpRowYQc+ePalRowZ169Zl/vz5+Pn5MWDAAOM+s2bNYuPGjezdu9e47dNPP6V169YUKVKEgIAAJk6cSFhYGD4+PmmOQYj0iP7rOACWNatjYqde83FWenL+Nldnb+P+lr9R9AYAzBysKdyuPoXa1cW5RhnpchGv5Yl/MEuGzuDWiSsA1OvelPe/6oWZZdIygPDQhGTEVsV6Ecii0TQiqW3btrFv3z4uXbqUZHvlypVfWsSaHp07dyY4OJgJEybg7+9PpUqV2LFjB0WLFjXuExQUxI0bN5Icd+/ePbp27UpQUBCurq7UqVOHv//+O8lxQmSmuEtXAbCoWknlSDJf8MmrXPp5AwH7zxq3ub5dkWLd38XDqwZay+R1ZEKk5uL+06wYMYfIx+FY2FrR+fv/Ub1VyiNlIp62jKhZvAqgUV7WzJFNhIWF4eDgQGhoKPb2SftEY2JiuHXrFsWLF8fSMm0FpCLryeslXteDD3qju3MX1+mTsKpfW+1wMkXETX/Of7eKB9tPJGww0VCoTR3KDGqNY+ViqsYmch59vI7tU1azf17CoJFClYrjM3sYLkVTny/q4M4jfNZnDJU8K/DH1rlZFWoy0jIihMh2DJFR6PzuAWBevozK0WQ8fXQcl6Zu4Nrc7Sg6PZhoKNq5IeWGt8WmaNqKy4UACLkXyJIhM7hzOmGQQYPeLWgzujumFi8ftRqeTVpGJBkRQmQ7cVevg6KgdXNF65RP7XAyVMChc5z+bIFxaK5bk2pUGtsVh/KvN8u0EC86t/skqz6bS1RoJFb2NnT5sT9VWtR6rWOzSzeNJCNCiGxHd+cuAGYli6kbSAbSx8Zz4btVXJ/vC4CluxPVJvfGo0UNlSMTOZUuTsfWycs5tDDhPVWkakl8Zg3DqXD+1z6HsYBVxTlGQJIRIUQ2pPNPaDUw9Ui+dlVOFH79AccHzCT0/B0ASvR+j4pjOmNmZ61yZCKnCvJ7xJLB07l79iYAjT7yxvuzrpiap+1j/Vk3jV2Gx5gWkowIIbId3YOEifpMC7z+X3jZ1cM/T3N8wCx0EdGYO9nhOX0A7u9VVzsskYOd2fE3q7+YR0x4NNaOtnSd8jGVmnqm61zhoeGAuhOegSQjQohsSO+fkIxoPXLuqtGKonBt7nbOf7sSFAWXOuWoOW8IVm65qwZGZJ34mDg2f7eMv5buBqCYZxl6zRhKvoIu6T7n/TsPAHArqG7iL8mIECLbMXbTuOfMkSWKwcB/Xy7m5qI9ABTr8S7VJn2ISRqb0IVIFHjLn8WDp3P/wm0AGg9oQ8uRndCavdl76va1hK7DYqXUnUNKfjOEENmKotOhD0yYAt3UPee1jBh0ek4Nn8fddUdAo6HKhB6U7NfilYtTCpGaf7ccZc3o+cRGxmDjZEf3qYMo36jaG5/3cfATnoSEAlC0lLqjuSQZEUJkK/pHgWAwgLkZJk6OaoeTJoY4Hf/0n4G/70k0WhNqzBpI4XZ5a10dkXHiYuLYNH4xx1YmLNVRslZ5eswYgmOB9K3g/qJbT1tF3AsVUH2BWUlGhBDZiu5RIACmbvlz1Eq9it7AicFz8Pc9iYmFGbV/G4p7s/QVFQrx6Pp9Fg+ejv9lPzQaDU0Hv0/zYR3Qmmoz7BrGLprSRTLsnOmVc37Tc6mxY8diYWFBt27d1A5FiGzB8CSh2dgkn6O6gaSBoiic/mIB97f8jcZMS91FIyQREel2YsMhprb5Ev/Lfti5ONB/6Ze0HNk5QxMRgBuXE4YFFyut/ppjkoyo7PPPP2fq1KmsXLmS69evZ/j5Dx06ROvWrfHw8ECj0bBp06bXPnbOnDnGNWQ8PT05fPhwhscnxIsSkxGto4PKkby+C5NWc3vZfjDRUGvOYNzerap2SCIHio2KYeVnv7JixBziomIpXa8in+74gbJvV86U6108cxmA8lXKZsr500KSEZXZ29vTp08fTExMOHfuXIafPzIykqpVqzJr1qw0Hbd69WqGDx/OmDFjOH36NA0aNMDLyws/P78Mj1GI5+kTW0Yc7V+xZ/ZwZ9VBrs7cAkD1n/pRsHXuXNRPZC7/q3f5pe1Yjq89gMZEQ4tPOjJg6Rjs8ztmyvXiYuO4eiHhD+BKb1XIlGukRa6rGVEUhbjoWFWubW5lka6KeZ1Oh7W1NefPn6ddu3YZGpOXlxdeXl5pPm7q1Kn07duXfv36ATBt2jR27drF3LlzmTx5cobGKMTzjN00OaBlJPjEVU5/vgCAciPaU7z7uypHJHIaRVE4vvYA679eSHxMHPb589Fz+mBK1a2Yqde9euE68XHxODo5ULCoR6Ze63XkumQkLjqWURV6q3Lt7y8uwsLaMs3HjR07loiICM6fP5/qPpMmTWLSpEkvPY+vry8NGjRI8/VfFBcXx6lTpxg1alSS7c2aNePo0aNvfH4hXkb/JAzI/t00UfeD+bvPLxjidHh416T8p+3VDknkMLGRMawd8zunNh0BoGyDKnT/ZRB2Lpn/3j//70UAKlYvny2Gnee6ZCSnOXXqFL/++ive3t4vTUYGDBhAp06dXnquggULZkhMQUFB6PV63NySTjjl5ubGw4cPM+QaQqQmJ7SMGOJ1HO8/g9jAUBwqFKHGjI9z1Mgfob77F++wePA0Am/6Y6I1wWtEJxp/3AaTLHofnTzyLwDVameP+qZcl4yYW1nw/cVFql07LQwGA/3792fw4MHUrl2b7t27ExcXh7m5ebJ9nZyccHLKmLHlr+vFbFlRlGyRQYvczZADakYu/byBkJPXMLO3ps7CEZjapL1FVORNiqJwbMVeNo5fjC4uHocCTvSaOZQSNctlWQw6nY5Tx84AULPBW1l23ZfJdcmIRqNJV1eJGmbOnElgYCATJkzAz88PnU7HlStXqFw5eeV0VnbTuLi4oNVqk7WCBAQEJGstESKjJRawarPp0N7AIxe4Mn0zANWn9MOmaM5fzE9kjZjwKNaM/o3T244BUKFxdbpO+Rhbp6xNvC+fvUpkeCR2DraUrVQ6S6+dmlyXjOQU9+/f56uvvmLlypXY2NhQunRpLCwsOH/+fIrJSFZ205ibm+Pp6cmePXuSFNTu2bOHtm3bZsg1hEhNdu6miQ0J58TgOaAoFOv+LoXa1FE7JJFD3D1/iyWDphF05xEmplpafd6Fhv28s6xb5nnH9h8HwLNedbTajJ27JL0kGVHJ0KFD8fLywtvbGwBTU1PKly+fat1IertpIiIiksxfcuvWLc6cOYOTkxNFiiTMujdr1iw2btzI3r17jfuNGDGCnj17UqNGDerWrcv8+fPx8/NjwIABaY5BiNelxMahREUD2bOA9exXS4h5+Bi70h5UmdBT7XBEDqAoCkeW7GLzd8vQx+nIV9CFXjOHUewt9VokDu/+C4C3m9ZVLYYXSTKigm3btrFv3z4uXbqUZHvlypVfWsSaHidPnuTdd58NNxwxYgQAPj4+LFq0CEgoWL1x40aS4zp37kxwcDATJkzA39+fSpUqsWPHDooWVX+mPpF76UMTWkXQmqCxtVE3mBc83HuGu+v/AhMNnjM+ljoR8UrRoZGs+mIeZ3cmtERUeq8GXacMwNrBVrWYAvwDuXzuKhqNhvrZKBnRKIqiqB3Eq4SFheHg4EBoaCj29kn71mJiYrh165ZxplCRvcnrJV4m/uZt/Dv1xcTBnkJ7N6odjlF8RDR/Nvyc6PvBlOrfkirje6gdksjm7py5zpLB0wm5F4jWTEvr0d1550Mv1QcBrPp9HVO/nkllz4os2DpH1VieJy0jQohswxAZBYDGxlrlSJK6MGk10feDsS7iSoXPO6gdjsjGFEXh4IIdbPthBfp4PU6F8+MzaxhFqpZUOzQAdm7YA0Cz95uoHElSkowIIbKNxGTEROXlzJ/3+Owtbi5MuIG/NaWfdM+IVEU+iWDlp3O58OcpAKq2rE3n7/tjZZ89kmu/m/e4eOYyWq2W99o2VjucJCQZEUJkG4nFqyY22aNeRFEUzn61BBSFQu3qkf+dzFmwTOR8t05dYcmQGTx5EIzW3JT3v+pF/R7vqd4t87zEVpFa73ji5JJP5WiSkmRECJFtGKISu2myR8vI/S3/EPzPFbRW5lQa21XtcEQ2ZDAY2D9/Gzt+WoVBb8ClWAF8Zg2jUKXiaoeWhKIo7Nr0JwAt2r+ncjTJSTIihMg2lIjEbhr1m7X10XGcm7ACgDKDWmNd0FnliER2ExEcxoqRc7h04AwAb7WpR8dJH2Fpmz2S6eed/vs/7t68h6WVJQ1bvK12OMlIMiKEyDaMLSPZoGbk2rwdRN8PwqqgM6UHtlI7HJHN3Dh+iaVDZhD66DFmFma0G9ebOl0aZ6tumeetWbgBAK8OzbDOZgXiIMmIECIbyS41I7Eh4VydtRWASmO6YGqdtnWnRO5lMBjYO2czvlPXoBgU8pfwwGf2MDzKZ985mB49COCgb8LKwB17v69uMKmQZEQIkW0YIiMB9WtGrs3Zhi4iGoeKRSn0fvaZGEqoKzzwCctGzObq4XMA1GjfgA7f9sUim4+w2rRsK3q9nup1qlKqfPYYYvwiSUaEENmGIfJpy4iKNSMxgaHcWLAbgApfdECjwtohIvu5dvQ8S4fNIjzwCeZWFnww4UNqdWykdlivFBMVw4alWwDo+GG7V+ytHklGhBDZhmKsGVEvGbk6cwv66FjyVS9Jgfeyx/LqQj0GvYHdM9aze8YGFEWhQJlC+MweToHShdQO7bVsWrGNx8FP8CjiTqMWb76qe2aRlF9lY8eOxcLCgm7duqkdihCqMyTWjNiqk4xE+4dwc3HC8McKX3TMtsWIImuEBjxmbo/v2DV9PYqiULvzu3yy+bsck4jExcaxbO4qAHoN6oapWfZtf5BkRGWff/45U6dOZeXKlUlW181I9+/fp0ePHjg7O2NtbU21atU4derUK4+bM2eOcQ0ZT09PDh8+nCnxCZFIiXhaM6LSaJqrs7diiI3HuU458jeUCc7yssuH/mOK1xdcP3YBc2sLekwbTJcf+mNulXOKmXes20WAfyCuBVxo1amF2uG8lCQjKrO3t6dPnz6YmJhw7ty5DD//48ePqV+/PmZmZvj6+nLx4kV+/vlnHB0dX3rc6tWrGT58OGPGjOH06dM0aNAALy8v/Pz8MjxGIRIZW0ZU6KaJDQnn9vIDAJT7pJ20iuRRep2e7T+tYr7P90QEh+FRrggjt07G8/3sNzfHy8TGxLLglyUAdB/QGXMLc5Ujerns22aTToqioI+KVeXaWmuLdN3AdDod1tbWnD9/nnbtMrbA6IcffqBw4cIsXLjQuK1YsWKvPG7q1Kn07duXfv36ATBt2jR27drF3LlzmTx5cobGKESixJoRExXmQbi5cA/66FgcKhcj/zuVsvz6Qn1P/INZOmwmN49fBqBe96a0/aoX5pbZ+4M8JesWb+LRgwDyu7vSvmdbtcN5pVyXjOijYtlSso8q125z4490LaI1duxYIiIiOH/+fKr7TJo0iUmTJr30PL6+vjRokLRAacuWLTRv3pyOHTty8OBBChYsyMCBA/noo49SPU9cXBynTp1i1KhRSbY3a9aMo0ePvsYzEiJ9EkfTZHU3jS4qlhsLdgFQZlAraRXJgy7uP82KEXOIfByOha0VnSd/RPXW9dQOK10iwiJYOGMZAP/79EMsc0DXUq5LRnKaU6dO8euvv+Lt7f3SZGTAgAF06tTppecqWLBgsm03b95k7ty5jBgxgi+//JLjx48zdOhQLCws6NWrV4rnCQoKQq/X4+bmlmS7m5sbDx8+fI1nJUTaKYryXMtI1k56dmfVQeJCwrEu4krBVrWz9NpCXfp4HdunrGb/vIRJ7gpVKk6vWcNwLVZA5cjS749pSwl7HEbx0kVp2bG52uG8llyXjGitLWhz4w/Vrp0WBoOB/v37M3jwYGrXrk337t2Ji4vD3Dx5k6CTkxNOTk5pjslgMFCjRg1jq0r16tW5cOECc+fOTTUZSfTiX4eKoshfjCLTKDExoChA1raMGHR6rv26HYDSA7wxMdVm2bWFuh7fD2LJkOnc/vcaAA16t6DN6O6YWpipHFn63bx6m5W/rwVgyFcfY2qaMz7mc0aUaaDRaNLVVaKGmTNnEhgYyIQJE/Dz80On03HlyhUqV05exZ/ebhp3d3cqVKiQZFv58uVZv359qudxcXFBq9UmawUJCAhI1loiREZRYuOM/9ZkYbGd/85TRPkFYu5kR9EuDbPsukJd5/ecZOWnc4kKjcTSzpquPw2gSotaaof1RhRF4acx09Dr9LzTrD5vN805swfnumQkp7h//z5fffUVK1euxMbGhtKlS2NhYcH58+dTTEbS201Tv359rly5kmTb1atXKVo09XUUzM3N8fT0ZM+ePUkKavfs2UPbttm/EErkTErM08JzMzM02qxrnbi5MGG21eI9G8saNHmALk7H1u+Xc+gPXwCKVC1Jr1nDcC6cX+XI3tyezfs49ddpLCzN+WTCELXDSRNJRlQydOhQvLy88Pb2BsDU1JTy5cunWjeS3m6aTz75hHr16jFp0iQ6derE8ePHmT9/PvPnzzfuM2vWLDZu3MjevXuN20aMGEHPnj2pUaMGdevWZf78+fj5+TFgwIA0xyDE60hMRrKyVSTs6n0C/7oIJhqK92ySZdcV6gi+G8CSwdPx++8GAI36eeP9eVdMzXP+R2FEeCTTJ8wBoPeQHhQs4q5yRGmT81+BHGjbtm3s27ePS5cuJdleuXLllxaxpkfNmjXZuHEjo0ePZsKECRQvXpxp06bRvXt34z5BQUHcuHEjyXGdO3cmODiYCRMm4O/vT6VKldixY8dLW1SEeBNKbGIyknWtEzcX7QHAvbkn1oVcsuy6Iuv95/sPqz6fR0x4FNYONnT9eSCVmnqqHVaGmTZuNoEPgyhcvCA9Pu6idjhpplGUpxVj2VhYWBgODg6EhoZib2+f5HsxMTHcunXLOFOoyN7k9RKpiT17gUd9hqIt6E7Bzcsy/XrxEdH4VhuMLiKat9eMJv87MuNqbhQfE8eWScs4siShO67YW6XpNXMY+QrmnuTz6L6/Gd7jCzQaDb9umE712lXVDinNpGVECJEtJBawmmRRy8jddUfQRURjW8od1wYyyVluFHj7IYsHTeP+hdsANO7fmpafdkabjddoSauwJ+F89+lPAHTu1yFHJiIgyYgQIpswdtNYZn4yoigKNxclLIhXovd7MmQ9F/p3y1HWfPkbsRHR2DjZ0f3ngZR/t7raYWW4n7+aTuDDIIqUKMzAL/qpHU66STIihMgWsrKA9fHpG4RdvouJpRlFOmbfZdVF2sXFxLFp/GKOrUwoyC9Rqxw9ZwzFsUDaBwBkd9vX7sR3/R5MTEz4etooLK1zbte3JCNCiGzBEJN1Bax3Vh0EoGCr2pg7ZO1sryLzBNx4wOJB03hw2Q+NRkPTwe/TfFgHtLlwIrvb1+7ww6hfAPhoZG+q1MjZXY2SjAghsoVno2kyt2VEHx3HvU3HAGSSs1zk5MbDrB3zO3FRsdi6ONDjl0GUbVBF7bAyRUx0LF8OGEdMdAw13n6L3kN7qB3SG5NkRAiRLSQWsGoyeZTVA98TxIdFYV3YFdd65TP1WiLzxUXHsv7rhRxfewCAUnUr0mP6YBzy51M3sEyiKAo/ffkL1y/dxMklHxNmjUWbhZMEZhZJRoQQ2UJWtYwkdtEU6dQAjYlJpl5LZC7/q3dZPGg6j67dQ2OiofmwDrw3uB0m2tz7uq5esJ6tq30xMTFhwqyxuOR3VjukDCHJiBAiW1CyoGYk6m4gAYcvAFC0s3TR5FSKonB87UHWf/0H8TFx2Lk60mvGEErVrah2aJnq7wMnmDZuNgDDvhlIrXdqqBxRxpFkRAiRLWTF0N47aw6DouD6dkVsirhm2nVE5omNjGHdVws4ueEwAGUbVKH7L4Owc3FQObLM5XfzHmM+HofBYKBVpxZ06ddB7ZAylCQjQohsIbO7aRRF4e6GvwAo2vmdTLmGyFwPLt1h8aDpBNx8gMZEg9fITjT5uC0muby7LTw0nE97jyY8NILKnhUZ9cPIXDc3TrpewTlz5hin8/b09OTw4cMv3X/58uVUrVoVa2tr3N3d+fDDDwkODk5XwLnN2LFjsbCwoFu3bmqHIoSqlJjMLWB9cu42ETf8MbE0w90r9zRv5wWKonB0xZ/80nYsATcf4FDAiUGrvua9Qe1yfSISGxPLyN5fcvu6H/ndXflhwbeYZ+Fiklklza/i6tWrGT58OGPGjOH06dM0aNAALy8v/Pz8Utz/yJEj9OrVi759+3LhwgXWrl3LiRMn6Ncv584Ul5E+//xzpk6dysqVK7l+/XqmXOP+/fv06NEDZ2dnrK2tqVatGqdOnUpx38mTJ6PRaBg+fPgrz5vWpFSIl8nslpF7G48C4P7eW5jZWmXKNUTGiwmPYunQmaz98nd0cfGUf7c6n+74npK1cv9IKL1ez9eDJ3Lmn7PY2Nnwy9Ifck3B6ovSnIxMnTqVvn370q9fP8qXL8+0adMoXLgwc+fOTXH/v//+m2LFijF06FCKFy/O22+/Tf/+/Tl58uQbB58b2Nvb06dPH0xMTDh37lyGn//x48fUr18fMzMzfH19uXjxIj///DOOjo7J9j1x4gTz58+nSpVXj81Pa1IqxKskFrBmxto0isHAvc0Jc4sUalcvw88vMse987f4ufWXnN56FBNTLa1Hd6ffgs+wdbJ/9cE5nKIo/DRmGvt3HMLM3IwpC7+jdIWSaoeVadKUjMTFxXHq1CmaNWuWZHuzZs04evRoisfUq1ePe/fusWPHDhRF4dGjR6xbtw5vb+9UrxMbG0tYWFiSr9elKAqG6GhVvtK7ALJOp8Pa2prz58+n6/iX+eGHHyhcuDALFy6kVq1aFCtWjCZNmlCyZNI3dUREBN27d+e3334jX75Xj89Pa1IqxKs8axnJ+GQk+PhVoh+EYGpnRYHGOXMhsbxEURSOLNnFtPZfEXT7IfkKujBk9Tc07t8613fLJPp96mI2LNmCRqNhwqyxeNbLfevqPC9NBaxBQUHo9Xrc3NySbHdzc+Phw4cpHlOvXj2WL19O586diYmJQafT0aZNG2bOnJnqdSZPnsz48ePTEpqREhPDvQat0nXsmyp0eBsaq7Q3/44dO5aIiIiXJiOTJk1i0qRJLz2Pr68vDRokXWdjy5YtNG/enI4dO3Lw4EEKFizIwIED+eijj5LsN2jQILy9vWnatCkTJ0586XUSk9JRo0Yl2f6ypFSIV8nMbprEwlWPljXRWua+/vbcJDo0klWj5nHW9zgAlZp60mXKx9g42qocWdZZMnsFv/28EIBPJw6jSatG6gaUBdI1mubFKl5FUVKt7L148SJDhw7l66+/pnnz5vj7+/PZZ58xYMAAFixYkOIxo0ePZsSIEcbHYWFhFC5cOD2hZnunTp3i119/xdvb+6XJyIABA+jUqdNLz1WwYMFk227evMncuXMZMWIEX375JcePH2fo0KFYWFjQq1cvAFatWsW///7LiRMnXivm9CSlQrxKZs3AaojXcX/bPwAUli6abM3vvxssHjydkLsBaM0SumXe+dAr140ceZkV89cw67t5AAz4oh8dP2ynckRZI03JiIuLC1qtNtkHTkBAQLIPpkSTJ0+mfv36fPbZZwBUqVIFGxsbGjRowMSJE3F3d092jIWFBRbpbKrVWFpS6PC2dB37ptJ6EzUYDPTv35/BgwdTu3ZtunfvTlxcHObmyf9yc3Jywskp7atOGgwGatSoYWxVqV69OhcuXGDu3Ln06tWLu3fvMmzYMHbv3o1lGuNPS1IqxKs8m2ckY1suAg5fIC4kAgsXe1zfzt2TYuVUiqJw6A9ftn6/HH28HqfC+fGZNYwiVXNvjURKVi9Yb5zUrN+I3vQZ1lPliLJOmjrfzM3N8fT0ZM+ePUm279mzh3r1Uv6LIyoqKlkfX+I8+umtsXgZjUaDiZWVKl9p/SCeOXMmgYGBTJgwgcqVK6PT6bhy5UqK+06aNAlbW9uXfqU0msXd3Z0KFSok2Va+fHljoempU6cICAjA09MTU1NTTE1NOXjwIDNmzMDU1BS9Xp/snOlJSoV4FUNiy0gG14w82J7Q3O/RsiYmuXD11pwu8kkEf3w0hU3fLkEfr6eKVy0+3TY5TyYiP381A4DeQ3vw0cje6gaUxdLcTTNixAh69uxJjRo1qFu3LvPnz8fPz48BAwYACV0s9+/fZ8mSJQC0bt2ajz76iLlz5xq7aYYPH06tWrXw8PDI2GeTg9y/f5+vvvqKlStXYmNjQ+nSpbGwsOD8+fNUrlw52f7p7aapX79+sgTn6tWrFC1aFIAmTZokG8Xz4YcfUq5cOb744osUF2B6Pilt1+5ZE+KePXto27btS2MUIjVKTAyQscmIojfwwDdh5F7BVrUy7LwiY9w+dZUlQ2fw+H4QWnNT3h/bk/o9m+WpFlZFUfhj+lLm/ZhQttDj4y58/EW/PPUzgHQkI507dyY4OJgJEybg7+9PpUqV2LFjh/HDzd/fP8nwzt69exMeHs6sWbMYOXIkjo6ONG7cmB9++CHjnkUONHToULy8vIyjikxNTSlfvnyqdSPp7ab55JNPqFevHpMmTaJTp04cP36c+fPnM3/+fADs7OyoVKlSkmNsbGxwdnZOsn3WrFls3LiRvXv3Aq9OSoVIK2PNSAYWsAb9c4W4kHDM89niUjf3z0uRUxgMBg78tp3tP63CoNPjUqwAPrOGUahScbVDy1KKojDz219Z9usqAD4a+SH9RvjkuUQE0lnAOnDgQAYOHJji9xYtWpRs25AhQxgyZEh6LpUrbdu2jX379nHp0qUk2ytXrpzhw3tr1qzJxo0bGT16NBMmTKB48eJMmzaN7t27p+k8QUFB3Lhxw/j4VUmpEGkWrwNAk0LNVHo98E0oyi7Q7C1MzGT1i+wgIiSMFSPncmn/aQCqt65Hp0n9sLSzVjmyrKXX6/lx9C9sXLYVgOHjBtHtfy9v/c7NNEpmFG5ksLCwMBwcHAgNDcXePulkNzExMdy6dcs4E6jI3uT1Eqnxq/0e6A0U3LkGrcubzzKpKAo7awwl+n4wdZeMxL2ZZwZEKd7EjeOXWDp0JqEPQzCzMOP9b3yo27VJnmsJiIuNY/ywyezZsg+NRsOXP31G226pz72VF8ifCkII1Sl6PegNCQ9MM+a29OS/W0TfD0ZrbUH+d5LXYYmsYzAY2Dt3MzunrsWgN5C/hAc+s4fhUT7vtaSGPg7j875jOf33f2hNtUyYNZb32jRWOyzVSTIihFCf7tmoLU0GJSP3dySMoinQtLpMdKai8KBQln0yi6uHEwrla7RvQIdv+2Jhk/daRu/fecDwHl9w54YfNnY2fD9/PLUb1lQ7rGxBkhEhhOqU+HjjvzVmZm9+PkXhwfaEepGCLeVmr5ZrRy+wdNhMwgOfYGZpzgcT+lCrY8M81y0DcOH0JUb6jCYk6DH53V2ZtuwHSpXPW8OXX0aSESGE6hSd7tmDDJgLJOKGPxE3/DExN8WtiaxFk9UMegO7Z25g94z1KAYFt9KF6D1nOAVKF1I7NFXs3XaAcUMnERsTS5mKpfhl6Q+4FnBRO6xsJdckIzmgDlcgr5NImbFlRGuCJoW5bdLKf/e/ALjUK49ZHhulobbQgMcsHz6La0cvAFC7UyPaj/8Qc6uMXwAxuzMYDPz64wIWzVgGQL3Gtfnu13HY2Mp78kU5Phkxe9qkGxUVhVU6FqkTWSsqKgp49roJARhrRjSmGfO+eLgnYdioe9O3MuR84vVcOXyWZZ/MJiIoFHNrCzp+148a7Rq8+sBcKCIsgq8GT+SvP48B0L1/ZwaN+R+mGVQTldvk+J+KVqvF0dGRgIAAAKytrfNkf2R2pygKUVFRBAQE4OjomOLMriLvMraMZMBcIHFPIgg+njDrcIH3cvey69mFXqdn17R1/Dl7E4qi4FGuCL1mDcOtVPJZofOC29fu8OmHY/C7eRcLS3PGTPmcFu3fUzusbC3HJyMABQoUADAmJCL7cnR0NL5eQiRSEic8y4AWs0cHzqLoDdiXLYRN0fxvfD7xck/8g1k6bCY3j18GoG63prz/dS/M8+gIpkO7/uKbIROJjIjCzSM/P/4xkfJVyqodVraXK5IRjUaDu7s7+fPnJ/65qnyRvZiZmUmLiEjZ099bTQa0jCR20UirSOa7tP80y0fMIfJxOBa2VnSa9BFvtUl50dTcThevY87k34xTu1evU5XJ88fj5JJP5chyhlyRjCTSarXyYSdEDmQcTfOGLSMGnZ5H+/4DJBnJTPp4HTumrGbfvISpzAtWLIbP7OG4FsubrZ7+9x4y5uPxnD91EYAu/Tow9KuPMZUlCF6b/KSEEKpLrBl50wnPQk5dI+5xBOb5bHHyLJ0RoYkXPL4fxJIh07n97zUA3vZpTpvR3THLo90yh3f/xfjhkwl7Eo6dgy1fTR1FI6+8WbT7JiQZEUKoL7Fm5A2TkYe7E7po3BpXxSQD5isRSZ3fc5KVn84lKjQSSztruvzYn6petdUOSxXxcfHMmfwby+etBqBi9fJ89+s3eBR2VzmynEmSESGE6jJqNM3DvWeAhCngRcbRxenY9sMKDi7YAUCRqiXpOXMoLkXcVI5MHTeu3OKbwRO5euE6AF3/15HBX/bHzFymLEgvSUaEEKp7Npom/bek6IePCbt8FzQa8jeUhfEySvDdAJYMno7ffzcAaNi3Ja2+6Iaped77+DAYDKz5YwOzvptHXGwcDvkcGPvz5zRs8bbaoeV4ee/dJITIfnRvPrQ34MBZAPJVLY6Fk12GhJXXnd15nJWf/UpMeBTWDjZ0nfIxld6roXZYqnj0IIBvP/me44dPAQmzqY6d+gUu+Z1Vjix3kGRECKG6jChgfXQwYVXY/I2qZEhMeZkuNp7Nk5ZxZPEuAIq9VZqeM4biVMhV5cjUsWfzPr4f9TPhoRFYWFow7JuBfNCrrUywmYEkGRFCqO5Nh/YqBgMBT5MRN0lG3kjg7YcsGTyde+dvAdC4f2taftoZbR4cpvo4+AlTxkxnz5Z9AFSoVo7xM8ZQtFQRlSPLffLeu0sIkf28Yc3Ik3O3iQsJx9TWCifPUhkZWZ5yeutRVo/+jdiIaGzy2dFt6kAqvJv3ioEVRWHXxj/5+auZhD4OxcTEhD7DetJneC+ZOySTyE9VCKG6N50O/tHTehHXtytgIh8WaRYXE8emCUs4tuJPAIrXLEuvGUNxdM979RAB/oH8MGoqh/ccBaBUhZJ8NfULmdI9k8lvrRBCdcahvemsGQk48LRepKF00aRVwI0HLB40jQeX/dBoNDQd9D7Nh3dAm8fmaVEUhc0rtjPj27lEhEVgamZK3+G96DWomwzZzQKSjAghVKfo0t9NEx8RTfCJqwC4vSvJSFqc3HiYtWN+Jy4qFltne3pMG0zZBnnvZ3jnxl1+HP0LJ44kjJSpWL08Y6d+QcmyxVWOLO+QZEQIoT7jQnlp/ws06OhFFJ0em6L5sS2WNyfhSqu46Fg2fLOQf9YcAKBU3Yr0mD4Yh/x5a1G3mOhYFs1cxtI5K4mPi8fC0oIBX/SlS78Oss5ZFpNkRAihusSakfR00zzan1AvIkN6X8/Da/dYPGgaD6/eQ6PR0GzYBzQb0h4TrYnaoWWpo/v+5qcx07l/5wEA9ZvU4dOJwyhY1EPlyPImSUaEEKozzjOSjm6aZ0N6ZdbVVzm+9gDrvvqD+Jg47Fwd6Tl9CKXrVVQ7rCz16EEAv3wzi33bDwKQ392Vkd8OpZFXA5k3REWSjAgh1JfOmpHIOwFE3HyIRmuC69t560M1LWIjY1j31R+c3HAIgDINKtNj6iDsXB3VDSwL6eJ1rF6wnvlTFhIdFY1Wq6VLvw70G9kbG1trtcPL8yQZEUKo7lk3TdpqRgIOJbSKOHmWwsxOPlBS8uCyH4sHTSPgxgM0Jhq8RnaiycdtMTHJO90yf+39m2njZnPnhh8AVWpU4ovvR1C6QkmVIxOJJBkRQqguvd00gUcuAODaoFKGx5TTKYrC36v2sXHcIuJj43Eo4ETPGUMoWau82qFlmdvX7jBt/GyO7vsHgHzOjgwc/T9ad/HKU8lYTiDJiBBCfelYKE9RFAKPXgLAtb500TwvJjyKNV/+zumtCRN3lW9UjW5TB2LrZK9yZFkj7Ek4v09dxNpFG9Hr9JiamdKlbwf6DO+Jrb2t2uGJFEgyIoRQnZKO6eDDr94nNjAUE0szmQL+OffO32Lx4OkE3X6IidYE78+70ugj7zzREqDT6di8Yju//rCA0MehADR4rx7DvhlEkRKFVI5OvIwkI0II1aWnZiSxi8a5Zhm0FjJDpqIo/LVsD5u+XYI+ToejhzM+M4dRzLOM2qFlOkVR+PvAcWZO/JXrl24CULxMMT4ZN5g6jWqqHJ14HZKMCCFUp+jSXjMSePQigIyiAaLDolg9ah7/7UiojajU1JMuUz7GxjH3d0lcOnuFmRN/5eSRfwGwd7Tjf5/2oX2vNpimc3kBkfXklRJCqC+N3TSKwUCQsV6kQqaFlRP4/XeDxYOnE3I3AK2ZltajuvNOH69cP2fG/TsPmPv9b+zevA8AM3MzOn7Yjt5DeuDo5KBydCKtJBkRQqjOuFDeaxawhl70I+5xBFprC/JVLZGJkWVfiqJwaKEvWycvRx+vx6mQKz6zh1Okau4ervok+Al/TF/KusWb0MXr0Gg0tGjflP6f98WjsLva4Yl0kmRECKE6YwHrazarB/6V0EXjUqccJumYtTWni3wSwarPfuX8npMAVGlRiy4/9MfKwUblyDJPdFQ0q35fx5LZK4kMjwSgdsOaDBnTnzKVSqscnXhTee+3WAiR/aRxBlbj/CJ5sIvm9r/XWDJkOo/vB6E1N+X9sT2p37NZru2WiY2JZcPSLSyeuZyQoMcAlK1UmiFjB1DrnRoqRycyiiQjQgjVGbtpXqNlxKDTE/T3ZSBvFa8aDAYO/r6dbT+uwqDT41LUjV6zh1O4Uu5c5j4+Lp7NK7ezaMYyAvwDAShY1IP+n/Wh2ftN8sRQ5bxEkhEhhOqezTPy6pqRJ+duowuPxszBGsdKxTI5suwhIiSMlZ/O5eK+0wBUb1WXTpM/wjIXToGv0+nwXbeb339ZjP/dhwC4eeSn7yc+tOrUAtM82C2XF8irKoRQXxqmg0/sonGpUx5NHlj2/uaJyywZMoPQhyGYmpvRbpwPdbs2yXXdMnq9nj2b9/Hb1EXcvXkPAOf8Tnw4tCfvd2+FuYW5yhGKzCTJiBBCdYpOD7xey8iz+UVyd72IwWBg39wt+E5dg0FvwLWEO71nD8ejfFG1Q8tQer2efdsPsuCXJdy8cgsARycHfAZ354NebbG0tlQ5QpEVJBkRQqgucdIzXtEyYojXEfzPFSB3r0cTHhTK8k9mc+XwWQA8271Nx4n9sLDJPR/MOp2OPZv3sXD6Um5fT1hN187Blu4DutC57wfY2Oa+LiiROklGhBDqMw7tfXnLyJNzt9FHxWLmaIN9udy51sj1YxdYOmwWYQGPMbM054MJH1KrY6Nc0y0THxeP7/rdLJq5nHu37wMJSUjnvh3o+lEH7BzsVI5QqEGSESGE6pTXrBlJHEXjUrscmlw2msKgN7Bn1kZ2TV+HYlBwK10In9nDcC9TWO3QMkRcbBxbVu1gyawVPLz/CEjojunWvxMderfD1i73zpEiXk2SESGE6owL5b0iGUnsonGuXTazQ8pSYQFPWDZ8JteOJhTn1urYiPbje2ORC+olYqJj2bx8K0vnrjIO0XVydaLnx11o36sNVtZWKkcosgNJRoQQqlIU5blJz1LvplEMBoL+edoyUqdclsSWFa4cOcey4bOICArF3NqCDhP7UrP9O2qH9cbCQ8PZsGQLK39fR0hgCAD53V3pObArbbu1wtLKQuUIRXYiyYgQQl1PExF4+XTwYVfuE/8kEq2VBY6Vi2VBYJlLr9Oza/o6/py1CUVRcC9XBJ9Zw3ArVVDt0N5I4MMgVv62lo1LtxAZEQWAe+EC+AzuTqtOLWSIrkiRJCNCCFUZu2jgpd00wU9bRZxqlMrx69E8eRjCsqEzuXE8YeXhul2b8P43Pphb5twP6tvX7rB07ip81+9G9/Q1LVG2OD0HdqH5+01lsjLxUvLuEEKoyjgVPC8fTfN88WpOdunAGZaPmE1kSDgWNpZ0mvw/3mpTT+2w0u3cqQssmb2CQ7v+SuhyA6rVrkKvQd2o36ROrhkFJDKXJCNCCHUltoxoNJDKjKqKohCUWLyaQ+tF9PE6dvy8hn2/bgGgYMVi+MwahmvxnLfsvaIoHN33D0tmr+D03/8Zt7/T/G16DepKlRqVVIxO5ESSjAghVPX8hGep/RUd5RdIjH8IGlMtTm+VysLoMsbj+0EsGTqD26euAvB2r2a0+bIHZjmsWyYuNo5dG/9k5W9ruX7pJgCmZqZ4tX+PHgO7ULx0MXUDFDmWJCNCCFW9zlTwiV00+aoWx9Q6Z43COP/nKVZ+OpeoJxFY2lnR+Yf+VGtZR+2w0uRx8BPWL97EukWbCAl6DIC1jRXterShy0cdcPPIr3KEIqeTZEQIoa7ECc9eMpImcUivcw6qF9HF6dj+40oO/L4dgMJVStBr1jBciripHNnru3HlFivnr2Xnhj3ExcYBCcNzO/Vpz/vdW2PvKLOliowhyYgQQlWJo2le1jKSONlZTplfJPhuAEsGT8fvvxsAvNPHi9ajumNqnv1vuYqi8PeB46yYv5Z/Dp4wbq9QrRzd/teJxt4NZWSMyHDyjhJCqMo4miaVD7iYgCdE3PAHjQbnWmWyMLL0ObvzOCs/+5WY8Cis7G3oOuVjKjeroXZYrxQTHcvODbtZ+ds6bl29DYCJiQkNW7xNt/91okrNSjIyRmQaSUaEEOoytoykfDtKbBWxL1cIc0fbLAsrrXSx8WyZvJzDi3YCULR6aXrNHIpTIVeVI3u5oIBg1i/axPolm3kSEgok1IO06daKzn0/oGCRnDfaR+Q8kowIIVSVOJomtTlGcsIU8EF3HrJ48AzunUsYYfJu/9Z4f9oZbTbtzlAUhXOnLrB24Ub2bjtgnKTMvVABOvVtT9uu3tjaZ9/ET+Q+6Vr2cs6cORQvXhxLS0s8PT05fPjwS/ePjY1lzJgxFC1aFAsLC0qWLMkff/yRroCFELnLqxbJS5xfJLtOdnZ62zGmeI/m3rmb2OSzo98fn9NmdPdsmYjExsSybbUvPi3+R782g9i18U908Toqe1Zk0rxxrD+6nO79O0siIrJcmn9bVq9ezfDhw5kzZw7169dn3rx5eHl5cfHiRYoUKZLiMZ06deLRo0csWLCAUqVKERAQgO659SiEEHmX8pLRNPFhUYSevwNkv8nO4mLi2PztEo4u/xOA4jXL0mvGUBzdnVWOLLmH9x6xfslmNi3fRujjhK4YcwtzmrVtTMc+7SlfJXetgixynjQnI1OnTqVv377069cPgGnTprFr1y7mzp3L5MmTk+2/c+dODh48yM2bN3FycgKgWLFibxa1ECL3eEnNSPCJq6Ao2BTNj1WBfFkdWaoCbjxg8aBpPLjsh0ajocnAtrT4pCNaU63aoRkpisLJv06zduEGDu36C4PBAICbR346+LxPm27e5HN2VDdIIZ5KUzISFxfHqVOnGDVqVJLtzZo14+jRoykes2XLFmrUqMGPP/7I0qVLsbGxoU2bNnz77bdYWVmleExsbCyxsbHGx2FhYWkJUwiRgzzrpkleM5Id5xc5tekIa778jbioWGyd7en+yyDKvVNV7bCMoiKj2LFuN2sXbjSOigGo8fZbdPywHQ3eq4fpS+Z0EUINaXpHBgUFodfrcXNLOmmPm5sbDx8+TPGYmzdvcuTIESwtLdm4cSNBQUEMHDiQkJCQVOtGJk+ezPjx49MSmhAihzIWsKbQMhJy4hoAzrXV70aIi45lw7hF/LN6PwCl6lSgx/TBOLg5qRxZgjvX/Vi/ZDNbV/sSGR4JgJW1FS07NqND73aULFtc5QiFSF260uMXx5oripLq+HODwYBGo2H58uU4ODgACV09HTp0YPbs2Sm2jowePZoRI0YYH4eFhVG4cOH0hCqEyO6e1o+9OJrGEK/j8ZmEScOca5TO8rCe9/DaPRYPmsbDq/fQaDQ0G9qeZkM/wCSVhf2ySnxcPAd2HmbD0i2c+uu0cXvhEoXo2LsdrTq1kGJUkSOkKRlxcXFBq9UmawUJCAhI1lqSyN3dnYIFCxoTEYDy5cujKAr37t2jdOnkNxkLCwssLHLW+hNCiPRJbTRN6AU/9NFxmDlYY1faQ4XIEhxfe4D1Xy8kLjoWO1dHek4fTOl66q5Ke9/Pn83Lt7Jl5Q7jWjEmJibUa1ybjh+2o3bDmpiYqJsoCZEWaUpGzM3N8fT0ZM+ePbRr1864fc+ePbRt2zbFY+rXr8/atWuJiIjA1jYhQ7969SomJiYUKlToDUIXQuQGqU0HH3wyYYVbJ8/SaFT4YI2NjGHdV39wcsMhAMq8XZkevwzCztUxy2MB0Ol0HN37DxuWbubY/uMoigKAi5szbbt607ZbKwoUyjnr3gjxvDR304wYMYKePXtSo0YN6taty/z58/Hz82PAgAFAQhfL/fv3WbJkCQDdunXj22+/5cMPP2T8+PEEBQXx2Wef0adPn1QLWIUQeUh8yjUjIScSkhHnmlk/BfyDy34sHjSNgBsP0Jho8BrRiSYD26rS2hDgH8iWldvZtHwbAf6Bxu2136lB+15tEwpSs+GcJkKkRZrfwZ07dyY4OJgJEybg7+9PpUqV2LFjB0WLFgXA398fPz8/4/62trbs2bOHIUOGUKNGDZydnenUqRMTJ07MuGchhMixjC0jL4zwCD6ZULzqlIXJiKIo/LN6Pxu+WUh8bDwObvnoOWMoJWuXz7IYIKHW7vihU2xYupnDu4+i1+sBcMjnQOsuXrTr0ZrCxaVlWeQe6UqnBw4cyMCBA1P83qJFi5JtK1euHHv27EnPpYQQuVziaJrnh/ZGPQgm+n4wmGhwql4yS+KIiYhm7Ze/8e+WhGkKyjWsSvepg7B1ts+S6wM8Dn7C1lU72LhsK/fvPDBur1a7Cu17tqGxd0PMLcyzLB4hsoq07Qkh1JXCpGchT1tFHCoWxdTGMtNDuH/hNosHTyPw1kNMtCa0/KwL7/6vVZZ0yxgMBk4dPcPm5VvZ73uY+LiE5MzW3paWHZrRrmcbGZYrcj1JRoQQqkppOvjEZCSzh/QqisJfy/aw+dul6OLicfRwptfMoRT3zPx5TQIfBrFtjS9bVu5I0gpSoVo52vdsw3ttG2NlLXV1Im+QZEQIoaqUhvYGZ0HxanRYFKtHzeO/Hf8AULGpJ11/GoBNPrtMu6ZOp+PYvn/YtHwbR/f9Y6wFsbGzoUX7prTt2opyVbK+YFcItUkyIoRQlfLCpGf66DienLsNgFONzPlg9jt7gyWDpxPsF4CJqZbWo7rRsG/LVCdvfFP3bt9ny6odbFvtS9CjYOP2qrUq8373VjTxboSldeZ3RwmRXUkyIoRQ1wtDex//dxNFp8fSzRHrwi4ZeilFUTi00Jetk5ejj9fjVMiVXrOGUbRaqQy9DkBsTCwHdx5h84rtnDhyyrg9n7Mj3h1b0KZrS4qVLprh1xUiJ5JkRAihKkWX0FWROJomsYvGqUaZDG2piAqNYNVn8zi3+wQAVVrUossP/bFysMmwawDcuHyTzSu2s2P9bsIeJyzyqdFoqN2wJm27efNOs/qYmSdfFFCIvEySESGEqpQXWkaMxas1M6549c7paywePJ3H94PQmpvSdkwP3u7VPMOSnajIKPZs3s/mlds4f+qicXt+d1fadGlJ664tcS9UIEOuJURuJMmIEEJdzw3tVRQlQ4tXDQYDBxfsYNsPKzHo9LgUdaPXrGEUrlzijc+tKArn/73I1lU72L1pL1GR0QBoTbW806w+bbt5U7thTbRa7RtfS4jcTpIRIYSqjJOemZoReeshcSHhmFiY4VCp2BudN/JxOCtGzuHivoTVbKt516Hz9//D0s76jc4bFBCM77rdbFvty61rd4zbC5coRNuu3rTs2ByX/M5vdA0h8hpJRoQQqlKeaxkJOpHQRZOvanG0Fumvq7h58gpLh0zniX8IpuZmtPvGh7rdmqS7WyY+Lp4jfx5j66odHNt/3Dgk18LSgsbe79C2Wyuq16maaaNxhMjtJBkRQqjLWDNiRvDJK0D6h/QaDAb2zd2C79Q1GPQGXEu44zNrOAUrpG/UytUL19m22pedG/bwJCTUuL2yZ0Vad/Giaet3sbW3Tde5hRDPSDIihFDV8y0jISfSX7waHhTKihFzuHzoPwA833+bDhP7YmmbtllMQx+HsWvjn2xb7cvlc1eN253zO+HdsQWtOrWQIblCZDBJRoQQqkpMRnSxOsKu3APS3jJy/e+LLB06k7CAx5hZmvPBhA+p1bHRa3eb6PV6/jl4gq2rfTm06y/j+jCmZqa806w+rTp7UadRTUxN5ZYpRGaQ3ywhhLqeFrBG3HoEioJNMTcsXR1e61CD3sCeWRvZNX0dikHBrVRBfGYPx71s4dc6/s6Nu2xf48uOdbsJ8A80bi9TsRStO3vRvF1THJ0d0/yUhBBpI8mIEEJViS0jodf8gddfHC8s4AnLPpnFtb/OA1CrYyPaj++NxSumVY+MiGLv1v1sXeXLfyfOGbfb57OnRbumtO7sRdnKsj6MEFlJkhEhhKoSJz0Lu3wfAKfXmF/k6l/nWDZsFuFBoZhbWdDhu77UbP9O6tdQFE7//R9bV/uyd+sBYqJjADAxMaHuu7Vo1dmLBu/Vw9zC/M2fkBAizSQZEUKoKrFl5MnlhHqRl012ptfp2T1jPXtmbkRRFNzLFcFn1jDcShVMcf+H9x6xfe1Otq3Zyf07D4zbi5QoTOvOXrTs2BzXAhm7/o0QIu0kGRFCqOvpqr26qDhMbe2wL1soxd1CH4WwdMhMbhy/BECdro1p901vzC2TtmbERMdycOdhtq325fjhUyiKAoCNrTVN27xL684tqVyjoswJIkQ2IsmIEEJVytNkRFHAybMUGq1Jsn0uHTjD8hGziQwJx8LGkk6TPuKttvWfnUNROHfyAtvW+LJny34iwyON3/OsV43WXVrybst3sLJO2zBfIUTWkGRECKGqxJoRAxqcXihe1ev0+P68hr1zNwNQsEIxfGYPw7W4O5DQDbNj/W62r93J3Zv3jMe5Fy6Ad4fmeHdqQcGiHln0TIQQ6SXJiBBCNYqiGBfKU5Sk9SKPHwSxdOhMbj2dlbV+z2a0HdMDnUGP7/rdbFu9k5N//WvshrGytqJxq4a06tSC6nWqYmKSvIVFCJE9STIihFCP3pCQhQAKJji9VQqAC3tPsWLkXKKeRGBpZ0Xn7/ujuFjx/Ze/sHfrfuMKuQCe9avj3bEFjb3fwdrmzRbBE0KoQ5IRIYRqjCv2ArZlCqKxNGfzxKUc+H07AAXKFcaudnHGT5yeZDRMwaIeeHdsTsuOzfEo7J7lcQshMpYkI0II9TztogGwLleEWZ3GcefMdQB0+a3ZcPY4ytnjCd+3saJJ63dp1bkF1WpVkdEwQuQikowIIVSTWLwKcGTPcR7odegwcC3+CSH3/NFoNNSs/xatOregkVcDGQ0jRC4lyYgQQjV3zt/AFDAoEBKvI4w4ruqekL94ATp18qLlB80oUMhN7TCFEJlMkhEhRJZKXBtm+9LtFLrwAB9XUBQNfqaxVGhXl2FdZFIyIfIaSUaEEJnOYDBw8q/TbF/jy/4dh7GJgVKmDuR/egtSTExYcGEVllYWKkcqhFCDJCNCiEzjd/Me29fuZMfaXTx6EIAGKK61x93MBgBXa0vgMVpLC0lEhMjDJBkRQmSoiLAI/ty6n+1rdvHfiXPG7U62dlS2dkX3JGGOkCYft8FqxR4ATCQRESJPk2RECPHG9Ho9Jw7/y/a1Oznge4jYmDgATExMqNOoJtVKlOLSuqPEPYnG1tme7lMHUbiYO0dmb4D8YGJtqfIzEEKoSZIRIUS63bnul9ANs243Af6Bxu3FyxSjVacWNGnZkMO/buPvJfsAKFWnAj2mD8bBzQm/9UdILFHVmJupEL0QIruQZEQIkSZhT8LZs2Uf29fu5Pypi8bt9o52NH+/Kd6dW1C+SlkCbjxgcf9f8L9yF41Gw3tD2tN82AeYPF2VN+TENUw0CVPBa8wkGREiL5NkRAjxSjqdjuOHTrJ9zS4O7jpCXGxCN4xWq6Xuu7Vo1dmLt5vWxdzCHIDj6w6y/qs/iIuOxc7FgR7TB1OmfuUk5ww+dY3E0bsaU7kVCZGXyR1ACJGqm1dvs33NTnzX7yboUbBxe6nyJfDu1ILm7Zrikt/ZuD02Kob1X/3BifWHACjzdmV6/DIIO1fHJOfVRcYQeuEOjuYJLSNIMiJEniZ3ACFEEuGh4ezevI+tq3Zw8cxl43aHfA60aN+UVp1aUKZS6WSTkvlfucuigb8QcOMBGhMNLT7pSNOB7xu7ZZ4XcvoGGBQsnO2AUDRmcisSIi+TO4AQImFSsiP/smXVDg7uPGwcDaM11VK/SV1adWpB/SZ1MEuh0FRRFP5ZvZ8N3ywkPjYeB7d89Jg+hFJ1KqR6vZATVwGwK5Efbt2TmhEh8jhJRoTIw+77+bN9tS/b1uzk4f1Hxu0lyxWndZeWtGj/Hk4u+VI9PiYimrVjfuffzX8BUK5hVbpPHYSts/1Lrxv8NBmxLZIfbgHSMiJEniZ3ACHymJioGPbtOMjW1b6c+uu0cbudgy3N329Kqy5elK9S9pVrw9y/cJvFQ6YTeNMfE60JLT/tzLv9W2Nikrxb5nmKwUDIqWsA2BR2JhbQmErLiBB5mSQjQuQBiqJw7tQFtq32Zc/mfURGRAGg0Wio1cCT1l1a0rDF21hYvnomVEVROLpsD5u+XYouLh5Hdyd6zhxGiRplXyuW8GsPiA+NQmtlgaWrfUIyIi0jQuRpcgcQIhcLehTMjnW72Lbal9vX/YzbCxb1oFWnFnh3bEGBQm6vfb7osCjWjJ7Pme1/A1ChyVt0m/IxNvnsXvscwScTWkXyVS+JxmAAJBkRIq+TO4AQuUx8XDxH9h5j68odHNt/HL1eD4CllSWNWzWkTZeWVKtd5ZXdKS/yO3uDJYOnE+wXgImpltajutGwb8tXdue8KLF41blmaZT4+ISNUsAqRJ4myYgQucT1SzfYutoX33W7eRISatxepUYlWnX2ommbd7G1s0nzeRVF4fCinWyZtAx9vJ58BV3wmTWMotVLpyvO4JMJyYhTjTIoN88C0jIiRF4ndwAhcrCwJ+Hs3vQnW1f7cum/K8btLm7OtOzQnFadWlCsdNF0nz8qNIJVn8/j3K4TAFRuXpMuP/bH2sE2XeeLDQkn4ro/AE6epYi+egqQAlYh8jpJRoTIYRRF4fQ/Z9m8fCv7th80zgliambKO83q06qzF3Ua1cT0DWc1vXP6GosHT+fx/SC05qa0+bIHDXyap7lb5nkhp64DYFvKHQsnO6LidQnfkJYRIfI0uQMIkUMEB4awfc1Otqzcgd/Nu8btpcqXoE1Xb1q0a4qjs+MbX0dRFA78vp1tP6zEoNPjXCQ/PrOHU7hyiTc+d8jTLhrnGmUSrvU0GZG1aYTI2+QOIEQ2ptfr+efgCTav2M6h3X+h1yUUo1rbWNHs/Sa07daKCtXKvVFrxfMiH4ez4tO5XNz7LwDVvOvQafL/sLK3zpDzB59IGEnjVDMhGeFpAavUjAiRt8kdQIhsyP/eQ7au8mXrqh08ehBg3F7JswJtu7bivbbvYm2TMQlCopsnr7B06AyePAjG1NyM97/uRb3uTTMs0THE63h8+gYAzjUSil8VYzeN1IwIkZdJMiJENhEfF8/hPUfZvGIbfx84gaIkrGhr72hHyw7NadO1JaXKl8zw6xoMBvb9uhXfn1dj0BtwLV4An1nDKVixWIZeJ/SiH/roWMwcrLEr7QGAonvaMiLdNELkaXIHEEJld677sXnFdrav3cnj4CfG7TXefou2Xb1p5NXgtWZGTY+I4DCWj5jN5YP/AfBW2/p0/K4flrZWGX6tkMQuGs/SaBLnOEmsGZGWESHyNElGhFBBTHQse7ftZ/OK7Zz556xxu3N+J1p39qJ1l5YULl4oU2O4/vdFlg2bSeijx5hZmNF+wofU7vRuhnXLvChxfhHnxHoRQNElJiNyKxIiL5M7gBBZ6Pa1O2xYtpXta3wJD40AwMTEhHqNa9O2WyvqN6mDaSZ/MBv0Bv6cvZGd09ahGBTcShXEZ/Zw3MsWztTrJite5fmaEbkVCZGXyR1AiEwWHxfPAd/DbFi6mVNHzxi3uxcqQJtu3rTq1AI3j/xZEktYwBOWfTKLa3+dB6DmB+/wwbd9sLC2zNTrRj0IJvp+EJhocKr+XN2LcTSNdNMIkZdJMiJEJrl/5wGblm9jy8rtxloQExMT3m5al/a92lC7YU20Wm2WxXP1r3MsGzaL8KBQzK0s+ODbPtTq0DBLrh3ydHE8hwpFMLV5lvgYu2mkgFWIPE3uAEJkIJ1Ox5E9x9iwdAv/HHw2IsbFzZn3u7WibbdWuBXMmlaQRAa9gV3T17Nn5gYURcG9bGF8Zg/HrVTBLIshMRlJnOwskSyUJ4QASUaEyBCPHgSwecV2tqzcToB/oHF77YY1ad+rDQ2a1sv0WpCUhD4KYenQmdz45xIAdbo2pt03vTG3NM/SOIJPJtaLJF1czzgDq9SMCJGnpesOMGfOHH766Sf8/f2pWLEi06ZNo0GDBq887q+//qJhw4ZUqlSJM2fOpOfSQmQbBoOBfw6eYP2SLRzZcxSDwQCAo5MDbbp68373VhQqlnWtDy+6fPA/lo+YTURwGBY2lnSc1A/Ptm9neRy6qFienLsFPJvszEimgxdCkI5kZPXq1QwfPpw5c+ZQv3595s2bh5eXFxcvXqRIkSKpHhcaGkqvXr1o0qQJjx49eqOghVBT6OMwtq32Zd3iTdy/88C4/a261Wjfsw2NvBpgbpG1LQ/P0+v0+P68hr1zNwPgUb4oPrOHkb+EhyrxPD59AyVej2WBfFgXSdpF9aybRpIRIfKyNN8Bpk6dSt++fenXrx8A06ZNY9euXcydO5fJkyenelz//v3p1q0bWq2WTZs2pTtgIdRy9cJ11i7cwM4NfxIbEwuAnYMt3h1b0K5na4qXLqZugMDjB0EsHTqTWyevAFC/ZzPajumBWRZ3yzwv6J/LADjXKptsDpNn84xIzYgQeVmakpG4uDhOnTrFqFGjkmxv1qwZR48eTfW4hQsXcuPGDZYtW8bEiRNfeZ3Y2FhiY2ONj8PCwtISphAZRhevY/+OQ6xZuIH/jp8zbi9doRQdP2xHi3ZNsczkYbGv68K+f1kxYg5RTyKwtLOi8/f9qeZdR+2wCD6ekBi51C6b/JvxMh28ECKNyUhQUBB6vR43N7ck293c3Hj48GGKx1y7do1Ro0Zx+PBhTF/zhjN58mTGjx+fltCEyFBBAcFsWraVDUu3EPQoGACtqZbGLRvS8cN2VK1VOdNmKk0rfbyObT+u5MBv2wEoVLkEPrOG4lK0gMqRgUGnN04D71ynXLLvy0J5QghIZwFrsqZWRUnxxqzX6+nWrRvjx4+nTJkyyb6fmtGjRzNixAjj47CwMAoXztzZIYVQFIVzJy+wZuEG9m0/iO7pB6Vzfifa9WhDux6tcS3gonKUSYXcDWDJkBncOXMdgAa9W9BmdHdMLbLHh3voRT90kTGY2lnhUC7577BMBy+EgDQmIy4uLmi12mStIAEBAclaSwDCw8M5efIkp0+fZvDgwUDCCARFUTA1NWX37t00btw42XEWFhZYWGTOwmBCvCgmOpbdm/5k7cKNXDl/zbi9as3KdPywHe+2fAcz8+zx4f68c7tOsPKzX4kOi8TK3oauPw2gcvOaaoeVRHBivUjNMmi0Jsl3kIXyhBCkMRkxNzfH09OTPXv20K5dO+P2PXv20LZt22T729vbc+7cuSTb5syZw759+1i3bh3FixdPZ9hCvLmggGDWL9rE+iWbeRISCoCFpTnN271Hx97vU7by67fmZSVdbDxbv1/BoYW+ABStVopeM4fiVDhrJ1N7HUF/P60XSaGLBkDRJU4HLy0jQuRlab4DjBgxgp49e1KjRg3q1q3L/Pnz8fPzY8CAAUBCF8v9+/dZsmQJJiYmVKpUKcnx+fPnx9LSMtl2IbLK1fPXWPHbWnZv2mvsinEvVICOH7ajVWcvHJ0cVI4wdUF+j1g8aDr3zt0EoNFH3nh/1hVT8+z3Ya4oirF41blW8uJVRa8HfcLcLEgBqxB5WprvAJ07dyY4OJgJEybg7+9PpUqV2LFjB0WLFgXA398fPz+/DA9UiDeh1+s5sucYK39by7/Hzhi3V61ZmS4fdaBhi7dfu8BaLWd2/M3qL+YREx6NtaMt3X7+mIpNPNUOK1WRtx4SGxiKibkp+aqVSL6DTm/8p3TTCJG3aZTExTOysbCwMBwcHAgNDcXe3l7tcEQOEhUZxdZVvqxesJ57t+8DoNVqadK6EV0/6kjF6uVVjvDV4mPi2PzdMv5auhuA4jXK0nPGEPJ5ZK9i2hfdXnmAfz+Zj3OtMjTcMi7Z9w0Rkdxr1AaAwkd90ZirNxeKEEJd2ftPQSHSyf/eQ9Ys2MDmlduJCIsAwN7Rjve7t6bjh+1w88h+9RUpCbzlz+JB07l/8TYATQe2pcUnHdHmgBqL4H+edtHUTq1eRPfsQTZvlRJCZC65A4hc5cq5qyydu4q9Ww+g1yd0AxQpUZgu/T7Au1MLrKyt1A0wDf7d/BdrvvyN2MgYbJzs6PHLYMo1rKp2WK8tcebVFCc747mp4LUmaExSGGkjhMgzJBkROZ6iKJw48i9LZ6/gn0MnjdtrvP0W3f7XiXqNa2OSgz7s4mLi2Dh+EX+v3AdAydrl6TljCA5uTipH9vpiAp4QeesRaDQ41UxlVJJxkTypFxEir5NkRORYOp2O/dsPsXTOSi6fuwqAiYkJTdu8S8+Pu2Tbobkv8+j6fRYPmob/lbtoNBreG9KOZkM/QGuqVTu0NEnsonEoXxhzB5sU95FF8oQQieQuIHKcmKgYtq72Zfm81Tzw8wfAwtKCtt286fq/ThQs4q5yhOlzYv0h1o1dQFx0LHYuDnSfNpiyb1dWO6x0CUoc0ptKFw08mwpeRtIIISQZETnGk+AnrF20iTV/bCD0ccIkZY5ODnTq054OPu/j6OyoboDpFBsVw4avF3J83UEAStevRI9fBmOf31HdwN6AcebVlyQjyFTwQoin5C4gsr3Ah0Esn7eaDUu2EBMdA0DBoh5079+JVp28ss2quenhf+UuiwdN49H1+2hMNLQY3oGmg9phktLU6TlEfHgUT87fAcAllZE08NxoGmkZESLPk2REZFsP7vqzdM5KtqzcQXxcQn1Bucpl6DmoK++2fCfbT1L2Moqi8M+a/Wz4ZhHxMXE4uOWjx/QhlKpTQe3Q3ljIqetgULAu4oqVe+pFt4k1I5oc/DoKITKG3AVEtnPnxl2WzFrOjvW70T+dpbNqrcr0Gd6LOg1rprhCdE4SExHNurELOLXpCADl3qlK918GYeucOyb0C/r76ZDeFKaATyJeummEEAnkLiCyjeuXbrBoxjL+3HoAgyFhzZLa79Tgw+G9eKtOzplf42XuX7zD4sHTCLzpj4nWBK+RnWk8oHWOGnr8KkFHLwLgUu/lrTzGlhHpphEiz5NkRKju0tkr/DFtCQd3HjFua/BePT4c1pNKb+X8bgtI6JY5uvxPNk1Ygi4uHkd3J3rOHEaJGq9oPchhdJExhJy+AYBr/ZdPtZ84mkaG9goh5C4gVHP1/DXmT1nIod1/AaDRaGjSqhG9h/agTMVSKkeXcWLCo1g9aj5ntv8NQIUmb9FtysfY5LNTObKMF3LqGkq8HquCzlgXecWU+zqZ9EwIkUCSEZHlbly+yfwpC9m/4xCQMFFZ83ZN+HBoT4qVLqpydBnr7rmbLBk8naA7jzAx1dLqi6406ued4+teUhP4V0IXjWu9Cq98js8KWHPWhG5CiIwnyYjIMreu3eb3nxfz59b9KIqSMMNo28Z8NKI3RUsVUTu8DKUoCocX72LLpGXo43TkK+hCr5nDKPZWabVDy1SBRy8B4FLv1ashP+umkZYRIfI6SUZEprtz4y4LflnMro1/oigKAE1aN6LfiN6ULFtc5egyXlRoBKs+n8e5XScAqNysJl1+6o+1g63KkWUuXWQMjxPrRV5RvArPF7DKbUiIvE7uAiLTPLz3iPlT/mDHut3G0TGNvBrw0cgPKV2hpMrRZY47Z66zZPB0Qu4FojXT0ubLHjTo3SLXdss8L/jEVRSdHquCLlgXcX31ATIdvBDiKUlGRIZ7EhLKopnLWLdoE3GxcQC83bQu//u0D+Wq5LzF616HoigcXLCDrd+vwKDT41wkP71mDaNIldyZdKUk8OmQXtf6r64XgedmYJVJz4TI8+QuIDJMdFQ0K39bx9I5K4kMjwTAs141Bn3ZP9cM0U1J5JMIVn46lwt/ngKgqncdOk/+H1b21ipHlrWCntaLuL5GvQg8S0akm0YIIXcB8cZ08To2r9zO71MXERwQAkDpCqUYPOZ/1GlUK1d3Udw6dYUlQ2bw5EEwpuZmvP9VT+r1eC9XP+eU6CJjeHzmJvDqyc6MZNIzIcRTkoyIdFMUhX3bDzLn+9+4e/MeAB5F3BnweV+avd8kV80q+iKDwcD+eVvZMWU1Br0B1+IF8Jk1nIIVi6kdmiqCj19B0emxLuyKzevUiyCTngkhnpG7gEiXi2cu8cs3s/nvxDkA8jk70md4L9r3bIOZee7+SzciOIwVI+dw6cAZAN5qW5+O3/XD0tZK3cBUlJYhvYlkOnghRCJJRkSaPHoQwJzvf8N33W4ALK0s6TGgM90/7oKNbe6vkbjxzyWWDp1B6KPHmFmY0X78h9Tu/G6e65Z50fOTnb0umfRMCJFIkhHxWqKjolk2dzVLZq8gNiYWgJYdmzNw1Efkd3+9ZvmczKA38OecTez8ZS2KQSF/SQ98Zg/Ho1zumqwtPeIjonnyX0K9yOsWrwIQl9gyYp4ZYQkhchBJRsRLGQwGdm38k9mT5hPgHwhA1ZqV+WT8ICpUS8MHTw4WHviEZZ/M5uqRhC6pmh+8wwff9sHC2lLlyLKHoKOXUPQGbIrmx7rw6yemiS0j5PJuPSHEq0kyIlJ18cwlfhoznQunE+oB3AsVYPDY/jRtnXe6Ja4dPc/SoTMJDwrF3MqCD77tQ60ODdUOK1sJOJSQpOVvWDlNxylxUjMihEggyYhI5klIKHO//41Ny7ehKArWNlZ8OLQnXT7qgIWlhdrhZQmD3sCu6evZM3MDiqLgXrYwvWYNo0DpQmqHlu0EHHyajLyTxmQksWZEWkaEyPMkGRFGBoOBLSt3MHvSfEIfhwLg1aEZQ8YOwCW/s8rRZZ3QRyEsGzaL638nFGXW6dKYdt/4YG6VNxKxtIh6EEz4tQdgosH17bRNbCejaYQQiSQZEQBcPnuVH7/8hfP/JnwAlyxXnM8mfcJbdaqqHFnWunzoP5Z/MpuI4DAsbCzpOKkfnm3fVjusbCuxVSRf1RKYO6ZxIcA4aRkRQiSQZCSPCw8NZ+73v7N+yWZjl8z/PutDpw/bY5qHJqPS6/TsnLqGP+dsBsCjfFF8Zg8jfwkPlSPL3gIOnQcgf6O0ddHA8900MppGiLwu73zaiGT2+x7ipy+nEfQoGIBm7zdh2NcDcS3gonJkWeuJfzBLhs7g1okrANTv8R5tx/bEzFI+JF9GMRgIfJqMuKWxXgSeFbAi3TRC5HmSjORBgQ+DmDJ2Ovt3HAKgSInCfPH9CGq+/ZbKkWW9i/tPs2LEHCIfh2Nha0Xn7/9H9VZ11Q4rRwi96EdscBhaawucPEun+XhFummEEE9JMpKHKIrC5hXbmPHtr0SERaA11dJrUDf6DOuZZ0bJJNLH69g+ZTX7520FoFDlEvjMGopL0QIqR5ZzJNaLuNargIl52m8lSnwcIAWsQghJRvIMv5v3mPz5T5w6egaACtXKMWbK55SuUFLdwFQQci+QJUNmcOf0NQAa9G5Bm9HdMbWQD8W0MNaLNKyUvhNIy4gQ4ilJRnI5g8HA2oUbmfXdPGJjYrG0smTAF33p3PcDtNq8tybIud0nWfnpXKLDIrGyt6HLj/2p0qKW2mHlOPqYOIL+uQykfX6RRDLPiBAikSQjudjDe4+YMOJ7Th75F4BaDTwZ/dNnFCzirnJkWU8Xp2Pr5OUcWugLQJGqJfGZNQynwvlVjixnCj5+BUNMPJYF8mFXpmC6zmEsYDWVZESIvE6SkVxIURS2r9nJz1/PJDI8EgtLC4Z+9TEf+LTFxMRE7fCyXJDfI5YMns7dswmLuTX6yBvvz7pimo46B5Eg4ODTLpp3Kqd7aQBpGRFCJJK7cS4THBjC5M+mcGj3XwBU9qzIN9O/pEiJvDmN+Zkdf7P6i3nEhEdj7WhL1ykfU6mpp9ph5XiPDpwF3qBeBBlNI4R4RpKRXOTIn8eYMHwyT0JCMTUzpf+nfegxsEuerA2Jj4lj83fL+GvpbgCKeZah18yh5PPIW3OoZIaoB8GEXrgDGg1ujaqk6xyKooBMBy+EeEqSkVwgLjaOWZPms+q3tQCUKl+CcTPGUKZiKZUjU0fgLX8WD57O/Qu3AWjycVu8RnREm4dmlM1Mj/b9B4CTZyksnO3TdxKdzvhPmYFVCCF35xzO7+Y9xn48nsvnrgLQue8HDB7TP8/NG5Lo3y1HWTN6PrGRMdg42dF96iDKN6qmdli5ysO9ZwAo0KRaus9hLF4FmYFVCCHJSE62Y90ufhz9C1GR0djns+frqaN4p3l9tcNSRVxMHJvGL+bYyr0AlKxVnh4zhuBYwEnlyHIXfWy8cbIztzdJRuKfJSNSMyKEkGQkB4qJjuWnMdPYumoHANXrVGXCrLG4eeTNYaqPrt9n8eDp+F/2Q6PR0HTw+zQf1gGtad6rlclswf9cRh8Vi6WbI46Vi6X7PEpcwuyraLVo8uAILyFEUpKM5DAP7vozqt/XXD53FRMTE/p+4kOf4T3zZJEqwIkNh1g3dgFxUbHYuTjQfdpgyr6dvkm4xKs9/PMMAG6Nq6V7SC8gs68KIZKQZCQH+fvACcYOmkDY4zAc8jnw3dyvqfVODbXDUkVsVAwbvl7I8XUHAShdryI9pg3BPr+juoHlchlRLwIyx4gQIilJRnIARVFYPGs5c7//HUVRKF+1LD/89i0FCrmpHZoq/K/eZfGg6Ty6dg+NiYbmwzrw3uB2mGiluT8zRdx6SMQNfzSmWvK/k/75ReC5OUbMZCSNEEKSkWwvKjKKcUMnccD3MABtunrz2XfD8uRoGUVROL72AOu/Xkh8TBz2+fPRc/pgStWtqHZoecLDP08D4FyrLGb21m90LmMBqwy3FkIgyUi29uhBACN9RnP1wnXMzM347LthvN+9tdphqSI2Moa1Y37n1KYjAJRtUIXuvwzCzsVB5cjyDv+dpwBwb/7WG5/rWcuIdNMIISQZybYu/neZT3t/SdCjYJxc8vHjHxOpUuPNmsZzqvsX77B48DQCb/pjojXBa2RnGg9onSfX2VFLbEg4QX8nrNLr0eLNp9NPHE0jNSNCCJBkJFvau+0A44ZOIjYmlpLlivPz4sl4FM57K+0qisKxFXvZOH4xurh4HN2d6DljKCVqllM7tDzn4Z+nUfQGHCoUwaZoBtQqGQtYpWZECCHJSLazbO4qZnw7F4B6jWszce432NrZqBxV1osJj2LN6N84ve0YABUaV6frlI+xdUrn9OPijRi7aFpkzOgtJT5hOnjpphFCgCQj2YbBYGDmt7+yfN5qADr1ac/wcYMwNc17L9Hd87dYMmgaQXceYWKqpdXnXWjYz1u6ZVSii4rl0f6E9Wg8vDIoGUmcDl66aYQQSDKSLejidXw78gd81yWsMDtk7AB6DuyqclRZT1EUjizZxebvlqGP05GvoAu9Zg6j2Ful1Q4tTws4fB59dBxWBV1wqFQ0Q86pxD+tGZGWESEEkoyoLjoqmi/7j+OvvX+j1WoZ8/PntOrUQu2wslx0aCSrvpjH2Z3HAaj0Xg26ThmAtYOtypEJf9+TAHh4eb7ZrKvPUWQGViHEcyQZUVF4aDjDe3zBuVMXsLC0YNK8cTR4r57aYWW5O2eus2TwdELuBaI109J6dHfe+dArwz74RPoZdHr8dyfUi3hkUL0I8KyAVVpGhBBIMqKasCfhDOk6kkv/XcHOwZapi7+naq28taaKoigcXLCDbT+sQB+vx7lIfnrNGkaRKiXVDk08Ffz3ZeJCIjDPZ4tznYwbxSQtI0KI50kyooInIaEM6TKSK+ev4ZDPgdlrplKmYim1w8pSkU8iWPnpXC78mfBXd9WWten8fX+s3nBmT5Gx7m35GwB3rxqYZOAqyEpsLAAai7w3k7AQIrl0DU+YM2cOxYsXx9LSEk9PTw4fPpzqvhs2bOC9997D1dUVe3t76taty65du9IdcE73JPgJgzqN4Mr5a+RzdmTuul/yXCJy69QVprT8ggt/nsLU3IwO3/bBZ/ZwSUSyGYNOz/1tCTU8hdrWzdBzK7FPC1glGRFCkI5kZPXq1QwfPpwxY8Zw+vRpGjRogJeXF35+finuf+jQId577z127NjBqVOnePfdd2ndujWnT59+4+BzmvDQcAZ3Gcm1i9dxcnVi7vrplCqfd7okDAYDe3/dwqxO43nyIBjX4gUYvvFb6vdsJvUh2VDgXxeJCwnH3MkO1/oVMvTchpgYADSWMumZECId3TRTp06lb9++9OvXD4Bp06axa9cu5s6dy+TJk5PtP23atCSPJ02axObNm9m6dSvVq1dPX9Q5UHRUNJ/0HMXVC9dxcsnHr+umUax0xgyTzAkigsNYMXIOlw6cAeCtNvXoOOkjLG2t1A1MpOr+0y6agq1qZWgXDUjLiBAiqTQlI3FxcZw6dYpRo0Yl2d6sWTOOHj36WucwGAyEh4fj5OSU6j6xsbHEPu1TBggLC0tLmNlOXGwcn/cZy9mT57FzsGXmqp/zVCJy4/gllg6ZQeijx5hZmNFuXG/qdGksrSHZmCFex4MdJwAo1KZOhp9fiZGaESHEM2lKRoKCgtDr9bi5JV2bws3NjYcPH77WOX7++WciIyPp1KlTqvtMnjyZ8ePHpyW0bEun0zF24AT+OXQSK2srpi37kdIV8kbXjMFgYO+czfhOXYNiUMhf0gOf2cPxKFdE7dDEKwQcOk/c4wgsXB1wqVs+w89vLGC1lGRECJHOAtYX/6JVFOW1/spduXIl48aNY/Xq1eTPnz/V/UaPHk1oaKjx6+7du+kJU3WKojBl7HQO+B7GzNyMnxZ+R2XPimqHlSXCA58wz2cyO6asRjEo1Gj/DiO2TJJEJIe491wXjUab8dPwSzeNEOJ5aWoZcXFxQavVJmsFCQgISNZa8qLVq1fTt29f1q5dS9OmTV+6r4WFBRa54Ca1Yt4aNizZgkajYeLcr6nV4M2XXs8Jrh09z9JhswgPfIK5lQUfTPiQWh0bqR2WeE366LhM7aIBUBILWC2kgFUIkcaWEXNzczw9PdmzZ0+S7Xv27KFevdRnDl25ciW9e/dmxYoVeHt7py/SHGb/jkPG1XeHfTOQd73eUTmizGfQG9j5y1rmdv+O8MAnFChTiE+2fCeJSA7zYNdJdOHRWBdywbl22Uy5hrSMCCGel+bRNCNGjKBnz57UqFGDunXrMn/+fPz8/BgwYACQ0MVy//59lixZAiQkIr169WL69OnUqVPH2KpiZWWFg4NDBj6V7OPC6Ut8PXgiiqLQwed9un7UUe2QMl1owGOWDZ3J9b8vAlC787u0H9cbcyv5sMlp/NYkzBtUpGMDNJm0UrLUjAghnpfmZKRz584EBwczYcIE/P39qVSpEjt27KBo0YTRIf7+/knmHJk3bx46nY5BgwYxaNAg43YfHx8WLVr05s8gmwl8GMTI3l8SGxNL/SZ1GPHtkFw/auTyof9Y/slsIoLDMLe2oNOkj/B8/221wxLpEP3oMY8OnAWgSMfMew0lGRFCPC9d08EPHDiQgQMHpvi9FxOMAwcOpOcSOVJ8XDyjPvqakMAQSpYrzsS532Bqmntn3Nfr9Oz8ZS1752xGURQ8yhfFZ/Yw8pfwUDs0kU73NhwFg4JTzTLYlnDPtOskdtOYSDeNEAJZmyZDTRs3m3OnLmBrb8uPCyZiY5t7pzd/4h/M0mEzuXn8MgD1ujel7Ve9MJcZNXM0v7XPumgykxSwCiGeJ8lIBtmxbhdrF20EYPzMMRQuXkjliDLPxf2nWTFiDpGPw7GwtaLz9/+jequMXbtEZL0n528TetEPEwszCrWpnanXUmKkgFUI8YwkIxngzo27/DDqFwD6feJDg/dSH1mUk+njdWyfspr987YCUKhScXrNGoZrsQIqRyYywp3VhwBwb/YW5o62mXYdRVFk1V4hRBKSjLyh+Lh4vhr0LdFR0XjWq0bfET5qh5QpHt8PYsmQ6dz+9xoADXq3oM3o7phamKkcmcgI+ug4/NYkJCNFuzbK3IvFxRv/KQWsQgiQZOSNzf3hdy6fvYJ9PnvGzRiDVpuxC4plB+f3nGTlp3OJCo3E0s6arj8NoEqLWmqHJTLQvS1/Ex8ahXVhV9waVc7UaynPrTslyYgQAiQZeSMn//qXZXNXATB2yue4eaQ+xX1OpIvTsfX75Rz6wxeAIlVL0mvWMJwL567nKeDWkj8BKN6zcabNLZLI8LR4Fa0Jmlw82kwI8frkTpBO0VHRTBz5IwDterSmkVfmjj7IasF3A1gyeDp+/90AoFE/b7w/74qpubxlcpsnF+4Qcuo6GlNt5nfRILOvCiGSk0+WdPr1xwU88PPHzSM/Q776WO1wMtR/vv+w6vN5xIRHYe1gQ9efB1Kpad5YVycvurVkLwAeXjWwdM38WZGleFUI8SJJRtLh3KkLrPptHQCjfxyJrZ2NyhFljPiYOLZMWsaRJbsBKOZZhl4zhpKvoIvKkYnMoouM4e76vwAo7vPyBSwzinFYr9SLCCGekmQkjeLj4pk48kcURcGrQzPqNc6cVU2zWuDthyweNI37F24D0HhAG1qO7ITWTN4iudmd1YfQRURjW6IArvUrZMk1pWVECPEi+aRJo7WLNnLr6m3yOTvyybjBaoeTIf7dcpQ1X/5GbEQ0Nk52dP95IOXfra52WCKTKXoD139LKE4u2bd5lq2hJLOvCiFeJMlIGjwOfsLvUxcD8PGoj3B0ytmrDsfFxLFp/GKOrUyoGShRqxw9ZwzFsYCTypGJrOC/+xSRtx5h5mhD0S4Ns+y6UsAqhHiRJCNp8OuPC4gIi6BspdK07uKldjhvJODGAxYPmsaDy35oNBqaDn6f5sM6oDXNffOkiJRdm5fQKlK8ZxNMbSyz7LqyYq8Q4kWSjLymaxdvsHn5NgBGfDskR09udnLjYdaO+Z24qFhsXRzo8csgyjaoonZYIguFnL5B8N+X0ZhqKdmnWZZe2xAZDYCJtVWWXlcIkX1JMvKapo+fjcFgoEnrRlSvXVXtcNIlLjqW9V8v5PjaAwCUqluRHtMH45A/n7qBiSx3fd4OAAq/Xxcr96ztllOiogDQWOfeVa2FEGkjychrOHX0NMcPn8LUzJQhYweoHU66+F+9y+JB03l07R4aEw3Nh3XgvcHtMNFm7mybIvuJuP2I+1v/AaBU/5ZZfn3D02TExEZaRoQQCSQZeQVFUZj30x8AtO3mjUdhd5UjShtFUTi+9iDrv/6D+Jg47PPno+f0wZSqW1Ht0IRKrkzbhKI34PZuVRwrF8vy6yuRiclI7pifRwjx5iQZeYUTh09x5p+zmFuY03tID7XDSZPYyBjWjv2dUxuPAFC2QRW6/zIIO5ecPQpIpF/knUf4rT0MQPlP26sSgyEysZtGWkaEEAkkGXmFhTOWAgnrz+SkhfAeXLrD4kHTCbj5ABOtCV4jOtH44zaYZPIiaCJ7uzx9M4reQP5GlXHyLK1KDEpUYgGr1IwIIRJIMvISl85e4dTRM2hNtfQY0EXtcF6LoigcW7mXjeMWo4uLx6GAE71mDqVEzXJqhyZUFukXiN+ap60iIz9QLY7EmhGNrSQjQogEkoy8xPJfVwPwXpvGuBXM/q0iMeFRrPnyd05vPQpA+Xer0+3nj7F1slc5MpEdXJm+CUWnJ/87lXCuWUa1OAwRT2tGpGVECPGUJCOpeHjvEXu3HgCge/9OqsbyOu6dv8XiwdMJuv0QE1MtrT7vQsN+3tItIwAIu3yP2ysPAFD+sw6qxvJsaK/UjAghEkgykooNSzej1+up8fZblK2s3l+Rr6IoCn8t3c2miUvRx+nIV9CFXjOGUswz+8Ysst65b1eAQcHDu5aqrSIAhsSaERtpGRFCJJBkJAU6nY5ta3YC8EGvtipHk7ro0EhWjZrHWd/jAFRq6kmXKR9j42ircmQiOwk4fJ5He8+gMdVSaUxntcN5bmivJCNCiASSjKTg2P7jBD0KxtHJgXea1Vc7nBT5/XeDxYOnE3I3AK2Zltaju/POh15ZtvKqyBkUg4Fz45cDUKJ3U2xLqD9PzrOhvZKMCCESSDKSgs0rtgPQsmNzzMzNVI4mKUVROPSHL1u/X44+Xo9T4fz4zBpGkaol1Q5NZEN3Vh0i9PwdTO2sKPdJO7XDQYmLA50OkJYRIcQzkoy8IDgwhL/+PAZAm67eKkeTVOSTCFZ9Opfzf54CoIpXLbp83x8rB5nJUiQXGxzG+YkrACg/oj0WzuqPqkqsFwHQWEkBqxAigSQjL9i/4xB6vZ6K1ctTokwxtcMxun3qKkuGzuDx/SC05qa8/1Uv6vd4T7plRKrOTVhBXEgEDhWKULJfc7XDAZ7Vi2gsLdGY5tyVr4UQGUuSkRcc2HEIgMbeDVWOJIHBYODAb9vZ/tMqDDo9LsUK4DNrGIUqFVc7NJGNBR69hN/qQ6DRUO3HPpiYZY9fdeOEZ7JInhDiOdnjDpVNhD4O49SxMwA08mqgbjBAREgYK0bO5dL+0wBUb12PTpP6YWknfe0idfqYOM58sQCA4j0b41wj+wzzTixelQnPhBDPk2TkOUf+PIpep6dU+RIULl5I1VhuHL/E0qEzCX0YgpmFGe3G9aZOl8bSLSNe6eL3awm/9gALF3sqfqn+UN7nKeERAJjYSp2TEOIZSUaec8A3Yd2ORi3UaxUxGAzsnbuZnVPXYtAbyF/CA5/Zw/AoX1S1mETOEXjkAtfm7QDgrakfYZ7N5pzRPwkFwCSfrBwthHhGkpGnYqJj+fvACQAatXxHlRjCg0JZ9sksrh4+B0CN9g3o8G1fLGwsVYlH5CxxoZGcHPYrKArFeryLezNPtUNKxvAkDAATB0lGhBDPSDLy1NmT54mNiSW/uyulK2T9nB3Xjl5g6bCZhAc+wczSnA8m9KFWx4bSLSNei6IonBm1kOj7wdgUc6PK+J5qh5Qiw9OWEa2jJCNCiGckGXnq5JGEuTtqvP1WliYABr2B3TM3sHvGehSDglvpQvSeM5wCpdWtWRE5y80Fu7m38SgarQk1Zn2MaTZtTTN200gyIoR4jiQjT5048i8ANeq/lWXXDA14zPLhs7h29AIAtTs1ov34DzG3ssiyGETOF/T3Zc6OWwZA5W+6Z6vRMy8yPE5MRtSfgE0IkX1IMgLERMVw+exVAGrUq54l17xy+CzLPplNRFAo5tYWdPyuHzXaqT+cWOQs0f4h/PPRdBSdnkLt6lHyoxZqh/RSiS0j2nyO6gYihMhWJBkBLp27gl6vx7WACwUKuWXqtfQ6PbumrePP2ZtQFAWPckXwmT2c/CU9MvW6IveJD/9/e3cfFVW57wH8u+eF4R3FFwTBFwwTsUwhDLwub2Z4tZu5bq28x3ypY11JLZRrptdOZquVqyyP2hH1KlpdX/Jq2vGcQybdCvElvSJ6U/Bo4hsCEhjMyMswL8/9Y4BERnCPzGxm5vtZay/g4dl7/+a3RvbPZz/z7FocmbYCxl+qERwbheEfvdzp5xhZeZuGiOxgMQLg7MlCAEDcsFinnqeqtBL/lfYJio6fAwAkTRmLSW9Ph4+vj1PPS57H2mDGsZmrUH3mCnTdg5H0aXqnnSdyO2t10wRW3qYhot+wGAFwJr8AABA3bLDTzlH4fT62pWeg5lcDdIF+mLz8FQx7Otlp5yPPJaxW5M3fgPKDZ6D21yF520IE9HXuiF5HEGYLrPrGRc84MkJEt2ExAjTPF4kbNqjDj20xmZH10U58t+EvAIDIIf0x/U9p6NGvV4efizyfsFpxcsEmXPvyMCSNGo9lzkPXodFKh3VPrAYDIAQAQBXMkREi+o3XFyP1tfUovVYGABgwqGP/qP96vQKfv7Yal09eAAD8w4xxeOY/pkKj03boecg7CIsVeen/aXsAnkpCwievIuzxoUqHdc8sN6sAAKrgID6xl4ha8Ppi5MrFqxBCIKRrCLp269Jhxz2TfQI7FqxDbXUNfIP88a8fzsLQ8SM67PjkXawNZuTN32AbEVGr8OjaOYiclKR0WLJYym4AANRhPRSOhIg6G68vRi5duAIA6BfTp0OOZ24w468fbEdOpu35IH2GDsD0P6WhW1TPDjk+eZ+Gqls4NnMVfjlcYCtE1s1F5MTHlA5LNnOprRjRhPMWJRG15PXFyOWfrwIA+sfc/4PoKq+V4/O5q3H19EUAwOiZE/DPb06Bxsfr00wOqrlyA0emroDhQgk0Ab5I3JiGXmPc59bM7SyNxYg6vPNPtiUi1/L6q+Tln5tGRu6vGPm//cex4431qDfUwj8kAL/76FUMeTKhI0IkL1Wy/wTy0tbDVF0L3/BQJG99A13i3PfpzeYS29wsDYsRIrqD1xcj5aW/AAAiosId2t9sNOHP72/Foc++AQD0Gx6DaWteR2gk74uTY6wNZpx9fycurP8bAKDr8AfwWOY8+IWHKhzZ/TGXNd2mYTFCRC15fTFyq9q27kFwlyDZ+/5yuQyfz12N4jOXAABjZj2NCQsmQ631+rSSg349VYS8eRugP3cNAPDArPEYsuR3UHnArT5zSWMxEsE5I0TUkvv/hbtPhsZFmAKDA2Xtl/+XI9i5eCOMt+oQ0DUIU1bOxuDHXfNcG/I85pp6nPvjXlxY9zcIixW6bsEY9tFMRIx/VOnQOoS13ghr5U0AnDNCRK15fTFyq7EYCQq5t2Kkob4BX737OY5u/xYAEJ04CNNWv4Yu4d2cFiN5LmG14uquQzj7/heov1EFAIiclISh782ArrvnLAxmumgbPVSFBEMV4jmvi4g6hlcXI8Z6I4z1DQCAoHsYGSm/WILP5qxCybmrkCQJY+dMwrh5z0HNBZxIJmG1omR/Hs6t3IPqM7ZJ1AH9wvDQsqmIGBevcHQdr6HQtvCfT+zATv8wPyJyPa8uRm4ZagAAkiTBP9C/zb4n9uZi15JNaKg1IrB7CKb+cQ4eHPWwK8IkD2IxmnB934+4sD4L1WdtRYgm0A+D5k3CgFf+CWoPXZ234ZztkQs+sTEKR0JEnZF3FyPVTfNFAqBSqez2aagzYs/SLTj23z8AAB5IisPU1XMR0rOrq8IkD1B7vRKXPv8Wl7d+D2OlHoCtCBnw8jg88G/joQuVP4HanTQUNhYjgwYqHAkRdUZeXYy0N3m17EIxPpuzCmXniyFJElLSnkXKa/8Cldp+4UJ0O+NNA67/9TiK9x5BxY/nmh8S5xcRiv7Tx6L/9Cc8vggBAKvhFkw/2+aM+Ax+UOFoiKgzYjEC+/NFju/6Abv/sBmm+gYE9eiCaatfQ0xynKtDJDcihIDh79dR9t0p3PjuNCp+PAdhtjT/vsfIwYj+fQrCx8VD5UXzjOoOHgUsFmij+3GNESKyy6uLkabbNLd/ksZYU4/df9iME3sOAgAGjnoIU1fOQVCPLkqESJ2Y1WyBvvAaKv/3vG07/nfUXa9s0SfkoX6ImpSEyGeS4B/ZXaFIlVX7P7Z/S35PjFI4EiLqrLy6GLnzNk1J4RV8Nnc1yi+WQFJJGP/vz+OJV5+563wS8h4mfS30566huvAa9IXXUH3uGqp/ugxzTX2LfiqdFt2TY9FrzFD0euIRBEY7trKvpzAVXUbdoR8BAP5PjFY4GiLqrBwqRjIyMrBixQqUlpYiLi4Oq1atwqhRd/9fT05ODtLT03H27FlERERg4cKFSE1NdTjojmJomsAaFIAj27/FV8s+g8loQkivUExb8xoGJMYqHCG5grBYYbxpQH15FYzlVagrvYmaK+UttoabBrv7aoL8EJoQg24JA9Ht0RiEJgyExl/n4lfQOQmTCTc/WANYrfB7fBR8HuivdEhE1EnJLkZ27tyJefPmISMjAyNHjsSGDRswfvx4FBQUoE+fPq36X7p0CRMmTMArr7yCrVu34vDhw5g9ezZ69OiBZ599tkNehKNu6W9BDQkNp0uw68+bAACx//gIpqycjcBQLszU2QkhYK03wVLfYNuMJljqbN9b6xtgMtTBZKiFqboWJn3TVgOTvg4mfQ2MlQYYy6tgrNBDWKztns83PBQhg6IQHBuFkMF9EBLXB8EDIyFxQnMLQgiYLhShatV6GPNOQ/LzRZe5M5UOi4g6MUmIxin+92jEiBEYPnw41q1b19wWGxuLSZMmYfny5a36v/nmm9i3bx8KCwub21JTU3H69GkcPXrU7jmMRiOMRmPzz3q9HlFRUaiurkZwcMcVCXsffwkhZeWQIEECENyzKwK72Tl+Gylq/as20tlWqsVdf7jLIUW7h2zzmA7FdUdDW2G2eUwBCAEhBGAFhLACwrYQGISAsAr7X5v2s1htm7n9AqJdUlOcEtQ6LdR+PlD76aAJ9IUm0A/axq+aQF+otJp2Em7vtTqtswOxyOsvq7sQEPVGWKuqYLp4GVa9bSRJ0vmg+4pl8EtOlHVuIvIuskZGGhoakJeXh0WLFrVoT0lJwZEjR+zuc/ToUaSkpLRoGzduHDIzM2EymaDVtl7kafny5Vi2bJmc0GSzWq0I/6UcEQG33fOvqQNqSpx6XroPUuOmAuCUtcHqABNsm20pEAj81kQyaDTwG52MLq/+Htp+UUpHQ0SdnKxipKKiAhaLBWFhLT+eFxYWhrKyMrv7lJWV2e1vNptRUVGB8PDWE/wWL16M9PT05p+bRkY6kkqlQt1DcbhQ+DNCo3oiMCTQdqG7jXRnQ2Pr7V/sun2567aOeecxpLv+cJfzSe3u1qLhzmW4HXwNtzc0f2dvie82ApPUEiCpIKmkxk0FNH6VJAlQN7ZJd/xekiBp1FBp1JA0akhale17lfpup2qf3OXJZfaX1dvJscjvL6Orry9UQYHQ9o2ENrofJB8feeciIq/l0ATWO58tIYRo83kT9vrba2+i0+mg0zl/EuDjOz50+jmIiIiobbJm3nXv3h1qtbrVKEh5eXmr0Y8mvXr1sttfo9GgWzc+6ZaIiMjbySpGfHx8EB8fj+zs7Bbt2dnZSE5OtrtPUlJSq/4HDhxAQkKC3fkiRERE5F1kfyYxPT0dmzZtwubNm1FYWIj58+fj6tWrzeuGLF68GNOnT2/un5qaiitXriA9PR2FhYXYvHkzMjMzsWDBgo57FUREROS2ZM8ZmTx5MiorK/Huu++itLQUQ4YMQVZWFvr27QsAKC0txdWrV5v79+/fH1lZWZg/fz7Wrl2LiIgIrFmzRvE1RoiIiKhzkL3OiBL0ej1CQkI6fJ0RIiIiUh6XjiQiIiJFsRghIiIiRbEYISIiIkWxGCEiIiJFsRghIiIiRbEYISIiIkWxGCEiIiJFsRghIiIiRTn01F5Xa1qXTa/XKxwJERERyRUUFARJku76e7coRgwGAwAgKipK4UiIiIhIrvZWUHeL5eCtVitKSkrarazk0uv1iIqKwrVr17jMvJMx167BPLsG8+wazLNruCLPHjEyolKpEBkZ6bTjBwcH843uIsy1azDPrsE8uwbz7BpK5pkTWImIiEhRLEaIiIhIUV5djOh0OixduhQ6nU7pUDwec+0azLNrMM+uwTy7RmfIs1tMYCUiIiLP5dUjI0RERKQ8FiNERESkKBYjREREpCgWI0RERKQoFiNERESkKI8vRjIyMtC/f3/4+voiPj4eubm5bfbPyclBfHw8fH19ER0djfXr17soUvcmJ8979uzBk08+iR49eiA4OBhJSUn45ptvXBite5P7nm5y+PBhaDQaPPLII84N0EPIzbPRaMSSJUvQt29f6HQ6DBgwAJs3b3ZRtO5Lbp63bduGoUOHwt/fH+Hh4XjppZdQWVnpomjd08GDB/H0008jIiICkiThq6++ancfl18LhQf74osvhFarFRs3bhQFBQUiLS1NBAQEiCtXrtjtX1RUJPz9/UVaWpooKCgQGzduFFqtVuzevdvFkbsXuXlOS0sTH3zwgTh+/Lg4f/68WLx4sdBqteLkyZMujtz9yM11k6qqKhEdHS1SUlLE0KFDXROsG3MkzxMnThQjRowQ2dnZ4tKlS+LYsWPi8OHDLoza/cjNc25urlCpVGL16tWiqKhI5Obmiri4ODFp0iQXR+5esrKyxJIlS8SXX34pAIi9e/e22V+Ja6FHFyOJiYkiNTW1RdugQYPEokWL7PZfuHChGDRoUIu2WbNmiccee8xpMXoCuXm2Z/DgwWLZsmUdHZrHcTTXkydPFm+99ZZYunQpi5F7IDfPX3/9tQgJCRGVlZWuCM9jyM3zihUrRHR0dIu2NWvWiMjISKfF6GnupRhR4lrosbdpGhoakJeXh5SUlBbtKSkpOHLkiN19jh492qr/uHHjcOLECZhMJqfF6s4cyfOdrFYrDAYDQkNDnRGix3A011u2bMHFixexdOlSZ4foERzJ8759+5CQkIAPP/wQvXv3xsCBA7FgwQLU1dW5ImS35Eiek5OTUVxcjKysLAghcOPGDezevRtPPfWUK0L2GkpcC93iqb2OqKiogMViQVhYWIv2sLAwlJWV2d2nrKzMbn+z2YyKigqEh4c7LV535Uie7/Txxx+jpqYGzz//vDNC9BiO5PrChQtYtGgRcnNzodF47D/3DuVInouKinDo0CH4+vpi7969qKiowOzZs3Hz5k3OG7kLR/KcnJyMbdu2YfLkyaivr4fZbMbEiRPxySefuCJkr6HEtdBjR0aaSJLU4mchRKu29vrba6eW5Oa5yY4dO/DOO+9g586d6Nmzp7PC8yj3mmuLxYIpU6Zg2bJlGDhwoKvC8xhy3tNWqxWSJGHbtm1ITEzEhAkTsHLlSnz66accHWmHnDwXFBTg9ddfx9tvv428vDzs378fly5dQmpqqitC9SquvhZ67H+VunfvDrVa3arCLi8vb1XxNenVq5fd/hqNBt26dXNarO7MkTw32blzJ2bOnIldu3Zh7NixzgzTI8jNtcFgwIkTJ5Cfn4+5c+cCsF00hRDQaDQ4cOAAxowZ45LY3Ykj7+nw8HD07t0bISEhzW2xsbEQQqC4uBgxMTFOjdkdOZLn5cuXY+TIkXjjjTcAAA8//DACAgIwatQovPfeexy97iBKXAs9dmTEx8cH8fHxyM7ObtGenZ2N5ORku/skJSW16n/gwAEkJCRAq9U6LVZ35kieAduIyIsvvojt27fzfu89kpvr4OBg/PTTTzh16lTzlpqaigcffBCnTp3CiBEjXBW6W3HkPT1y5EiUlJTg1q1bzW3nz5+HSqVCZGSkU+N1V47kuba2FipVy8uWWq0G8Nv/3On+KXItdNrU2E6g6WNjmZmZoqCgQMybN08EBASIy5cvCyGEWLRokZg2bVpz/6aPM82fP18UFBSIzMxMfrT3HsjN8/bt24VGoxFr164VpaWlzVtVVZVSL8FtyM31nfhpmnsjN88Gg0FERkaK5557Tpw9e1bk5OSImJgY8fLLLyv1EtyC3Dxv2bJFaDQakZGRIS5evCgOHTokEhISRGJiolIvwS0YDAaRn58v8vPzBQCxcuVKkZ+f3/wR6s5wLfToYkQIIdauXSv69u0rfHx8xPDhw0VOTk7z72bMmCFGjx7dov8PP/wghg0bJnx8fES/fv3EunXrXByxe5KT59GjRwsArbYZM2a4PnA3JPc9fTsWI/dObp4LCwvF2LFjhZ+fn4iMjBTp6emitrbWxVG7H7l5XrNmjRg8eLDw8/MT4eHh4oUXXhDFxcUujtq9fP/9923+ze0M10JJCI5tERERkXI8ds4IERERuQcWI0RERKQoFiNERESkKBYjREREpCgWI0RERKQoFiNERESkKBYjREREpCgWI0RERKQoFiNERESkKBYjREREpCgWI0RERKSo/wc15kNrtuD/NgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAosAAAHrCAYAAACn9tfQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACs20lEQVR4nOzdd3zM9x/A8dflsrckROy9StHYoyhCxN6blpaqVVWl1VL1o7RVm+pSe1Ob2BQ1W2LvGIks2fPuvr8/IkcqIYlLLrm8n4+H36/53n2/977c5fLO5/N5vz8qRVEUhBBCCCGESIOZsQMQQgghhBC5lySLQgghhBAiXZIsCiGEEEKIdEmyKIQQQggh0iXJohBCCCGESJcki0IIIYQQIl2SLAohhBBCiHRJsiiEEEIIIdIlyaIQQgghhEiXJItCZIJKpcrQv0OHDnHo0CFUKhUbNmwwdtiZdvfuXVQqFUuXLtUfO378OJMnTyY8PNxocZmKpk2b0rRpU2OH8VJpvQfSM3nyZFQqVYauO3HiREqUKIG5uTnOzs6vF+RrWrVqFbNnz07zNpVKxeTJk3M0HiFyK3NjByBEXnLixIlUX3/zzTccPHiQAwcOpDpepUoVzp07l5OhGZSHhwcnTpygbNmy+mPHjx/n66+/ZuDAgUb/JZ/XLVy40NghvFJa74HX9eeff/K///2PL774Am9vb6ysrAx27axYtWoVfn5+jB49+oXbTpw4QbFixXI+KCFyIUkWhciEevXqpfq6YMGCmJmZvXA8r7OysjK555QRsbGx2NraZvvjVKlSJdsf43Vlx3vAz88PgJEjR1KoUCGDXtvQ8uP7X4j0yDS0ENksKSmJL774giJFiuDo6EiLFi24du3aC/fbt28fzZs3x9HREVtbWxo2bMj+/ftfef2lS5eiUqm4e/duquMp0+CHDh3SH2vatClVq1bl9OnTNG7cGFtbW8qUKcO3336LTqfT3++/U5CTJ0/m008/BaB06dKpptvTc/v2bXr27EmRIkWwsrLC3d2d5s2b888//6T63owbN47ChQtja2tLo0aNOHXqFKVKlWLgwIH6+6U3zZnWc1+7di1eXl54eHhgY2ND5cqVGT9+PDExManOHThwIPb29ly8eBEvLy8cHBxo3rw5AImJiUydOpVKlSphZWVFwYIFeffddwkODk73+Wbmeac1Df3gwQO6du2Kg4MDzs7O9OnTh9OnT78wFZwS99WrV2nVqhV2dnZ4eHjw7bffAnDy5EkaNWqEnZ0dFSpU4I8//nghRj8/Pzp06ECBAgWwtramRo0aL9wvvWnoHTt2UKNGDaysrChdujTff//9K78nAKVKlWLixIkAuLu7p5rmTW/K97/vg5TX++DBg3z44Ye4ubnh6upK586defTo0Qvnr1q1ivr162Nvb4+9vT01atTg119/BZJfgx07dnDv3r1US0hSpBVTRr5vKT93q1evztDPvRB5gYwsCpHNPv/8cxo2bMgvv/xCZGQkn332Ge3atePKlSuo1WoAVqxYQf/+/enQoQN//PEHFhYW/PTTT7Rq1Yo9e/bokxhDCAwMpE+fPnzyySdMmjSJzZs3M2HCBIoUKUL//v3TPGfw4MGEhYUxb948Nm3ahIeHB/DyEbI2bdqg1WqZOXMmJUqUICQkhOPHj6da8/j++++zbNkyxo4dS8uWLfHz86Nz585ERUVl+fnduHGDNm3aMHr0aOzs7Lh69SozZszg1KlTLywXSExMpH379gwZMoTx48ej0WjQ6XR06NCBo0ePMm7cOBo0aMC9e/eYNGkSTZs25cyZM9jY2LzW8/6vmJgYmjVrRlhYGDNmzKBcuXLs3r2bHj16pHn/pKQkOnfuzNChQ/n0009ZtWoVEyZMIDIyko0bN/LZZ59RrFgx5s2bx8CBA6latSqenp4AXLt2jQYNGlCoUCHmzp2Lq6srK1asYODAgTx+/Jhx48alG+f+/fvp0KED9evXZ82aNfrn+fjx45e8Isk2b97MggUL+PXXX9m9ezdOTk5ZnuYdPHgwPj4+rFq1ivv37/Ppp5/St2/fVK/vV199xTfffEPnzp355JNPcHJyws/Pj3v37gHJSwE++OADbt26xebNm1/5mJn9vmXk516IPEMRQmTZgAEDFDs7uzRvO3jwoAIobdq0SXV83bp1CqCcOHFCURRFiYmJUVxcXJR27dqlup9Wq1WqV6+u1KlT56Ux/P777wqg3LlzJ83HP3jwoP5YkyZNFED5+++/U923SpUqSqtWrfRf37lzRwGU33//XX/su+++S/Nx0hISEqIAyuzZs9O9z5UrVxRA+fjjj1MdX7lypQIoAwYM0B+bNGmSktbHVXrPPYVOp1OSkpKUw4cPK4Dy77//6m8bMGCAAii//fZbqnNWr16tAMrGjRtTHT99+rQCKAsXLkz3OWXkeStK8uvQpEkT/dcLFixQAGXXrl2p7jdkyJAXXoeUuJ+PLykpSSlYsKACKOfOndMfDw0NVdRqtTJmzBj9sZ49eypWVlaKv79/qsfy9vZWbG1tlfDwcEVR0n4P1K1bVylSpIgSFxenPxYZGam4uLik+fr8V8rrGBwcnOo4oEyaNOmF+5csWTLV+yDl9R42bFiq+82cOVMBlICAAEVRFOX27duKWq1W+vTp89J4fHx8lJIlS6Z5239jyuj3LaM/90LkJTINLUQ2a9++faqv33zzTQD9CMfx48cJCwtjwIABaDQa/T+dTkfr1q05ffr0C1Oor6Nw4cLUqVPnhZhS4jEEFxcXypYty3fffcesWbM4f/58qmlugIMHDwLQp0+fVMe7d++OuXnWJz1u375N7969KVy4MGq1GgsLC5o0aQLAlStXXrh/ly5dUn29fft2nJ2dadeuXarXo0aNGhQuXPilU+8Zed5pOXz4MA4ODrRu3TrV8V69eqV5f5VKRZs2bfRfm5ubU65cOTw8PKhZs2aqeAoVKpTqtT1w4ADNmzenePHiqa45cOBAYmNjXyjiShETE8Pp06fp3Lkz1tbW+uMODg60a9fulc/RkF71M+Xr64tWq+Wjjz4y2GNm9vv2qhiFyEskWRQim7m6uqb6OqUCNC4uDkA/hde1a1csLCxS/ZsxYwaKohAWFpZt8aTElBKPIahUKvbv30+rVq2YOXMmb731FgULFmTkyJH6KebQ0FAgOXl9nrm5eZoxZkR0dDSNGzfm77//ZurUqRw6dIjTp0+zadMmgBeeo62tLY6OjqmOPX78mPDwcCwtLV94PQIDAwkJCXmt552W0NBQ3N3dXzie1rGUuJ9P2AAsLS1xcXF54b6WlpbEx8eneqyUZQTPK1KkiP72tDx58gSdTvfC6wUvvobZ7VU/UylrSw1ZzZzZ79urYhQiL5E1i0IYmZubGwDz5s1LtwIzvaQB0CcNCQkJqY6/LKnJCSVLltQXE1y/fp1169YxefJkEhMTWbx4sf6XaWBgIEWLFtWfp9FoXvjF+/xzfL7dyn+f44EDB3j06BGHDh3SjyYC6a4XTKtoJqVoYvfu3Wme4+DgkN5TBl79vNPi6urKqVOnXjgeGBj40sfKCldXVwICAl44nlIgkvJ+/K8CBQqgUqnSjOl147Sysnrh/QvpJ66vUrBgQSC5aOi/I4FZldXvmxCmQEYWhTCyhg0b4uzszOXLl6lVq1aa/ywtLdM9v1SpUgBcuHAh1fGtW7caNM7XGRmpUKECEydOpFq1avr+kynVwCtXrkx133Xr1qHRaFIdS+85btu2LdXXKcnff/v3/fTTTxmOtW3btoSGhqLVatN8LSpWrJjha6X1vNPSpEkToqKi2LVrV6rja9asyfBjZVTz5s31SfXzli1bhq2tbbp/sNjZ2VGnTh02bdqUaqQyKirqhdchs0qVKvXCa3vgwAGio6OzdD0vLy/UajWLFi166f0yM6Ke1e+bEKZARhaFMDJ7e3vmzZvHgAEDCAsLo2vXrhQqVIjg4GD+/fdfgoODX/pLr3bt2lSsWJGxY8ei0WgoUKAAmzdv5tixYwaNs1q1agDMmTOHAQMGYGFhQcWKFdMcabtw4QLDhw+nW7dulC9fHktLSw4cOMCFCxcYP348AJUrV6Zv377Mnj0bCwsLWrRogZ+fH99///0LU8Nt2rTBxcWFQYMGMWXKFMzNzVm6dCn3799Pdb8GDRpQoEABhg4dyqRJk7CwsGDlypX8+++/GX6ePXv2ZOXKlbRp04ZRo0ZRp04dLCwsePDgAQcPHqRDhw506tQpzXMz8rzTMmDAAH788Uf69u3L1KlTKVeuHLt27WLPnj0AmJkZ7u/6SZMmsX37dpo1a8ZXX32Fi4sLK1euZMeOHcycORMnJ6d0z/3mm29o3bo1LVu25JNPPkGr1TJjxgzs7Oxea6lEv379+PLLL/nqq69o0qQJly9fZv78+S+N5WVKlSrF559/zjfffENcXBy9evXCycmJy5cvExISwtdffw0kv6c3bdrEokWL8PT0xMzMjFq1aqV5zdf5vgmR5xm7wkaIvCwj1dDr169PdTytKlNFUZTDhw8rPj4+iouLi2JhYaEULVpU8fHxeeH8tFy/fl3x8vJSHB0dlYIFCyojRoxQduzYkWY19BtvvJHm83i+KjS9GCdMmKAUKVJEMTMze+Haz3v8+LEycOBApVKlSoqdnZ1ib2+vvPnmm8qPP/6oaDQa/f0SEhKUTz75RClUqJBibW2t1KtXTzlx4sQLVbCKoiinTp1SGjRooNjZ2SlFixZVJk2apPzyyy8vVEMfP35cqV+/vmJra6sULFhQGTx4sHLu3Lk0q4rTe+2SkpKU77//XqlevbpibW2t2NvbK5UqVVKGDBmi3LhxI81zMvO8/1sNrSiK4u/vr3Tu3Fmxt7dXHBwclC5duig7d+5UAOXPP/98ZdzpvbYlS5ZUfHx8Uh27ePGi0q5dO8XJyUmxtLRUqlev/sJrnd57YOvWrcqbb76pWFpaKiVKlFC+/fbbdKvV/yu9auiEhARl3LhxSvHixRUbGxulSZMmyj///JNuNfTp06dTnZ9W5b+iKMqyZcuU2rVr61/DmjVrpno+YWFhSteuXRVnZ2dFpVKleg6kUaGdke9bZn/uhcgLVIqiKDmeoQohxEuUKlWKpk2bZmhfYlM2bdo0Jk6ciL+/v2w9J4QwGpmGFkKIXGD+/PkAVKpUiaSkJA4cOMDcuXPp27evJIpCCKOSZFEIIXIBW1tbfvzxR+7evUtCQgIlSpTgs88+02+RJ4QQxiLT0EIIIYQQIl3SOkcIIYQQQqRLkkUhhBBCCJEuSRaFEEIIIUS68kSyqCgKkZGRyPJKIYQQQoiclSeSxaioKJycnIiKijJ2KEIIIYQQ+UqeSBaFEEIIIYRxSLIohBBCCCHSJcmiEEIIIYRIlySLQgghhBAiXZIsCiGEEEKIdJnM3tCKoqDRaNBqtcYORaRDrVZjbm6OSqUydihCCCGEyCCTSBYTExMJCAggNjbW2KGIV7C1tcXDwwNLS0tjhyKEEEKIDMjzyaJOp+POnTuo1WqKFCmCpaWljFzlQoqikJiYSHBwMHfu3KF8+fKYmckqCCGEECK3y/PJYmJiIjqdjuLFi2Nra2vscMRL2NjYYGFhwb1790hMTMTa2trYIQkhhBDiFUxmaEdGqfIGeZ2EEEKIvEV+cwshhBBCiHRJsiiEEEIIIdIlyaIQQgghhEiXJItGNnHiRKysrOjdu7exQxFCCCGEeEGmk8UjR47Qrl07ihQpgkqlYsuWLa885/Dhw3h6emJtbU2ZMmVYvHhxVmI1SePGjWPWrFmsXr2amzdvZstjLFy4kNKlS2NtbY2npydHjx595TmTJ09GpVKl+le4cOFsiU8IIYQQuVemk8WYmBiqV6/O/PnzM3T/O3fu0KZNGxo3bsz58+f5/PPPGTlyJBs3bsx0sKbI0dGR9957DzMzMy5evGjw669du5bRo0fzxRdfcP78eRo3boy3tzf+/v6vPPeNN94gICBA/y874hNCCCFE7pbpPove3t54e3tn+P6LFy+mRIkSzJ49G4DKlStz5swZvv/+e7p06ZLZh38lRVGIj4s3+HUzwtrGOksNwTUaDba2tvj5+dGpUyeDxjRr1iwGDRrE4MGDAZg9ezZ79uxh0aJFTJ8+/aXnmpuby2iiEEIIkUMURSHsQTCuxQsZO5RUsr0p94kTJ/Dy8kp1rFWrVvz6668kJSVhYWHxwjkJCQkkJCTov46MjMzw48XHxdOkXOusB/waDt/cjY2tTabPmzhxItHR0fj5+aV7n2nTpjFt2rSXXmfXrl00btxY/3ViYiJnz55l/Pjxqe7n5eXF8ePHXxnXjRs3KFKkCFZWVtStW5dp06ZRpkyZV54nhMgcXWQUcX+fJenaTZJu3UUXGYUuJgZdTCwkaVAUBVBAp4CigKIDJfkXC4pi7PDFfynKs9cn5WsAJfl/9C/Z86+doqD/6oWXVHnxmALKi3dM49wM3ihvo1wh5T1z3rUULXx/MXI0z2R7shgYGIi7u3uqY+7u7mg0GkJCQvDw8HjhnOnTp/P1119nd2i5wtmzZ1m8eDE+Pj4vTRaHDh1K9+7dX3qtokWLpvo6JCQErVab5vc/MDDwpdeqW7cuy5Yto0KFCjx+/JipU6fSoEEDLl26hKur6yuelRAiI3Tx8UT89AfR67agJCQaOxyRQ9KbfzLqRrWyS27u8PR10EUbZ4Y0PTmy3d9/p2ZTMuf0pmwnTJjAmDFj9F9HRkZSvHjxDD2WtY01h2/uzmKkr8faJnPb1+l0OoYMGcLw4cOpW7cuffr0ITExEUtLyxfu6+LigouLS5biSuv7/6rp8ueXGlSrVo369etTtmxZ/vjjj1SvjRAia3TRMQQN+5TEy9cAsChTEqsa1bAoXwa1SwFUdraY2dmisrAAlQrMVMn/rzJDpUL/36T8t8gwRVFIfBJNrH8wsQ+CiX8c/uxf0BPiH4ejjc968q4yM0Nta4W5rRVmVpaoLc0xS/lnbYGZpcXTYxaYWZmjtrLEzFwN5mpUahVmajUqczNUZmaozNWozFTJ/69WY6ZWoVKrwdwMMzOzp/d7+r4wUwGq5PeEWcr7JOV3QPL7J/m+T4+pVM+9l1RPj5HqfaUyA1BlfIlVhu6WsWtl+G2d4dhefb+c/lFSFLh88BzHV+xDk5iEYqbifmIkHSZ1zNlAXiHbk8XChQu/MIoVFBSEubl5uiNUVlZWWFlZZenxVCpVlqaCjWHevHkEBwczZcoU/P390Wg0XLt2jWrVqr1w36xMQ7u5uaFWq9P8/v93tPFV7OzsqFatGjdu3MjUeUKIFymKQsjn35B4+Rpmzk64Th6HdcO6WVrzLF4uISyK8It3Cb9wh6jrD4m6FUD0rUckRcS+4kxzLJxssXJ1xNLVEStXByxdHLB67r8tnOywsLPG3MEGCwcbzO2T/6ltLOW1FK8UHRbJuvE/c3HvaQDKN6zB3wG3uXI1iL5lihk5utSyPVmsX78+27ZtS3Vs79691KpVK831ivnFw4cP+fLLL1m9ejV2dnaUL18eKysr/Pz80kwWszINbWlpiaenJ76+vqkKZ3x9fenQoUOm4k1ISODKlSupklEhRNbEHf6L+OOnUVlZUmj+t1hWqmDskEyCNj6RsHO3CD19jfALdwj/9w6xD0LSvrNKhW0xN+zLFMa2uBs2RVyxLeKKTVFXbIu6YuPhitrmxVkeIQzh2rGLrBqzkMigJ6gt1PiM60WTQW3Y2yC557K9o72RI0wt08lidHR0qn6Ad+7c4Z9//sHFxYUSJUowYcIEHj58yLJly4DkJGf+/PmMGTOG999/nxMnTvDrr7+yevVqwz2LPGjkyJF4e3vj4+MDJFceV65cOd11i1mdhh4zZgz9+vWjVq1a1K9fnyVLluDv78/QoUP195k/fz6bN29m//79+mNjx46lXbt2lChRgqCgIKZOnUpkZCQDBgzIdAxCiGcUnY7wuT8D4NCnmySKr0Gn0RJ25gZBR/wIOXGFsHM30SUkvXA/u9LuOFcrjVOVEjiU9cC+nAf2pQpLMihynCYhiR3fr+HQzzsAKFS2CP3mjKBY1dIAREVEAeDo5GC0GNOS6WTxzJkzNGvWTP91yvq1AQMGsHTpUgICAlL18CtdujQ7d+7k448/ZsGCBRQpUoS5c+dmS9ucvGL79u0cOHCAK1eupDperVq1lxa5ZEWPHj0IDQ1lypQpBAQEULVqVXbu3EnJkiX19wkJCeHWrVupznvw4AG9evUiJCSEggULUq9ePU6ePJnqPCFE5iVeuIzG/wEqO1scB/Q0djh5TlJULI8PXiBg7zke7/+HxCfRqW63KuSMW71KuNQsi/ObpXGqWhJLJzsjRSvEM49vPmT5yHk8vHwXgAZ9WtBhYj8sbZKX3el0OqIjYwBwcM5dyaJKUXJ/34XIyEicnJyIiIjA0dEx1W3x8fHcuXNHv0OJyN3k9RL5Xdh384leuxnbNi1xmzL+1ScIdIkaAg/+i/+6owT6nkOXqNHfZuFsh3vTNynYsApu9StjX9ZD1guKXEVRFI6v3MefU5eTFJ+IXQEHeswYQjWvWqnuFxkeRYsqbQE4dscXS6vcM/KdI9XQQgghQNFqid13GAC7lk2MHE3uF3HFn7srDnJ/83ESw6L0x+3LeuDh9RYeXm/hUrtCciWxELlQdGgkaz/7Cb99ZwGo0LgavX8YhlOhAi/cNyoyeZTcytoqVyWKIMmiEELkmKQ7/uhCw1DZWGNdr9arT8iHFK2OAN9z3Pp5N8F/XdYftyrkTInODSnerRHOb8hyGJH7XT3yL6s+WURUcDhqS3PajuvF2+95Y2aW9k7LUeFP1yvmsilokGRRCCFyTOKlqwBYVq6Y3D9R6Ok0Wh5sOcHVHzcTfSsAAJXajCLetSjZuxmF3q4qI4giT9AkJLF95moO/7oTAPfyxeg3ZwRFq7z8j5zIp8UtDrmsuAUkWRRCiByT0oDb8o2KRo4k91B0Ou5vPs7VWc+SRAsnW0r3bU6Zd1tiW8zNyBEKkXEB1++zYuQ8Hl1NLvRt1N+Ldp/3xdL61dPKUfpkMXe1zQFJFoUQIsekJItWb1QyciS5Q+jp6/w7cRnh/94GwLKAPeU/9KHMe15Y2OeNzRWEgOQilr+W72Xr/1aQlJCEvasjPWcO4Y3mnhm+RlRE8prF3NY2ByRZFEKIHKEkJJJ4PblFlWWV/D2yGPf4CRcnr+TB5uMAmNvbUGFEO8oOaiVJoshzokIiWDNuMZcPnAegUpPq9PruQxwLOWfuOk9HFu1lZFEIIfKnpDt3QavFzMkRtUfmtts0FYqi4L/2CBcmLU/ebk+lolTvplQZ3x3rgk7GDk+ITLty6B9Wj11EVEgE5pYWtJvQm0YDWqVbxPIyubUhN0iyKIQQOULzIHk9nnmJovmyD2Dso1DOj/2Fxwf+BcC5ehlqfjeIAm+WNnJkQmReUnwi275dxdGluwEoXKEY/eaOpEilElm+phS4CCFEPqd5FAiAeREPI0eS8wJ8z3N25CISn0RjZmVB5bFdKP+hj1Q3izwp4Np9lo+cS8C1+wA0HtiatuN7Z6iI5WWiwp+uWZTWOUIIkT89SxYLGzmSnKPTaLk8Yz3X520FwPnN0tSaPwzHCkWNHJkQmacoCkf/2MO2aSvRJCZh7+ZEr++GUqVZTYNcPzI8EgB7x9y3ZjHzk+rCoCZOnIiVlRW9e/c2dihCiGykefR0Grpo/kgWE0IjOdZtmj5RLPOeF022TZZEUeRJUcHh/PzuDDZPXoomMYnKzWoybtcMgyWKAP53HgBQpETum32QZNHIxo0bx6xZs1i9ejU3b940+PWPHDlCu3btKFKkCCqVii1btmT43IULF+r3cPb09OTo0aMGj0+I/ELzMP9MQ0ffDuBQ20mEnLiCub0NdZaMpMa0gaitpBG5yHsuHTjHzNbjuHLoH8wtLej89UDe/20cDgWdDfYYsTGxBNxP/owoU6GUwa5rKJIsGpmjoyPvvfceZmZmXLx40eDXj4mJoXr16syfPz9T561du5bRo0fzxRdfcP78eRo3boy3tzf+/v4Gj1EIU6fodGgC8sc0dOipaxxqO4mYO4+xLeZG0x1fU6x9PWOHJUSmJcYnsnHS7/zy3kyiQyPxqFSCMdun0XhAa4MXqd29cQ8Al4IuOLvkvs4AJrdmUVEUEuMSjPLYljZWWXoDaTQabG1t8fPzo1OnTgaNydvbG29v70yfN2vWLAYNGsTgwYMBmD17Nnv27GHRokVMnz7doDEKYeq0oWGQmARmZqgLFzJ2ONkmYO9Z/n5/LrqEJArUKEP9ZWOxzmSvOSFyg0dX7rF81DwCrydPDb/9njdtx/XC4jWLWNJz+9pdAMpULJUt139dJpcsJsYlML7KQKM89reXl2Jla53p8yZOnEh0dDR+fn7p3mfatGlMmzbtpdfZtWsXjRs3zvTj/1diYiJnz55l/PjxqY57eXlx/Pjx176+EPmN9ukUtNq9ICpzk/vYBeDRrtP8/cFclCQtHq09qb1wOOa2VsYOS4hM0el0HF26m+3frkaTmISDmxO9vv+Qyk1rZOvjpiSLpcu/fP9oYzHNT6085OzZsyxevBgfH5+XJotDhw6le/fuL71W0aKGWTgeEhKCVqvF3T1142B3d3cCAwMN8hhC5CfakFAAzAsVNHIk2ePh9lOcGjoPRaOlWMf61Jo/TNriiDwnIugJa8Yu5uqR5F6gVZq/Ra+ZQ7F3dcz2x75z4y4AZSrmzr6jJpcsWtpY8e3lpUZ77MzQ6XQMGTKE4cOHU7duXfr06UNiYiKWli8Oc7u4uODi4mKoUDPkv1PqiqLky2bCQrwubXgEAGYFct9apNf1cPspTg2Zi6LVUbxLQzznDJVEUeQ5fvvOsmbcYmLCorCwsqDDxH406NsyR37nKYrCNb8bAJSrVCbbHy8rTC5ZVKlUWZoKNoZ58+YRHBzMlClT8Pf3R6PRcO3aNapVq/bCfXNyGtrNzQ21Wv3CKGJQUNALo41CiFfTPQkHwKyAs1HjMLTgvy5zeth8FK2OEt3fxvPHD1CppW5S5B2JcQls/d8K/lrhC0CRyiXpN3cEhcsXy7EYAh4EEvI4FLW5morVKuTY42aGySWLecXDhw/58ssvWb16NXZ2dpQvXx4rKyv8/PzSTBZzchra0tIST09PfH19UxXc+Pr60qFDB4M8hhD5ifZJ8sii2tl0RhYjLvtzYuAP6BI1FPGpI4miyHMeXrrL8lHzeHzzIQBNB/vg82lPzHO4xdPFM5cAqFStAtaZnKHMKZIsGsnIkSPx9vbGx8cHAHNzcypXrpzuusWsTkNHR0en6t94584d/vnnH1xcXChRInkPy/nz57N582b279+vv9+YMWPo168ftWrVon79+ixZsgR/f3+GDh2a6RiEyO9MbWQx9kEIf/WegSYqDtd6lai9YJgkiiLP0Ol0HPltF9tnrkabqMGhoDO9f/iQSm9XN0o8F84k/96vVquqUR4/IyRZNILt27dz4MABrly5kup4tWrVXlrkkhVnzpyhWbNm+q/HjBkDwIABA1i6dCmQXNBy69atVOf16NGD0NBQpkyZQkBAAFWrVmXnzp2ULJk7K7WEyM20T5NFtQmsWUyKjuN4n5nEBz7BsWIx6i8dgzqb2okIYWgRj8NYNXYR148m9zWu2sKTHjOHYO+S/UUs6UkZWazmWcVoMbyKSlEUxdhBvEpkZCROTk5ERETg6Jj6BY2Pj+fOnTv6nUZE7iavl8iPAnoMJunWHQrOn4FNvVrGDifLFEXh1PtzeLj9FNbuzjTd+Q22RV2NHZYQGXJx7xnWfvYTMU+isLC2pOOX/anfu7lRCzcjw6PwqtoenU7H9rMbKOSROzsmyMiiEEJkM214OJD31yzeWLCdh9tPobJQU/fX0ZIoijwhMS6BLd8s58SqfQAUfaMU/eaMwL2c8fcpP/PXOXQ6HaXLl8y1iSJIsiiEENlK0enQ6VvnOBs3mNcQdOQiftPWAFD9m/641sqdVZtCPO+B3x2Wj5xH0O1HADQb0o42Y7rneBFLev4+fBqAuk1qGzmSl5NkUQghspEuKhq0OiDvrlmMCwjj1NB5oFMo2bMJpQe0MHZIQryUTqfj8C872PHdGrRJWpzcC9B71jAqNHyx24ixKIrC30fOAFDn7dy9PEWSRSGEyEa6p21zVHa2qNJouJ/bKTodZ0ctJjEsGqdqpagx/V1pzi9ytfDAMFaNWcCN408LR1rVpse3H2BXwMHIkaV2+/pdHvkHYGFpwVv1jVOJnVGSLAohRDbK6+sVb/2yh6AjfqhtLKmzaDhqm7yX8Ir848LuU6wdv4TY8GgsbazoNGkAdXs0y5V/4BzadRRIHlW0tbM1cjQvJ8miEEJko5SRxby4XjHiyn38/pe8TrHapD44lCti5IiESFtCbDxbpizj5JoDABSrVoZ+s4dTqGzufc8efposNm39+juvZTdJFoUQIhvpIiIBMHMyXh+3rNAmJHHmowXoEpJwb15D1imKXMv/wi1WjJ5P8O0AVCoVzYa0w3tMd8wtc2+K8+h+AFcvXkelUtHYq4Gxw3ml3PudFEIIE6CLiQXAzN7OyJFkztXZm4m47I+li0PyVn65cBpP5G86rY6DS7ax84d16DRanAq70GfWR5Rv8IaxQ3ulPZuT2/h4NqyJi1sBI0fzapIsCiFENlJSksVcvibpeZHXH3J9/jYAas4chHUhZ+MGJMR/hAeEsvLjBdw8eRmAN73r0H36B9g52xs5sldTFIXdm5KTxdad8saIvSSLQgiRjXQxMUByNXReoOh0nB/3K0qSlsJeb1HEJ3f3fxP5z7+7/mbd+CXERsRgaWtF58kDqdOtaZ4Z/b7ud4M71+9iYWlBszZvGzucDJGd341s4sSJWFlZ0bt3b2OHIoTIBrrYOADM7PLGNPS9NUcIPXkVtY0VNf43IM/8AhamLyEmnjXjFrP0wx+JjYihRPWyjN3xLXW7585q5/RsWpE8at+0dWMcnHJXO5/0SLJoZOPGjWPWrFmsXr2amzdvZstjPHz4kL59++Lq6oqtrS01atTg7Nmzrzxv4cKF+j2cPT09OXr0aLbEJ4QpU6JTRhZtjBzJqyWEROL3zSoAqozrim3x3Lv9mMhf/P+9xfc+4/l73SFUKhUtPurIyA1fU7C0h7FDy5SY6Fj2bPIFoHP/9kaOJuMkWTQyR0dH3nvvPczMzLh48aLBr//kyRMaNmyIhYUFu3bt4vLly/zwww84Ozu/9Ly1a9cyevRovvjiC86fP0/jxo3x9vbG39/f4DEKYcr0BS55YGTRb+pqEp9E4/RGScq+39rY4QiBTqtj34ItzOnyFSF3A3Eu4sqw1V/i82lP1BZ5byXd7k2+xMbEUapcCd6qX8PY4WRY3vtOv4KiKGhjE4zy2GpbqywNhWs0GmxtbfHz86NTp04GjWnGjBkUL16c33//XX+sVKlSrzxv1qxZDBo0iMGDBwMwe/Zs9uzZw6JFi5g+fbpBYxTClOWVApfwi3e5t/YIADVnvoeZudrIEYn87snDEFZ+vIBbp64AUMOnHt2mDcbWKfcXsaRFURQ2LdsKQOf+HfLU1LnJJYva2AS2ln3PKI/d/tZvmNtZZ/q8iRMnEh0djZ+fX7r3mTZtGtOmTXvpdXbt2kXjxqmbe27dupVWrVrRrVs3Dh8+TNGiRRk2bBjvv/9+utdJTEzk7NmzjB8/PtVxLy8vjh8/noFnJIRIkRcKXBRF4eLkFaAoFO/cABfP8sYOSeRz57efYP3nvxAXGYOVnTWdv36X2l3ezlMJ1n9dPHuJG5dvYmVtSZuurYwdTqaYXLKY15w9e5bFixfj4+Pz0mRx6NChdO/e/aXXKlq06AvHbt++zaJFixgzZgyff/45p06dYuTIkVhZWdG/f/80rxMSEoJWq8Xd3T3VcXd3dwIDAzPwrIQQKfJCn8VA3/ME/3UZMysL3pjQw9jhiHwsPjqOTZN+5/TG5FHuEtXL0nfOCAqWKmzkyF7fikXJuyF5dWiOo3PeKGxJYXLJotrWiva3fjPaY2eGTqdjyJAhDB8+nLp169KnTx8SExOxtHxx71UXFxdcXFwyHZNOp6NWrVr6UcmaNWty6dIlFi1alG6ymOK/f8EpipKn/6oTwhhy+zS0LkmjL2op935rKWoRRnPv/A2Wj5pHqH8QKrPkIpZWI7vkybWJ/3Xnxl39XtB9h/U0cjSZl/dfgf9QqVRZmgo2hnnz5hEcHMyUKVPw9/dHo9Fw7do1qlWr9sJ9szoN7eHhQZUqVVIdq1y5Mhs3bkz3Om5ubqjV6hdGEYOCgl4YbRRCpE9RFP3IYm6dhr6z4iBRNx5h6eJAxZEdjB2OyId0Wh37Fm5hz+wN6LQ6ChR1o8+PH1G2TmVjh2YwyxasBqBJ60aULl/KuMFkgckli3nFw4cP+fLLL1m9ejV2dnaUL18eKysr/Pz80kwWszoN3bBhQ65du5bq2PXr1ylZsmS617G0tMTT0xNfX99UBTe+vr506CC/TITIKCUhEbRaIHdWQ2ti4rn6ffIfjpXHdsHCMXcmtMJ0hT0IZsXH87lzOvn3VM12Deg2dRA2Trnv5yWrAh88ZvfTdjkDR/Q1cjRZI8mikYwcORJvb298fHwAMDc3p3LlyumuW8zqNPTHH39MgwYNmDZtGt27d+fUqVMsWbKEJUuW6O8zf/58Nm/ezP79+/XHxowZQ79+/ahVqxb169dnyZIl+Pv7M3To0EzHIER+pTwtbgFQ2eS+GY9bv+0lITQSu9LulO73jrHDEfnMua3HWf/FL8RHxWJlb0OXKe9Sq1Njk1vutGzBKrQaLbUavcUbNfPmaKkki0awfft2Dhw4wJUrV1Idr1at2kuLXLKidu3abN68mQkTJjBlyhRKly7N7Nmz6dOnj/4+ISEh3Lp1K9V5PXr0IDQ0lClTphAQEEDVqlXZuXPnS0ckhRCpPT8FrTLLXW1tNTHx3Fi0HYDKYzpjZgLrwkTeEB8Vy8ZJv3NmU/IavlJvlafP7OG4lTC9ZU4P7j5k88rkHVsGjX55nUBuplIURTF2EK8SGRmJk5MTERERODo6protPj6eO3fu6HcaEbmbvF4iP0m8cp3Afh+iLuRG0Z1rjR1OKtfmbeXS/9ZgX6YwLY58J30VRY64e/Y6y0fPJ+x+chGL14jOtBzRGbWJvv++/Ogb9mzeR72mdZi76jtjh5Nl8qekEEJkk9zaYzEpOk4/qljp406SKIpsp9Vo2bdgC3vnbkSn1eFSrCB9Zg+nTK2Kxg4t21z3u8GezfsA+GhC+r2N8wJJFoUQIpvoYuKA3Ffccvt3XxLDorEvU5hinRoYOxxh4kLvB7Fi9Hzunr0OgGfHRnSZ8h42JlxQpSgK8/73EwBeHd6hYrUKRo7o9UiyKIQQ2SSlwCU39ViUUUWRk85uOcaGL38lPioOawcbun4zCM+OjYwdVrY7sucv/j58GgtLC4aMG2TscF6bJItCCJFNcmOPxbsrDpAYFo1daXcZVRTZJi4ylg1f/sq5P/8CoJRnBfrOHo5r8UJGjiz7xccl8OPk+QD0GdKd4qWLGTmi1yfJohBCZBP97i22NkaOJJkuScPNn/cAUOGjdjKqKLLF7TPXWDFqHk8ehmCmNsNrZBdafNTRZItY/mvl4jU88g+gkEdBBo7Mm30V/0uSRSGEyCa6hAQg9/RYfLj9FHEPQ7Byc6REV9OfChQ5S6vRsnfuJnznb0LRKbgUL0S/2cMp5Zm31+tlxv07D1g6bwUAI7/8ENtcNKvwOiRZFEKIbKLEP00Wc0GbKEVR9GsVy7zrhdr6xT3ohciqEP/HrBg1n3vnbwBQq3Njunz9LtYOppEsZYSiKEwb9z0J8YnUbuRJyw6m0+hekkUhhMgm+mTRyviJWcjxK4RfuIuZtQVlBrYwdjjCRCiKwpnNR9n41e8kRMdh7WBLt6mDeKtDQ2OHluO2rdnJ2b/OY2VtxeffjTWpnWgkWRRCiGySm0YWbyzeAUDJHk2wcnV8xb2FeLW4iBjWT/yV89uOA1CmTiX6zPoIl2IFjRxZznv8KIg5UxYCMHTcIIqWLGLkiAxLkkUhhMgmSnw8YPyRxcjrDwn0PQ8qFeWHeBs1FmEabp26wsqPF+iLWFp/3I3mH3bATJ27trXMCTqdjimjvyUqIpoqNSrRY3AXY4dkcPnvVc1lJk6ciJWVFb179zZ2KEIIA1MSEgEwM/LI4q1fdgPg0doT+zIeRo1F5G3aJA07f1jLgp5TePIwBLeS7ozc8DUth3fKl4kiwOqf13P62Fmsbaz5et5EzM1Nbxwuf76yuci4ceOYNWsWq1ev5ubNm9nyGA8fPqRv3764urpia2tLjRo1OHv2bJr3nT59OiqVitGjR7/yugsXLtTv8ezp6cnRo0cNHLkQeZt+ZNHaymgxJEXF4r/hGADlBrc2Whwi7wu+G8jcrpPwnbcZRadQp2sTPtnxLSVrljd2aEZz4/ItFk7/GYDRkz+iZNniRo4oe0iyaGSOjo689957mJmZcfHiRYNf/8mTJzRs2BALCwt27drF5cuX+eGHH3B2dn7hvqdPn2bJkiW8+eabr7zu2rVrGT16NF988QXnz5+ncePGeHt74+/vb/DnIERelTKyqLIyXrLov+EvtLEJOJQviluDykaLQ+RdiqJwav0hfvAZj/+/t7BxtKP//FH0+v5DrO1zRw9RY0iIT+Cr4d+QlJhE45YN6NS3nbFDyjYmN1aqKIr+r/mcprK2zlL1k0ajwdbWFj8/Pzp16mTQmGbMmEHx4sX5/fff9cdKlSr1wv2io6Pp06cPP//8M1OnTn3ldWfNmsWgQYMYPHgwALNnz2bPnj0sWrSI6dOnGyx+IfIynZFHFhVF4c4f+wAoPaC5SVVnipwRGxHNus9/4d8dJwEoW6cyfX78iAJF3YwcmfHN+moet67ewcWtAF/8MM6kf75ML1mMj+dB47ZGeexiR7ejssn8X1kTJ04kOjoaPz+/dO8zbdo0pk2b9tLr7Nq1i8aNG6c6tnXrVlq1akW3bt04fPgwRYsWZdiwYbz//vup7vfRRx/h4+NDixYtXpksJiYmcvbsWcaPH5/quJeXF8ePH3/puULkJ89a5xgnWQw9dY3Iq/dR21hRolvjV58gxHNunrzMyo/nEx4Qhpm5Gu+Pu/HO0Pb5dm3i87av3cXmFdtQqVRMmvs5Lm4FjB1StjK5ZDGvOXv2LIsXL8bHx+elyeLQoUPp3r37S69VtGjRF47dvn2bRYsWMWbMGD7//HNOnTrFyJEjsbKyon///gCsWbOGc+fOcfr06QzFHBISglarxd3dPdVxd3d3AgMDM3QNIfIDJWUHFyONLKaMKhbrVB9LJzujxCDyHm2Sht0/rmf/oq0oioJbqcL0mzOCEtXLGju0XOG63w1mTJgFwAdj36V+0zpGjij7mVyyqLK2ptjR7UZ77MzQ6XQMGTKE4cOHU7duXfr06UNiYiKWli+22XBxccHFxSXTMel0OmrVqqUflaxZsyaXLl1i0aJF9O/fn/v37zNq1Cj27t2LdSbj/++Qu6IoJj0ML0RmGbPPYkJIJA+3nwKgzABpwi0yJvhOAMtHzeP+hdsA1O3elE6TBmJlZ/xeoblBZHgU4wZ/SUJ8Ig2b1+PdUf2MHVKOML1kUaXK0lSwMcybN4/g4GCmTJmCv78/Go2Ga9euUa1atRfum9VpaA8PD6pUqZLqWOXKldm4cSOQPLIZFBSEp6en/natVsuRI0eYP38+CQkJqNWpN393c3NDrVa/MIoYFBT0wmijEPlZysiimRH6LN5dfQhdooYCNcpQoHqZHH98kbekFLFsmryUxNgEbJ3s6Db9fWq0qWfs0HINjUbDxGFTeOQfgEfxwkye+wVmZvljSt7kksW84uHDh3z55ZesXr0aOzs7ypcvj5WVFX5+fmkmi1mdhm7YsCHXrl1Ldez69euULFkSgObNm79Qhf3uu+9SqVIlPvvssxcSRQBLS0s8PT3x9fVNVZDj6+tLhw4dXhqjEPlFcrGdcUYWFZ2OuysOAFBaRhXFK8SER7NuwhIu7EoeiS5X/w36zBqGs4erkSPLXX6cNJ+Th05hZW3FzF++walA/tkJSZJFIxk5ciTe3t74+PgAYG5uTuXKldNdt5jVaeiPP/6YBg0aMG3aNLp3786pU6dYsmQJS5YsAcDBwYGqVaumOsfOzg5XV9dUx+fPn8/mzZvZv38/AGPGjKFfv37UqlWL+vXrs2TJEvz9/Rk6dGimYxTCJCUmgaIAoLLO2ZHF0L+vEXMvCHN7G4q1l5Ehkb4bxy+xcswCIgKTi1jajO1Bs/fbShHLf6z7bRPrf98MwJT5E6lYrYKRI8pZkiwawfbt2zlw4ABXrlxJdbxatWovLXLJitq1a7N582YmTJjAlClTKF26NLNnz6ZPnz6Zuk5ISAi3bt3Sf92jRw9CQ0OZMmUKAQEBVK1alZ07d+pHLIXI71KmoCHnRxbvrUtukF+0fV3MZa2ZSIMmUcOuWes4+NM2FEWhYBkP+s0ZQfFqsmThv04c/JtZX80D4KMJH9CszdtGjijnqRTl6Z++uVhkZCROTk5ERETg6Jh62Dc+Pp47d+7odxIRuZu8XiK/0AQF86hNT1CrKfH33px73Jh4dr45DE1MPG9v+Qq3epVy7LFF3hB06xHLR8/nwcXkIpZ6vd6h45f9sbKVz+T/unrhOh92HUVMdCxtu7fmyx/H58tCThlZFEKIbKDfvSWH2+Y82nkaTUw8diUL4Vq3Yo4+tsjdFEXh5JoDbJmyjMS4BGyd7enx7Qe82dr0W79khf/tB4zq8ykx0bF4NqzJhJlj82WiCFnc7i+zewKvXLmS6tWrY2tri4eHB++++y6hoaFZClgIIfICY+0LfW/tEQBK9Hg73/5iEy+KeRLF70NnsW7CzyTGJVC+YVU+3T1TEsV0hDwOZUSvT3gSGk7FquX57rf/YWFpYeywjCbTyWJm9wQ+duwY/fv3Z9CgQVy6dIn169dz+vRp/TZxQghhioyxe0vs/WCC/7oMQImusmOLSHbt2EW+az2Oi3tOo7ZQ0/7zPgxd/jnOhTNfNJkfRIZHMbLPpwTcD6RYqaLMXjkTe4f83dQ+08ni83sCV65cmdmzZ1O8eHEWLVqU5v1PnjxJqVKlGDlyJKVLl6ZRo0YMGTKEM2fOvHbwQgiRW+l7LObgyKL/hmOgKBRsWAW7EgVz7HFF7qRJSGLrtBUs7vs/Ih4/oVCZIozaPJVmH7TLN/0BMysqIooRvT7h5uVbuBR0Yd7q73EtKEl1pt4tKXsCe3l5pTr+sj2BGzRowIMHD9i5cyeKovD48WM2bNigbxmTloSEBCIjI1P9e5U8UKcjkNdJ5B853WNRUZRUU9Aif3t88yGzO3/JwSXJO5rV792CT3ZMp3jV0kaOLPeKjophVJ9xXPn3Gs4uTsxf8z1FSxYxdli5QqaSxazsCdygQQNWrlxJjx49sLS0pHDhwjg7OzNv3rx0H2f69Ok4OTnp/xUvXjzd+1pYJK8hiI2NzcxTEUaS8jqlvG5CmKpn09A502PxybmbxNx9jNrWiqI+sg4tv1IUheMr9/FD2wk8vHQXuwIOvLdkLN2nDcbSxjh7lOcFMdGxjO4zDr9zl3Es4Mj8tbMoV1n2wk6RpWrozOwJfPnyZUaOHMlXX31Fq1atCAgI4NNPP2Xo0KH8+uuvaZ4zYcIExowZo/86MjIy3YRRrVbj7OxMUFAQALa2trKoOxdSFIXY2FiCgoJwdnZOc2cYIUyJLodHFu9vOQFAEe9a0lsxn4oOi2TtZ0vw801e5lWhcTV6f/8hTu4yjfoysTGxjO47jgtn/HBwsmfBmh+o8EY5Y4eVq2QqWczKnsDTp0+nYcOGfPrppwC8+eab2NnZ0bhxY6ZOnYqHh8cL51hZWWGViUXhhQsX1schcjdnZ2f96yWEKXs2DZ39ozmKVseDP08CUKxD/Wx/PJH7XDt6gZVjFhIVHI7a0py243rx9nvesjbxFaIiohjTfwL/nr6IvaM989b8kO92Z8mITCWLWdkTODY2FnPz1A+TMqpkqPVrKpUKDw8PChUqRFJSkkGuKQzPwsJCRhRFvpFS4JIT1dAhJ66QEBSOhbMd7k3fzPbHE7mHJiGJHd+t4dAvOwBwL1eUfnNGUPSNUsYNLA8IC3nCyF5juX7pJg5O9sxZ+R1VqksT+7Rkehr6VXsCT5gwgYcPH7Js2TIA2rVrx/vvv8+iRYv009CjR4+mTp06FCli2IWjarVakhEhRK6QkyOL9/9MnoIu6lMHM0vZayG/CLzxgOUj5/Hoyj0AGvbzov3nfWRtYgY8fhTE8B6fcO+WPy5uBZi7+nuZen6JTH+qvGpP4ICAgFQ9FwcOHEhUVBTz58/nk08+wdnZmXfeeYcZM2YY7lkIIUQuk1Mji7okDY+2nwKgWEeZgs4PFEXhrxW+bJ26nKSEJOxcHOj13VDeaO5p7NDyhPt3HjC8xycEPAjEvUgh5q+dRcmy6RfSChPYG1oIIXKjJ7MWErVqIw79e1Bg5AfZ9jiB+//heJ+ZWBV0os0/C1CpZY2aKYsKiWDNZz9xef85ACq9XZ1e33+IYyFn4waWR1z+9ypj+k8gLDiM4mWKsWDNLAoXS7vmQjwj8xVCCJENlKfrp7O7dc6Dp1XQRdvVlUTRxF059A+rxy4iKiQCtaU57cb3pvHA1lLEkkHH9p3g8yGTiY+Lp3yVcsxd/Z003M4gSRaFECIbKAmJAKiysaeoNj6RR7uS26QUlylok5UUn8j2Gas58vsuAApXKEa/OSMoUrmkkSPLOzav2MqM8T+i0+mo+3Ytpv88Jd9v4ZcZkiwKIUQ20I8sWmbfyGLggX/RRMdhU9QVl1rls+1xhPEEXLvP8lHzCLiaXAvQaEAr2k3og6V1zjR7z+sURWHRjF9YOncFAG27t+bz7z7F3ELSn8yQ75YQQmQDJTElWcy+kcVHO5ILW4q2rYtKpiJNiqIoHFu2h63/W4kmMQl7Nyd6fTeUKs1qGju0PCMuNo6vR0/nwPbDAAweM5D3PxkoG3dkgSSLQgiRHbI5WdQlagj0PQ9A0bayvZ8piQoOZ/W4n7hyMPn1rdy0Br2+G4pDQWfjBpaHBDwIZOzAL7hx+SbmFuZMmPEJ7Xq2MXZYeZYki0IIkQ2UxJQ1i9kzXRj81yWSImOxKuSMi6f0hzMVlw+eZ/Wni4kOicDc0oL2X/ShUf9WMhqWCf/8fYHPBn/Jk9BwCrg6M+OXb6hRV5rVvw5JFoUQIhtkdzV0SmFLkdaeMgVtAhLjE9n+7SqOLt0NgEelEvSbMwKPitL/LzO2rNzOzM9/RJOkocIb5fj+92nSGscAJFkUQohskLJmkWyohla0umfJYpvaBr++yFmPrvqzYtQ8Aq7dB+Dtd71p+1kvLKSIJcMSExKZ8/VC1i/dDMA7bZswafYEbGxtjByZaZBkUQghskF2FriEnb1BQnAEFo62FGxQxeDXFzlDp9NxdOlutn+7Gk1iEg5uTvT6/kMqN61h7NDylIAHgXw+ZDKXzl8BYMin7/He6P4ydW9AkiwKIUQ2eLZm0fDJ4sMdpwEo7PWW7AWdR0UGhbN67CKuHvkXgCrN36LnjCE4uDkZObK85fiBk3w14n9EPonE0dmBSXM+p3HLBsYOy+TIp4wQQmSD7FqzqCgKj3YlJ4tFvGsZ9NoiZ1zaf5bVny4mJiwKCysL2k/sR8O+LWUkLBO0Wi0//7CU32YvA6By9YpMX/I1RYp7GDky0yTJohBCZIdsGlmMuHSPWP9g1DaWuDeVCs+8JDEuga3TVvLX8r0AFKlUgr5zR+BRQYpYMiPkcSiTRvyP08fOAtB1QEdGT/4Iy2zeWjM/k2RRCCGyQXatWXz0dAq6UNM3MbezNui1RfZ5ePkey0fO5fHNhwA0GdSGtuN6YW6VfU3bTdFR3+N88/G3hIdFYG1jzeffjaV155bGDsvkSbIohBDZIGUaGgNv9xew9xwgU9B5hU6n48hvu9g+czXaRA0OBZ3p/cOHVHq7urFDy1Pi4xKY980ifbVz+SrlmLroS0qXL2XcwPIJSRaFECIbKAlPp6ENOLIY+zCUiEv3QKWicPMaBruuyB4RQU9Y/ckirh29AEDVFp70mDEEe1dHI0eWt9y4fIsvP/qG29fuANDrg258NOEDmXbOQZIsCiGEgSk6HWi1AKgMOLIYuC95+zeXWuWxkoQjV/PzPcOacT8R8yQKC2tLOn7Zn/q9m0sRSyYoisK6Xzcy738/kZiQiEtBFybNmUD9prK9ZU6TZFEIIQxM35Abwxa4pOwF7dGypsGuKQwrMS6BP6cu5/jKfQAUrVKKfnNH4F6uqJEjy1sePwpi2qffceLgKQAatqjPl7M+w8WtgJEjy58kWRRCCENLei5ZNNA0tCY2gaBjfgAUlmQxV3rgd4flo+YRdOsRAM0+aEubT3pIEUsmKIrCjnW7mTVpPtGR0VhaWTLqq2F0HdhRRmWNSJJFIYQwsJT1igCYG+ZjNvjYJXTxSdgUdcOxkrRayU10Oh2Hf9nBju/WoE3S4uRegF4/DKNio2rGDi1PCQ4MYdq47/lr3wkAqr5Vha9+HE+p8iWNHJmQZFEIIQzs+YbchhoNSVmv6NGypoyw5CLhgWGs+mQhN/5KHvWt5lWbHjM+wK6Ag5EjyzsURWHXxr388OVcoiKisbC0YMin79F7SHfMDfTHlng98ioIIYSBpWz1h4HWKyqKQsDT9YoyBZ17XNh9irXjlxAbHo2ljRUdv+pPvZ7vSDKfCcGBIcyY8CNH9hwDoEqNSnw1ewJlKpQybmAiFUkWhRDCwPQjiwZarxhx6R7xAWGobawo2LCKQa4psi4hNp4t3yzj5OoDABSrWpp+c0ZQqGwRI0eWd+h0OjYt38qCaUuIiYrB3MKcD8a+S98Pe8poYi4kr4gQQhiYvseihWHa5qRUQRd6uypqa+ktZ0z3L95m+ah5BN8OQKVS0eyDtnh/0gNzS/l1mlG3rt1h+qffc+FM8tR91beq8Pl3YylXuayRIxPpkXe3EEIY2LM1i4YZWUxZryhT0Maj0+k4uGQ7u35Ym1zEUtiFPrOGUb5BVWOHlmckxCfw+9wVLFuwCk2SBls7G4ZN+IAuAzqgVquNHZ54CUkWhRDC0FL2hTbAyGJCaCRh524ByK4tRhIeEMrKMQu5eeISAG9616H7tPeliCUTzh4/z/RxP+B/+z4Ab3s15NP/jca9aCEjRyYyQpJFIYQwsJSm3IZYsxh0xA8UBacqJbDxcHnt64nM+XfX36wbv4TYiBgsba3oPHkgdbo1lSKWDAoODGHOlIXs3bIfADd3V8ZOHUWzNm/L9zAPkWRRCCEMzJDV0I8P/AuAe7Pqr30tkXEJMfFsnvIHf689CEDxN8vQb84ICpb2MHJkeYMmScPaXzfy8w+/ExsTh0qlonP/9gwb/z4OTjIim9dIsiiEEAamH1m0er1paEWn4/GhCwAUavbma8clMsb/31usGD2P4DuBqFQqmn/YntYfd0NtIb8yM+LMX+f47os53Ll+F4CqnlUY97+PqfRmBeMGJrJM3vlCCGFgSlJKNfTrjSxGXPYnITgCta0VrrXlF21202l1HFi8lV0/rken0eLs4UKfH4dTrp60K8qIoIBg5ny9EN+tyS2FnF2cGDFxKD7dW2NmZmbk6MTrkGRRCCEMzFBrFh8fTB5VLNiwCmrZXzhbPXkUwsqPF3Dr7ysAVPepR/dpg7F1sjdyZLlfQnwCq39ez+9zVhAXG4eZmRld+ndgyLhBODrLlLMpkGRRCCEMLGXN4uuOLKYki+5NZQo6O53ffoL1n/9CXGRyEUuXr9+ldtcmUoDxCoqi4PvnARZMW0LAg0AAqnm+wbhpo6lYTUbCTYkki0IIYWgGWLOYFB1H6OlrALi/I8Ut2SE+Oo7Nk5dyasNhAEpUL0vfOSMoWKqwkSPL/S6evcSPk+fjd/YyAIU8CvLR5x/QqlMLmXI2QZIsCiGEgembcr/GyGLwX5dRkrTYlSyEfWlJXgzt3vkbrBg9n5B7j1GpVLT4qCOtRnWRIpZXCHgQyIJpS/StcGxsbeg/vDd9PuiOta21kaMT2UV+KoQQwsBS1iximfWRxaCUKWhpmWNQOq2O/Yv+ZPeP69FpdRQo6kafWR9Rtm5lY4eWq8VEx/LH/JWsXrKOhPhEVCoVbbu3ZuhngylY2M3Y4YlsJsmiEEIYmH7N4msUuDw+mNxfUVrmGE7Yg2BWjlnA7VNXAajZtj7d/jcYGyc7I0eWe2mSNGxZtZ1fZv1BWHAYAJ4NajB60keyLjEfkWRRCCEM7Fk1dNZGFqPvBBJzLwiVhZqCDaVtiyGc23qc9V/8QnxULFb2NnSZ8i61OjWWIpZ06HQ69m09yOKZv/Lg7kMAipcuysgvh/F2q4byfctnJFkUQggDe901i0GHLwLgWqsCFvY2BosrP4qPimXjpKWc2XQEgJI1y9N3znDcSrgbObLcSVEU/j58hgXTfuKa3w0AXNwKMOjjAXTs0xYLA2xhKfIeSRaFEMLQXnMaOujoJQAKvV3VYCHlR3fP3WDF6HmE+gehMlPRcnhnvEZ2Rm2uNnZoudKl81eYP+0nzv51HgA7e1v6DutFr/e7Ymtna+TohDFJsiiEEAamL3DJQmWtotMRcjy5HUnBxm8YMqx8Q6vRsm/BFvbO3agvYuk7ZwRlalU0dmi50r2b/iya8QsHdiS3ELKwtKDrwI68O6Ivzq7Oxg1O5AqSLAohhIEpGg0AKovMr1kM97tH4pNozO1tKFCjrKFDM3lh94NY8fEC7pxJ7lH5VoeGdP1mEDaOMjL2Xw/uPuSXH/9g90ZfdDodKpWKNt1a8cHYd/EoJu2axDOSLAohhIE9SxYz/xEbfMQPALf6lTCT6dJMObvlGBu+/JX4qDis7G3oNnUQnh0bGTusXOehfwC/zV7GzvV70Gq1ADRu2YBhE96nbKUyRo5O5EaSLAohhKElZT1ZDDqWnCzKesWMi4uMZeNXv3F2yzEASnlWoO/s4bgWL2TkyHKXwAeP+X3ucrau2YlWk5wkNninLh+MfZcqNaTPpEifJItCCGFgKdXQZLIaWpuQROjfydOnBRtJspgRt89cY+Xo+YQ9CEZlpsJrZBdaDu8kRSzPefwoiD/mrWTLqu1onv4hU7dJbT4Y+y7VPGVdrHg1SRaFEMLAlCyOLIadvYk2LhGrgk44ViqWHaGZDK1Gi++8TeydtwlFp+BSvBB9Z39EaU8pYkkR8jiUP+avZPOKbSQmJFfo12r0Fh988i416kqzd5FxkiwKIYShpaxZNM/cyGLQ0eT+igUbvSFNj18ixP8xK0fP5+655D6AtTo3psvX72LtIEUsAI/uB7B84Wq2rdmlTxJr1qvOB2PfxbNBTSNHJ/IiSRaFEMLA9NPQmZwKDU7pr9hYpqDToigKZzYfZeNXv5MQHYe1gy3dpg7irQ4NjR1arnDv1n3+mLeCXZt89WsSq9euxvtj36V2o7fkDxCRZZIsCiGEgT2bhs74yGJSVCxPzt8CoJD0V3xBXEQMG778lXNbjwNQunZF+v44HJdiBY0cmfHduHyLpXNXsG/bQRRFAaBOY0/eG92fmvWqS5IoXpski0IIYWj67f4y/hEbcuIKilaHXSl3bItLAvS826evsmL0fJ48DMFMbUar0V1pMawjZmozY4dmVH7nLvP7nOUc9T2uP9a4ZQPeHdWPqm/JnuLCcCRZFEIIA3vWZzHjI4spW/zJri3PaJM07Jm7kX0LtqDoFFxLFKLfnBGUrFne2KEZjaIonDvxD7/PWc6po2cBUKlUtGjXjIEj+1K+ijRyF4YnyaIQQhhYSrKYme3+ZL1iaiH3Alkxaj73/rkJQO0ub9P563extrcxcmTGodPpOLznGCsWruHi2eT3itpcjXfnlgwY3oeS5UoYOUJhyiRZFEIIQ0vKXDV0fFA4kVfvA1CwYf6ePlQUhdMbj7Bp0u8kxMRj7WBL92mDqdmugbFDM4qE+AR2btjDysXr8L+d/B6xtLKkXU9v+g3rRZHiHkaOUOQHkiwKIYSBKZlcsxh8LHmkyKlqSaxcHbMtrtwuNiKa9Z//wj87TgJQtk5l+vz4EQWKuhk5spwX8SSSjcv+ZN1vmwgLDgPAwcmeLv070P29Lri5uxo5QpGfSLIohBAGllINndFp6KCnyWKhfLxry82Tl1k5ZgHhj0IxM1fT+uOuNB/aId8VsQQ8CGT1kvX8uWoHcbFxALgXKUTvId1p38sHO3vpJSlyniSLQghhQIqiPNeUO2MfsSHHrwBQsFH+m4LWJmnYPXsD+xf+iaIouJUqTN/ZwylZo5yxQ8tR1/1usHzRGvZtPYhWm9wjsXyVcvQb1pMW7ZphnoV9xoUwFHn3CSGEIaUUt5CxaujYR6HE3H0MZipc6+avreqC7wSwYvR8/P9N7i9Zt3tTOk0aiJWdtZEjyxmKovD34TOsXLyGv4+c0R+v09iTvh/2om6TWtIjUeQKkiwKIYQB6aegIUPT0CEnkkcVnauVxiKfbFenKAqn1h9i0+SlJMYmYOtkR7fp71OjTT1jh5Yj4mPj2bVpL2t+2cid63cBUKvVNG/XlH4f9qRitQrGDVCI/5BkUQghDEi/1R8Zq4bWT0E3qJxtMeUmMeHRrP/8Z/7d+TcA5epVofesYRQoYvpFLEEBwWxYuplNK7YR+SQSADt7W9r1bEPP97tKZbPItSRZFEIIQ0oZWVSpIAPFGcHHLwPg1sD01yvePHEpuYglIAwzczVtPulOsw/amXwRy6XzV1j983r2bz+k37O5SAkPegzqQruebbB3sDNyhEK8nCSLQghhQM835H7VerO4gDBi7iSvV3Qz4fWKmkQNu2at4+BP21AUhYJlPOg3ZwTFq5UxdmjZRqPRcHDnEdb8vEHfRBvgrfo16Dm4K429GqBWq40YoRAZJ8miEEIYUGa2+tOvV6xaCgtH01yvGHT7EctHzefBxdsA1Ov5Dh2/6o+VrWkWsUSGR7Fl5TbW/76Zx4+CALCwtMCrY3N6Duoi6xFFniTJohBCGFJKQ+4MtM1JmYIuaIJT0Iqi8Pfag2z++g8S4xKwdbanx7cf8GbrOsYOLVvcunqb9Us3s3P9XuLj4gEo4OpMlwEd6dy/PW6FpIm2yLskWRRCCANKqYbO0Mji0+IWtwaVsjWmnBbzJIq145dwcc9pAMo3eIPesz7CubCLkSMzLE2ShkO7j7Jh6RbOnfhHf7xclbL0fr8bLTu8g5W1lfECFMJAJFkUQggD0ldDm798PVpc4BOibweCSoVrXdNJFq//dZFVYxYS8fgJags1bcb2pOn7PpiZmU4RS8jjUDav2MaWldsIDgwBklvfNGndiG7vduKt+jWkP6IwKZIsCiGEIWVwZPFZf8WSWDrl/WpYTaKGnT+s5dCS7SiKQqEyReg7dwTFq5Y2dmgGoSgK/5y6wIbft3Bg52F9VbNLQRc69WlLx77tcC9SyMhRCpE9JFkUQggDUjRP1yy+oiG3vmVO/bzfX/HxzYcsHzWPh5fuAlC/dws6TOxrEkUssTGx7N60jw1LN3Pzym398eq1q9F1YEfe8WmCheWrlxwIkZdJsiiEEAak38HlFQ25U0YW83J/RUVROLFqP1u+WUZSfCJ2BRzoMWMI1bxqGTu013bvpj8b/tjC9nW7iYmKAcDaxprWnVvQdUBHKlQtb+QIhcg5kiwKIYQBpaxZfNnIYtzjJ0TfDABV3u2vGB0WydrPluDnm7yncYXG1ej9/Yc4uefdIhZNkoYje/9i8/KtqfZqLl66KF0GdKRtd28cnR2MGKEQxpGlZHHhwoV89913BAQE8MYbbzB79mwaN26c7v0TEhKYMmUKK1asIDAwkGLFivHFF1/w3nvvZTlwIYTIlZ6uZXtZspgyquj0Rgksne1zJCxDunb0Aqs+WURk0BPUlua0HdeLt9/zzrNFLA/9A/hz5Ta2rtlFWHAYACqVikYt6tP13U7UfbtWnn1uQhhCppPFtWvXMnr0aBYuXEjDhg356aef8Pb25vLly5QoUSLNc7p3787jx4/59ddfKVeuHEFBQWhSdjkQQggToq+GfkmBy7P9oPPWFLQmIYkd363h0C87AHAvV5R+c0ZQ9I1Sxg0sCzRJGo7uO87m5dv4+/BpFEUBkgtW2vdqQ4febSlaQvZqFgKykCzOmjWLQYMGMXjwYABmz57Nnj17WLRoEdOnT3/h/rt37+bw4cPcvn0bF5fk6YlSpUq9XtRCCJFLPeuz+OqRRbcGeae45fHNhywfOY+Hl+8C0LBvS9p/0RdLm7zVRzDgQSBbVm5n25qdhDwO1R+v+3YtOvVrz9teDTF/RXGSEPlNpn4iEhMTOXv2LOPHj0913MvLi+PHj6d5ztatW6lVqxYzZ85k+fLl2NnZ0b59e7755htsbGzSPCchIYGEhAT915GRkZkJUwghjCelGjqdApf44AiibjwCwC0P9FdUFIXjK3z5c+pykhKSsHNxoOfMoVRt4Wns0DJMo9Hw176TbF6xlRMHTz0bRXQrQNse3nTs05ZipYoaOUohcq9MJYshISFotVrc3d1THXd3dycwMDDNc27fvs2xY8ewtrZm8+bNhISEMGzYMMLCwvjtt9/SPGf69Ol8/fXXmQlNCCFyhWfV0Gk35Q49dQ0Ax0rFsSyQu9crRodGsuazn7i07ywAFRu/Sa8fPsSpUAEjR5Yxjx8G8eeq7Wxds5OggGD98dqNPOnYty1NWzeWtjdCZECWxtr/25leUZR0u9XrdDpUKhUrV67EyckJSJ7K7tq1KwsWLEhzdHHChAmMGTNG/3VkZCTFixfPSqhCCJGjXrXdX0qy6FqnQo7FlBVXD//Lqk8WEhUSgdrSnHaf9abxu61zfaGHRqPhxIG/2bxiG8cP/I1OpwPA2cXp6ShiO0qUKWbkKIXIWzKVLLq5uaFWq18YRQwKCnphtDGFh4cHRYsW1SeKAJUrV0ZRFB48eED58i/2qrKyssLKKm+tgxFCCABe0Ton5GRysuhWL3dOQSfFJ7J95mqO/LYLAPfyxeg/dwRFKpc0cmQv9+DuQ7au2cmOdbv1W/ABeDaoQae+7Wnq3RhLK0sjRihE3pWpZNHS0hJPT098fX3p1KmT/rivry8dOnRI85yGDRuyfv16oqOjsbdPnnK5fv06ZmZmFCsmf90JIUyLfho6jZFFTUw8EX53AXCtk/v6KwZcv8+KkfN4dNUfgEYDWtFuQh8srXNnkhUfl8DBnYfZunoHZ4//oz/uVMAJn+6t6NSnHSXLpd2lQwiRcZmehh4zZgz9+vWjVq1a1K9fnyVLluDv78/QoUOB5Cnkhw8fsmzZMgB69+7NN998w7vvvsvXX39NSEgIn376Ke+99166BS5CCJFX6bf7M3/x4zXs7A0UrQ6bom7YFnPL6dDSpSgKx5btYdu0lSQlJGHv5kSv74ZSpVlNY4f2AkVRuHrxOltX72DP5v1ER0YDycuj6japTftebXjbq6GMIgphQJlOFnv06EFoaChTpkwhICCAqlWrsnPnTkqWTJ6iCAgIwN/fX39/e3t7fH19GTFiBLVq1cLV1ZXu3bszdepUwz0LIYTILV7SlDvk76dT0HVzz3rFqJAIVn+6mCsHzwNQuWkNen03FIeCzsYN7D8inkSye5MvW1fv5Mblm/rjHsUK066nN227e1O4WNrLoYQQrydLBS7Dhg1j2LBhad62dOnSF45VqlQJX1/frDyUEELkKc+2+3txGjr0abLomkta5lw5eJ5Vny4mOiQCc0sL2n3eh8YDWqVbsJjTdDodZ46dY+vqHRzafYzEhEQALCwtaObdmPa9fKjV6K1cX3QjRF4nnUeFEMKAnq1ZTP3xqkvSEHY2eUTM2OsVk+IT2fbtKo4u3Q2AR8Xi9Js7Eo+KuaPrROCDx2xft4tta3cRcP9ZQWX5KuVo36sNrTu3xKmAoxEjFCJ/kWRRCCEMKSntNYvhF++ijUvAwtkOx4rGawD96Ko/K0bNI+DafQAaD2xNu/G9sTByEUtiQiJH9v7F1tU7U22/Z+9oT6tOzWnfy4dK1SrkmlFPIfITSRaFEMKAlKf73v83WdT3V6xdAZURpk0VReHo0t1sm74KTWISDk+LWCobsYglpVhlx7rd7Nm8n4gnEfrbPBvUoH0vH5p5v421rbXRYhRCSLIohBAGlV7rnGfFLTm/XjEyKJzVny7i6uF/AajyTk16zhyKg5vTK87MHiFBoezZtI/t63Zx6+od/fGChd3w6d6adj28KV5aWqsJkVtIsiiEEAakpNGUW1GU54pbcna94qX9Z1kz7ieiQyOxsLKg/Rd9adjPK8encxMTEjnqe5zt63Zz8uAptNrkqnFLK0uatGpE2x6tqd3YE/M0Wg4JIYxLfiqFEMKQ0tjuL/rmIxLDojCztsD5zdI5EkZifCLbpq3g2LK9ABSpVIK+c0fgUSHnilgUReHKv1fZvnY3e//cT2R4lP62ap5v4NO9NS3bN8PBySHHYhJCZJ4ki0IIYUApTbmfr4YOOXUdAJcaZVFbpb1ntCE9vHyP5aPm8fjGAwCaDGqDz6c9c6yIJTgwhF0b97Jj3W7u3LinP17IoyBtunrh06217KwiRB4iyaIQQhhQyppFlfmzpDD05FUAXLN5P2idTseR33axfeZqtIkaHAo60/v7D6nUpHq2Pi5AQnwCR/b8xY71uzl56DQ6nQ4AK2tLmnq/TdvuranV6C3UanW2xyKEMCxJFoUQwpBSqqGfG1nUV0JnY3/FiKAnrP5kEdeOXgCgagtPeswYgr1r9vUjVBQFv3OX2bF+N75/HiAqIlp/W/Xa1fDp3poW7Zpi72ifbTEIIbKfJItCCGFA/23KHRf4hJh7QWCmwrV2+Wx5TD/fM6z57CdiwqKwsLakw8R+NOjTItuKWIICgtm1YS/b1+3m3q1n27u6FymET/fWtOnaihJlpJpZCFMhyaIQQhiQ8p+m3ClV0E5VSmDhYGvQx0qMS+DPqcs5vnIfAEWrlKLf3BG4lzN80++Y6FgO7TrC7o2+nDp6Vt8028rainfaNsGnW2tqNawpW+8JYYIkWRRCCEP6TzV0yhS0ofsrPrx0N7mI5eZDAJq+74PP2J6YG7CARqPR8PfhM+zauJfDu4+REJ+gv61mver4dGvFO22bYu9gZ7DHFELkPpIsCiGEAf23Gjrk76fFLQZar6jT6Tj86052zFyNNkmLY6EC9J41jIqNqhnk+intbnZt9GXvlv08CQ3X31a8TDHadPGiVacWFCtlvC0LhRA5S5JFIYQwoOeroZMiY4m4nLymzxDNuCMeh7Hqk0VcP3YRgKota9FjxgfYu7x+EcvDe4/YvcmXXRt98b99X3+8gKszXh2b492lJZWrV5K9mYXIhyRZFEIIQ0p6Vg0deuYG6BTsShbCpnCB17rsxT2nWfPZT8SGR2NhbUnHr/pTv1fz10rewsMi2LftILs3+nLhjJ/+uJW1FU29G+PdpSV1GtfC3EJ+VQiRn8kngBBCGNDz2/0ZomVOQmw8f36znBOr9wNQrGpp+s4enuUilvi4BI7tO87ujb78deAkWk3ytntmZmbUbuyJd5eWNGndGDt7wxbjCCHyLkkWhRDCgBRNSusci9duxn3f7w4rRs4j6PYjVCoVzT5oi/cnPTC3zNxHt06n49yJf9i10ZcDOw4TExWjv61i1fK07tKSVh1b4ObumqU4hRCmTZJFIYQwpKfJok4HYf/cAsCtToVMXUKn03FwyXZ2/bAWbZIWp8Iu9Jk1jPINqmbqOjev3GLXRl/2bN5HUECw/njhou607tKS1p1bUqZCqUxdUwiR/0iyKIQQBpRS4BJ54xG6+CQsXRywL1ckw+eHB4Sy6pOF3Dh+CYA3W9eh+/T3sSvgkKHzHz8KYu+W/eza5MvNy7f0xx2c7GnRrhmtu7Skeu1q0g9RCJFhkiwKIYSBKFpt8pAi8OSfO0ByFXRGi1Au7D7F2s9+IjYiBksbKzpNHkDd7s1eeX50ZDQHdx5h1yZfzv51Xt8w28LSgobN6+HdxYuGzethaWX5Gs9OCJFfSbIohBAGot/qDwg993QKOgMtcxJi4tk85Q/+XnsQgOJvlqHv7OEUKpP+iGRSYhInD51i10Zfjvr+RUJ8ov62mvWq07pzC97xaYpTgezbG1oIkT9IsiiEEIaS0pCbZ8niqyqh/S/cYsWoeQTfCUSlUvHO0Pa0/rhbmkUsiqJw8ewldm/0xXfrQSKeROhvK12+JN5dkxtmexQrbKAnJIQQkiwKIYTBPD+ymBgeg9rGGudqpdK8r06r48BP29g1ax06jRZnDxf6zPqIcvXfeOG+927dZ88mX3Zt8uXhvUf6466FXJIbZnf2omK18tIwWwiRLSRZFEIIA0npsaiYmQEqXDzLYZZGQ+snj0JYNWYhN09eBqB6m7p0m/Y+ds72+vuEhTzB988D7N7ky6XzV/THbWxtaNqmMd6dvajVqCbm5vIxLoTIXvIpI4QQhqIfWUwe4Utri79/dpxk/ec/Jxex2FrRefK71OnWBJVKRXxsPIf3HGP3Jl9OHjqNVpvcMFutVlO3SS1ad25Jk9aNsLG1yalnJIQQkiwKIYShpExD67TJ1cjPF7fER8ex+es/OLX+EAAlqpel75wRuBQvyKkjZ9i1yZdDO48QGxOnP6dKjUp4d25Jiw7v4FrQJeeeiBBCPEeSRSGEMBDluYbcKrUZLp7lAbj3z01WjJpHyL3HqFQqmg/rQOkW1Vn5x0b2btlPyONQ/TWKlPDAu3Nyw+yS5UoY5XkIIcTzJFkUQghDeVoNrSjgVLUUZtaW+M7fzO4f16PT6nAo5EyhZpVZtmMXd35cpD/NsYAjLds3w7uzF9VqvSGFKkKIXEWSRSGEMJCUaWgFFfZVS7Cg1xRun0reH1pTwArfB1fRLk8uVrG0sqSxVwO8O3tRv1kdLCwtjBa3EEK8jCSLQghhIPo1iwrs33KEIK0GLTpuaSIJfhyHSqXCs0FNvDu35B2fJtg72r/iikIIYXySLAohhAHodDouHz2HG6AoKp5oNEQqidzQhFO0Ugl6dPGiVccWuBctZOxQhRAiUyRZFEKI13Dnxl12b9rHwTW+NI+Ix9sFtECgrQ7Pns0Z36015auUNXaYQgiRZZIsCiFEJoUEheL75wF2bfTl6oVrFDOzp4TangJqNQAqO2t+P7Ya9dOvhRAiL5NkUQghMiA2JpbDu4+xa6Mvp46cQafTYYWaahauOKosAXCxtwYisHN3lURRCGEyJFkUQoh0aDQaTh89y66NvhzadZT4uHj9bTXLlsMhKBFtQhJW9jZ0/rI/cRPngyVYuDgaMWohhDAsSRaFEOI5iqJw5cI1dm/0Ze+W/YSFPNHfVrxMMbx8mqK6Hc4V37NogVJvlafvnBEoD0K5pNUBYO4g2/EJIUyHJItCCAE89A9g9yZfdm/05d4tf/3xAq7OtOzwDt5dvLDRmrFy9HzCHgSjMlPhNbILLYd3Qm2u5urG46hUydv8qSykZ6IQwnRIsiiEyLfCwyLYv/0Quzf68u/pi/rjVtZWNGndCO8uXtR9uxYqlQrfeZvYO28Tik7BpVhB+s4ZTmnPZ3s/h/59DbOn/y3JohDClEiyKITIVxLiE/hr/0l2btjL8QMn0TxtpG1mZkbtRm/RuktLmnq/jZ29LQCh94NYMWoed8/dAKBW58Z0+fpdrB1s9ddUtDpCz1zH9enIIuby0SqEMB3yiSaEMHk6nY5/Tl1k14Y97N9+mOjIaP1tFauWp3WXlnh1aE7Bwm6pzjuz+SgbvvyNhOg4rB1s6DZ1MG91aPjC9SOu+KOJikPtmvyRqrKQj1YhhOmQTzQhhMm6c+Muuzb6smfTPgIeBOqPuxcpROvOLWndpSVlK5Z+4by4yFg2fPkr5/78C4DStSvSd9ZHuBRPe/eV0L+vAWBb1AXCwmUaWghhUiRZFEKYlNDgMPZu2a9vmJ3CzsGO5m2b4t2lJTXrVcfMzCzN82+fvsqK0fN58jAEM7UZrUZ1ofmwjqjN0++bGPI0WbTzKABhgIwsCiFMiHyiCSHyvLjYuKcNs/dy6shZtFotAGpzNQ2a1cW7qxeNWjTA2sYq3WtoNVr2zt2I7/zNKDoF1xKF6Dt7BKXeKv/Sx1YUhdBTycmijbszmktS4CKEMC2SLAoh8iStVsuZY+fYtcmXQzuPEBsTp7+tqmcVvDt70aJ9Mwq4Or/yWiH3AlkxegH3zicXsdTu8jadJw9MVcSSnlj/IOIDn6CyUGNVwA4NoJICFyGECZFPNCFEnqEoCjcu32LXhr3s2bKPkMeh+tuKliyCd+eWtO7iRYkyxTJ8vTObjrLxq99IiInH2sGW7tMGU7NdgwzHFHIyeVSxQPUyqFRPD0qyKIQwIfKJJoTI9R4/CmLP5n3s2riXW1fv6I87FnCkZftmeHf2olqtN1Dps7VXi42IZsMXv3J++wkAytSpRN8fh1OgqNsrzkwt5O+rALjVrYSS9BCQamghhGmRTzQhRK4UHRXDwR2H2bXJl7N/nUdRknsYWlha0LhlA7y7eNHgnbpYWGZ+feCtv6+w4uP5hD8KxUxtRusx3Wg+tANm6rSLXl4mpRLatW5FlGP3AFmzKIQwLZIsCiFyDU2ShpOHT7Nrw16O7D1GQnyi/raa9arj3aUlzds2xcHJIUvX1yZp2D17A/sX/omiKLiVdKfvnBGUrFEuS9eLD44g+lYAqFS41qlA5MEdgIwsCiFMi3yiCSGMSlEUrl68zo51u/H98wBPQsP1t5UqVwLvrl606tSCIsU9Xutxgu8GsmLUPPz/vQVA3e5N6TRpIFZ21lm+ZsqoomOlYlg626NokneDwVxGFoUQpkOSRSGEUQQHhrBr4152btjL7WvP1iG6uBXAq2NzvLt6UalahUytQ0yLoiicWn+YTZN/JzE2ARtHO7pPf58aPvVe9ymkWq8IoCQlATKyKIQwLfKJJoTIMfGx8Rzec4wd6/dw6sgZdDodAJZWljRp1Yg23VpRt0ktzA1UTRwbEc26z3/h3x0nAShXrwq9Zw2jQJHMFbGkJ/Rpsuhar2Lygaf7TEuyKIQwJfKJJoTIVoqi8M+pC+xYt4f92w8RExWjv6167Wr4dG/1WusQ03PzxCVWjllAeEAYZuZqvMd0550h7bJUxJKWpKhYwv2SC1qejSw+nYaWAhchhAmRZFEIkS0e+gewc/0edm7Yw8N7j/THPYoVpk1XL9p0a0Xx0hnrh5gZmkQNu39cz4HFW1EUhYKlC9N3zghKvFnWoI8TduYG6BRsSxTExsMFAEUj09BCCNMjn2hCCIOJjoph/7ZD7Fi/m3/+vqA/bmtnQ/O2TfHp3poadd9Md1/m1xV0+xErRs/n/oXbANTr+Q4dv+z/WkUs6UnZDzplVBEATfI2g7KDixDClMgnmhDitWi1Wk4dPcvO9Xs4tOsoCfEJAKhUKmo3eguf7q1p6t0YG1ubbItBURT+XneQzZP/IDEuAVsnO7p/+wHVvetm22OGnkxZr/gsWUwpcJEdXIQQpkQ+0YQQWXL7+l12rNvN7k2+BAeG6I+XKlcCn26tad2lJe5FCmV7HDFPolg34Wcu7D4FQPkGb9D7h2E4e7hm22NqE5IIO5/cgsetbkX9cUVf4CJrFoUQpkOSRSFEhkU8iWTvlv1sX7eLK/9e0x93dHbAq0NzfLq3pkqNSq/d7iajbhz3Y+WYhUQEhqG2UNNmbE+avu+TbdPcKcL/vY0uIQkrN0fsyz7X/1Fa5wghTJB8ogkhXkqr1XL66Dm2rdnJ4T3HSExI3lVFba6m4Tv1aNOtFY1a1MfSyjLHYtIkatj5w1oOLdmOoigUKlOEvnOGU7xamRx5/JDntvh7PjFOacotI4tCCFMiyaIQIk0P7z1i+9pdbF+3m8ePgvTHy1UpS7se3rTq1AIXtwI5Htfjmw9ZMXo+D/ySG3nX792CDhP7YmVr+CKW9IScTN2MO4V+zaKMLAohTIh8ogkh9OJj4zmw8zDb1u7i7F/n9ccdnOxp3akl7Xq2oWK18jk2zfw8RVE4sXo/W6YsIyk+EbsCDvT49gOqtaqds3FodYSdvg4kjyymui1lzaJs9yeEMCGSLAqRzymKwqXzV9i2Zid7/zygb5qtUqmo09iTdj3b0KR1I6ysrYwWY3RYJOvG/8zFvacBqNCoGr1/+BAnd5ccjyXi6n2SImMxt7PG6Y2SqW+UHVyEECZIPtGEyKdCg8PYtWEv29bu4s71u/rjRUp40K6HNz7dWlO4mLvxAnzq2rGLrBqzkMigJ6gt1PiM60WTQW2yvYglPSktc1xqlcfMXJ3qNmmdI4QwRfKJJkQ+oknScPzA32xds5O/9p9A+7SJtJW1Fe+0bUK7Ht68Vb+G0RKx52kSktjx/RoO/bwDgEJli9B/7kiKvlHKqHE9X9zyPEVRQPu0KbeMLAohTIh8ogmRD9y76c+fq3ewc8NewoLD9MervlWFdj29adn+Hewd7Y0YYWqPbz5k+ch5PLx8F4CGfVvS/ou+WNoYbyockhPC0L/TLm7haSU0SDW0EMK0SLIohImKj0vg4M7DbFm5nfMn/9Ufd3ErQJuurWjb05syFUoZL8A0KIrC8ZX7+HPq8uQiFhcHes4YQtWWtYwdGgAx94KIfxyOykKNy1vlUt2WUtwCSDW0EMKkyCeaECbm1tXbbFm5nV0b9xIZHgWAmZkZDd6pS4febWnYvB7muTCZiQ6NZM1nP3Fp31kAKjZ+k14/fIhToZxvz5OelPWKBaqXQW2Tuq+kfr0iUg0thDAtue83hhAi0+Ji49i39SBbVm7n4tlL+uMexQrTvlcb2vbwzpGt97Lq6pF/WfXJIqKCw1FbmtPus940frd1rlg7+byU9YovTEGDvhIalQrUuStuIYR4HVlKFhcuXMh3331HQEAAb7zxBrNnz6Zx48avPO+vv/6iSZMmVK1alX/++ScrDy2EeM61i9fZsmo7uzft07e8UZuredurIR37tqNOY0/UavUrrmI8SfGJbJ+5miO/7QLAvXwx+s0ZQdEqJV9xpnGkrFf8b3ELgKJ51pDbGH0ohRAiu2Q6WVy7di2jR49m4cKFNGzYkJ9++glvb28uX75MiRIl0j0vIiKC/v3707x5cx4/fvxaQQuRn0VHxbB3y362rNzO1QvP9mcuVqooHXq3xad7K9wKuRoxwowJuH6fFSPn8eiqPwCNBrSi3YQ+WFrn3LaBmREfFE707UBQqXCtU+GF2/UNuaW4RQhhYjKdLM6aNYtBgwYxePBgAGbPns2ePXtYtGgR06dPT/e8IUOG0Lt3b9RqNVu2bHnpYyQkJJCQkKD/OjIyMrNhCmFSUhpnb1m5Hd8/DxAXGweAhaUFzbwb06FPOzwb5I6WN6+iKAp/Ld/L1v+tICkhCXtXR3p+N5Q33nnL2KG9VOjTKWjHSsWwdE6jcvzpmkWV9FgUQpiYTH2qJSYmcvbsWcaPH5/quJeXF8ePH0/3vN9//51bt26xYsUKpk6d+srHmT59Ol9//XVmQhPCJMXGxLJ70z42/vEnNy7f1B8vVa4EHfq0xadrK5xdnY0XYCZFhUSwZtxiLh9I3kqwctMa9PpuKA4FnY0bWAaEpNcy5yl9NbQki0IIE5OpT7WQkBC0Wi3u7ql3dXB3dycwMDDNc27cuMH48eM5evQo5hn8EJ0wYQJjxozRfx0ZGUnx4sUzE6oQedqta3fY9Mef7Nywh5joWACsrC15p21TOvVpR/U61fLcurgrh/5h9dhFRIVEYG5pQbsJvWk8sHWeeR4hJ54mi/Urp3m7opGt/oQQpilLn2r//XBXFCXND3ytVkvv3r35+uuvqVDhxTU+6bGyssLKyrjNd4XIaYkJiRzceYSNy/7kn78v6I+XKFOcLgM64NOtNY7ODkaMMGuS4hPZ9u0qji7dDYBHxeL0nTOCIpXSX+Oc2yQ+iSbicvLaSrcGaSeLyJpFIYSJylSy6ObmhlqtfmEUMSgo6IXRRoCoqCjOnDnD+fPnGT58OAA6nQ5FUTA3N2fv3r288847rxG+EHnfo/sBbFmxjT9X7eBJaDgAarWaJq0b0bl/B2o3eivPjL79V8C1+ywfOZeAa/cBaDywNW3H9861RSzpCTl5BRQFh/JFsS7olOZ9UqqhZWRRCGFqMvWpZmlpiaenJ76+vnTq1El/3NfXlw4dOrxwf0dHRy5evJjq2MKFCzlw4AAbNmygdOnSWQxbiLxNq9Vy4uApNi77k+P7TybvKwwU8ihIxz5t6dC7LQULuxk5yqxTFIWjf+xh27SVaBKTsHdzovd3Q6ncrKaxQ8uSZ1PQaa9XhOfXLMrIohDCtGT6T+AxY8bQr18/atWqRf369VmyZAn+/v4MHToUSF5v+PDhQ5YtW4aZmRlVq1ZNdX6hQoWwtrZ+4bgQ+UFYyBO2rd7JphVbCbj/bIS+7tu16DygA41bNsjw2t7cKio4nNWfLubKoX8AqNysZnIRi1vaI3J5QfDxywAUbFAl3fuk7OAiI4tCCFOT6U+1Hj16EBoaypQpUwgICKBq1ars3LmTkiWTm+gGBATg7+9v8ECFyMsu/3uVdb9twvfPAyQlJicVjs4OtO3hTed+HShRppiRIzSMSwfOsebTxUSHRmJhZUH7L/rSsJ9Xnp1GB0gMjybi0ivWK8JzaxYlWRRCmBaVkjL/lYtFRkbi5OREREQEjo6Oxg5HiAzRJGk4sOMwa3/dmGoLvjdqVqbLgI60aNcMaxvTKORKjE9k27QVHFu2F4AilUrQd+4IPCrk/S4Gj/ac5eSAH7Av54HXsR/SvV/M7gOETvwfVrVr4r7o+xyMUAghspf8CSyEgYUGh7FlxTY2LvuTkMehAJhbmNOyfTO6v9eFN2q+ZHQqD3p05R7LRs7j8Y0HADQZ1AafT3tikceKWNITkoEpaHiuwCWPLyMQQoj/kk81IQzk8j9XWPvbJvZtPaifanYt5EKX/h3o2LddntiCLzN0Oh1Hf9/Nthmr0CZqcCjoTO/vP6RSk+rGDs2ggo9fAV4xBQ3PpqElWRRCmBj5VBPiNSQlJrF/+yHW/b4Jv7OX9cerelahx3tdeMenCRaWplcdGxH0hDVjF3P1yL8AvNHCk54zhmDvalrLRBLDo4nwuwek34w7RUpTbmTNohDCxMinmhBZ8CQ0nI1/bGHjsj8JDQoDnk41d3iHHu91pkoN05pqfp7fvrOsGbeYmLAoLKws6DCxHw36tszTRSzpCT11DRQF+7Ie2LgXeOl9FWnKLYQwUZIsCpEJd27cZfWS9ezcsJfEhEQA3Nxd9VPNrgVdjBxh9kmMS2Dr/1bw1wpfAIpULkn/eSNxL1fUyJFln+C/MjgFDSCtc4QQJko+1YR4BUVROH3sHKuXrOOv/Sf1xytXr0jvD7qb7FTz8x5eusvyUfN4fPMhAE3f98FnbE/MrUz7eYecyFhxCzzXlFtGFoUQJkaSRSHSkZSYxN4/97Pqp/XcuHwTSN4X/e1WDekzpAfV61QzyanX5+l0Oo78tovtM1ejTdTgWKgAvX/4kIqN3zR2aNkuMSKG8AyuVwSphhZCmC75VBPiPyKeRLJ5xVbW/bZJ3/rG2saadj286fl+V4qXNo0G2q8S8TiMVWMXcf1o8padVVvWoseMD7B3Ma0ilvSE/n0NdAr2ZQpjU/jl6xUBacothDBZ8qkmxFP37zxgzc8b2LZ2F/Fx8QAULOxG93c707FvO5wK5I8kCeDintOsHb+EmCdRWFhb0vGr/tTv1dzkR1KfF5LRljlPPdvuT6ahhRCmRZJFke9duXCNZQtWcWD7YVI2NCpfpRx9hnanZft3TH494vMSYuP585vlnFi9H4Cib5Si35wRJl3Ekp6U/aAzMgUNz61ZlGloIYSJkU81kS+lFK0sm7+SU0fP6o83bF6P3kN6UKthzXw1igZw3+8OK0bOI+j2I1QqFc0+aIv3Jz0wt8x/HxOJ4dGE+90FMlbcAs/6LMo0tBDC1MinmshXtFoth3cf44/5K7ny7zUA1Go1Xh3fod+wXpSrXNbIEeY8nU7HoZ93sPP7NWiTtDi5F6DPjx9RvkFVY4dmNMHHrySvVyzngY1HBtshJUmBixDCNMmnmsgXEhMS2bXRl+ULV+N/+z4AVtZWtO/Vhj5De1CkuIeRIzSO8MAwVo1ZwI3jlwCo1qo2Pb79ALsCDkaOzLiCj/oBUKhRxhNmRaNN/g9ZsyiEMDGSLAqTFhMdy5YV21i1ZB3BgSEAODo70G1gJ7oP6kIBV2fjBmhEF3afYu34JcSGR2NpY0WnSQOo26NZvpt+T0vwseTkueDbmUgWpSm3EMJEyaeaMElREVGs/XUja37ZQGR4FJBc2dx7SHc69mmHnb2tkSM0noTYeLZMWcbJNQcAKFatDP3mDKdQmSJGjix3iAsII+rGIzBTUTCDldDAc61zZGRRCGFaJFkUJiU8LII1v2xg7a8biYmKAaBEmeL0/6gXrTu3xNLK0sgRGpf/hVusGD2f4NsBqFQq3hnantYfd8uXRSzpCXo6Be1crTSWzvYZPi+lKTcysiiEMDHyqSZMwpPQcFb9tI71v28iNiYOgDIVSzNodH/eadsEtVpt5AiNS6fVcXDJNnb+sA6dRotTYRf6zPqI8g3eMHZouU7w0eQp6EKNM/e9SWmdozKXkUUhhGmRZFHkaSFBoaxctJaNy/7UN9IuX6Ucg8cMoEnrRpiZmRk5QuMLDwhl5ccLuHkyuW9g9TZ16TbtfewyMWqWXyiKQtDT9YqFMrFeEXiuGjp//2EihDA9kiyKPCkoIJjlC1ezZeU2EuITAahcvSKDPx5Ao5YNpEjjqX92nmT9hJ+JjYjB0taKzpPfpU63JvL9SUf0rQDiA8Iws7LAtXbFTJ2rb8otaxaFECZGkkWRp4SFPOGP+SvZ+MefJCYkJ4lVPavw/piB1GtaR5KgpxJi4tk0eSmn1h8CoET1svSdPZyCpfNni6CMCjqSvF7RtVZ51DaZW9+qyN7QQggTJZ9qIk+IeBLJysVrWPvrJuJik9ckVq9TjffHDKR2Y09JEp9z75+brBg9n5C7gahUKlp81JFWo7qgliTmlfQtcxpnoSG5RvaGFkKYJvntIXK16KgY1v6ygRWL1+qrm6vUqMTQcYOp26SWJInP0Wl17F/8J7t/3IBOo8W5iCt9fxxO2bqZaP+SjylaHcF/ZXG9Is+2+5NqaCGEqZFPNZErxcfGs37pZpYtWE3EkwgAylUpy9BPB9HYS9Yk/teThyGs/HgBt05dAaCGTz26TRuMrZMUsWRU+MW7JEXEYu5gg/ObpTN9vlRDCyFMlSSLIldJTEhk84pt/D53BWHBYQCULFuCDz59l+Ztm0p1cxrObz/B+s9/IS4yBis7azp//S61u7wtCXUmpfRXLNigCmZZqWiWNYtCCBMln2oiV9DpdOzZvI/FM34l4EEgAEVKeDB4zEBad26Bubm8Vf8rPjqOTZN+5/TGIwCUrFGOvnOG41aysJEjy5tS9oMumMn+iilStvtD3qtCCBMjn2rC6E4dOcO8qYu55ncDSN6Wb9DHA2jXwxsLS5nSS8u98zdYPmoeof5BqMxUtBzeCa8RnaWIJYu08YmEnLoGQKGsFLfw3N7Q8p4VQpgY+c0ijOa63w3m/e8n/j58GgA7BzsGDO9Nz0Fdsba1NnJ0uZNOq2Pfwi3smb0BnVZHgaJu9PnxI8rWkSKW1xF25ga6+CSs3Z1xqFA0S9dQnrZykmpoIYSpkWRR5LiAB4Esnvkruzf6oigK5hbmdB3QkfdG9cPZ1dnY4eVaYQ+CWfHxfO6cTh4Be6t9A7p+MwgbJzsjR5b3PT50AUhumZOVtZ6KTgdaLQCqfL7/uBDC9EiyKHJMVEQUv89dwbrfNukbant1eIcPx79P0ZJFjBxd7nZu63HWf/EL8VGxWNnb0PWb9/Ds2EiKWAzk8cHkZNG92ZtZOl9JTNL/t4wsCiFMjSSLIttptVq2rNzOTzN/JTwsuQ2OZ4MajPjyQ6pUr2Tk6HK3+KhYNk76nTObjgJQ6q3y9Jk9HLcS7kaOzHTEPX5CxKV7oFLh3iRryWLKvtAgaxaFEKZHkkWRrU4fO8ePk+Zx88ptAEqXL8mILz+kYfN6Mir2CnfOXmPF6AWE3U8uYvEa2YWWwzuhzkpbF5GuoEMXAXCuVgorN8csXUNJTHz2hYwsCiFMjCSLIls8vPeIOVMWcmhX8oiYo7MD73/yLl36d8BcKnZfSqvR4jt/M77zNqHT6nApVpC+c4ZT2rOisUMzSSnrFbM6BQ3PTUNbWsgfQUIIkyO/tYVBxUTHsnTuClYtWUdSYhJqtZrO/drz/th3cXZxMnZ4uV7o/SBWjJ7P3bPXAfDs1IguX7+HjaOtkSMzTYpWR9DhlGSxetavk5hSCS3FLUII0yPJojAIRVHYu2U/s79eQGhQ8s4rdd+uxeivh1O2Yua3TsuPzm45xoYvfyU+Kg5rBxu6Th2EZ4dGxg7LpD25cIfEsGjM7W1w8SyX5etIj0UhhCmTZFG8trs37jHzi9mcOXYOgOKlizLqq49kD+cMiouMZcOXv3Luz78AKF2rIn1//AiX4oWMHJnpC3o6BV3o7aqYvcbyiJRpaEkWhRCmSJJFkWXxsfH8NmcZKxavRZOkwcrakoEj+9Hvw55YSq+5DLl95horRs3jycMQzNRmtBrVhebDOkoRSw55fPBfAAo1zfp6RQD0yaK874UQpkeSRZElR/b8xQ9fztXv49ywRX3GTh1F0RIeRo4sb9BqtOyduwnf+ZtQdAouxQvRb/ZwSnlWMHZo+UZiRAxhZ28C4P6ayeKzNYsysiiEMD2SLIpMeXQ/gB8mzuWo73EAChd155NvRvJ2q4Yy5ZxBIf6PWTFqPvfOJ++FXavz23T5eiDWDlLEkpOCj15C0eqwL+eBXYmCr3Wt56uhhRDC1EiyKDJEq9Wy9teNLJ7xK/Fx8ZhbmNNnSA/eG90PG1sbY4eXJyiKwpnNR9n41e8kRMdh7WBLt/8N5q32DYwdWr6UMgX9uqOKIAUuQgjTJsmieKVbV2/zv7Hf4XfuMgA161Vn/IwxlC5fyriB5SFxETGsn/gr57clj8iWqVOJPrM+wqXY641oiaxRdDoC950HoHCLmq9/vZRpaFmzKIQwQZIsinQlJiSydO4Kls5fiSZJg52DHSO/HEqH3m0xMzMzdnh5xq2/r7ByzAJ9EUvrj7vR/MMOmKnle2gs4RfvEv84HLWtFW71K7/29Z4lizKyKIQwPZIsijRdPHuJqZ/M5M71uwC87dWQcdM/ppCHjIRllDZJw545G9m3cAuKTsGtpDt954ygZI2s9/MThhHomzyq6N70TdRWr5/g6VvnSIGLEMIESbIoUkmIT+Cn735j5eK1KIqCi1sBPpk6khbtmkkBSyYE3w1kxah5+P97C4A63ZrSadIArO1lfWduEOBruCloAJKkdY4QwnRJsij0rl28zqSR07h97Q4Abbq1YvSkj2SbvkxQFIXTGw6zafJSEmLisXG0o/v096nhU8/YoYmn4h4/Ifzf2wAUblHDINfUV0PLyKIQwgRJsijQaDT8MW8lv/z4B1qNFhe3Anzx/ac09mpo7NDylNiIaNZ9/gv/7jgJQNm6lenz40cUKOJm5MjE8x7v/weAAjXKYF3I2SDX1E9DSzN6IYQJkmQxn7t74x6TR03j8j9XAXjHpwmffTuGAq7Oxg0sj7l58jIrP55PeEAYZuZqvMd0550h7aSIJRfST0G3fMtg15Sm3EIIUybJYj6lKArrftvE/P8tJiE+EXtHe8ZNG02rTi1kbWImaJM07P5xPfsXbUVRFAqWLkzf2SMoUb2ssUMTadDGJxJ0+CIAhVsaaL0i0mdRCGHaJFnMh56EhjPl42/5a98JAOq+XYuJsz7DvUghI0eWtwTfCWD5qHncv5C8/q1uj2Z0+moAVnbWRo5MpCfkxBW0sQlYFy6Ac7VSBruuVEMLIUyZJIv5zJm/zvHV8KmEPA7F0sqSEROH0v29zjKamAmKonBq/SE2TV5KYmwCtk52dP/2A6p71zV2aOIVnlVB1zDsez5lGlrWLAohTJAki/mERqPh5x+WsnTuChRFoVS5EkxdNIkKb0jPv8yICY9m3YQlXNh1CoBy9d+gz6xhOHu4Gjky8SqKohC49xxgwJY5KdeWNYtCCBMmyWI+8PhhEF98+DUXzvgB0KG3D2OmjJA9nTPpxnE/Vo5ZSERgGGoLNd6f9KDZ+22liCWPiPC7R+yDENQ2lhR6u5pBr61vnSNrFoUQJkiSRRP39+HTTBz2DRFPIrBzsOPzmWNp2eEdY4eVp2gSNez6YS0Hl2xPLmIp40G/OSMoXq2MsUMTmfBwZ/JosHuz6pjbWhn02voCFwuZhhZCmB5JFk2UTqdj6byV/DTzVxRFoVK1Ckz/eQpFS3gYO7Q8JejWI5aPmscDv+RG5fV7NafDl/2wspUilrwmYOcZAIq0qW3waz/rsygji0II0yPJogmKDI9i0sj/6audO/T2YezUUVhZG3Y0xZQpisLJNQfYMmUZiXEJ2Drb0+PbD3izdR1jhyayIOpWAJHXHqAyVxts15bnyciiEMKUSbJoYq5dvM5n73/FI/8ALK0sGTdtNO17+Rg7rDwl5kkUa8cv4eKe0wCUb1iVPrOG4eTuYuTIRFY92pn8WhZsVAVLZ3uDX19JeFrgImsWhRAmSJJFE7J/+yEmj5xGQnwCRUp4MOPnKVSsVsHYYeUp145dZPUnC4l4/AS1hRqfcb1oMqgNZmZSxJKXpSSLRdpk08iwNOUWQpgwSRZNgKIo/PrjHyz5/ncA6jWtw9SFX+Ho7GDkyPIOTUISO58WsQAUKluEfnNGUKxqaSNHJl5XXEAYT87fApWKIq09s+Ux9GsWLWUaWghheiRZzOPi4xKYOuZb9v55AICeg7sy8qsPMTeXlzajHt98yPJR83h46S4ADfq0oMPEfljayBpPU/BoV3Jhi2vt8lgXcs6Wx1CSkqehpXWOEMIUSUaRhwUHhvDpe19w+Z+rqM3VfDb9Yzr2aWfssPIMRVE4sWo/W75ZRlJ8InYFHOgxYwjVvGoZOzRhQPopaG/DV0GnkO3+hBCmTJLFPOr6pZuM6T+eoIBgnAo4MeOXKbxVv4axw8ozosMiWfvZEvx8k0edKjSuRu8fhuFUqICRIxOGlBAWRciJKwAUaZN9fwTod3CRkUUhhAmSZDEPOn3sHOPe+4KY6FhKly/JrGXfUrRkEWOHlWdcPfIvqz5ZRFRwOGpLc9qO68Xb73lLEYsJerTzNIpWh1PVktiVdM+2x5E1i0IIUybJYh6zd8t+Jo+ahiZJw1v1a/Ddb1NxcJJClozQJCSxfeZqDv+6EwD38sXoN2cERauUNHJkIrs82JLca7R4xwbZ+0BJkiwKIUyXJIt5yMqf1jLn64UANG/XlMlzPpdG2xkUeOMBy0fM5dFVfwAa9fei3ed9sbSWX+6mKu7xE4L/ugxA0fb1su1xFEWRNYtCCJMmyWIeoCgK86YuZsWiNUByxfPoyR/JtGkGKIrCXyt82Tp1OUkJSdi7OtJz5hDeaJ49LVRE7vFo2ylQFFxqlceuRMHseyCNBhQFkDWLQgjTJMliLqfT6fj+izls+GMLACMmDqXvhz1RqVTGDSwPiAqJYM1nP3F5/zkAKjWpTq/vPsQxm9qniNzl/p/JU9DFOtbP1sdREhL0/62SkX4hhAmSZDEX02q1/O+TmWxftxuVSsWEmWPp2KetscPKE64c+ofVYxcRFRKBuaUF7Sb0ptGAVjIam0/E3g8m7PR1UKko2q5utj6WEv80WTQzA5mGFkKYoCz95ly4cCGlS5fG2toaT09Pjh49mu59N23aRMuWLSlYsCCOjo7Ur1+fPXv2ZDng/EKTpOGrj6ayfd1u1Go1X8/7QhLFDEiKT2Tz13+w5P/t3Xd4VFX+x/H3pIdAQg+hi4I0RYGliooCoghigwUEsa0IImVFUVSKrrhYaAKigvxEQBZUREUlu0pHFAyKEOmdQEgghfSZOb8/QiKEBJiQmZtkPq/nyQO5c2fuZziT3C/n3nPOwDdIjkukWoOajFj+L25+RKOdvcmRL38CoEq7RgSHu3c6pJxi0RYYoB5/ESmVXD57Ll68mOHDhzNmzBiioqLo0KEDd955J4cOHcp3/zVr1tC5c2dWrFjBli1b6NixI927dycqKuqKw5dWWZlZjP7HWCKX/4Cfvx+vzx5H1/s6Wx2r2IvZeZjJPV9izUffAtBhYFdGLH+d6g1rW5xMPM1Tl6ABnDnFYlCQ248lImIFmzFn78y+TK1bt6Z58+bMmjUrd1ujRo3o2bMnEydOvKzXaNKkCb179+aVV165rP2TkpIICwsjMTGR0NBQV+KWOHa7nZeemsAP36wmMCiANz54lfa3u28kZ2lgjGHdx9+z/F8LsGdmUbZyGH3eHETjjjdaHU0skLznGJE3PYvNz5e7fptBYCX3/s7I+ONPTgwcgm9EODW+WujWY4mIWMGlexYzMzPZsmULo0ePPm97ly5d2LBhw2W9htPpJDk5mYoVKxa4T0ZGBhnn3DSelJTkSswSy+FwMGH4G/zwzWr8A/yZNPdftL21ldWxirXkkwksem420T9m91Q36ngjfSY9Sbkq5a0NJpY5/Hn276KqHZq6vVCEvwa42AI1uEVESieXisW4uDgcDgfh4eevhBAeHs7x48cv6zXefvttUlJS6NWrV4H7TJw4kfHjx7sSrcRzOp288fzbfPd5JL5+vkycPV6F4iXs+DGKRaPe48zZQSw9xvTjpgF36L4xL2acTg4tyb6HunavDp45Zno6oJHQIlJ6FWo0dN6TsTHmsk7QixYtYty4cXz55ZdUrVq1wP1eeOEFRo4cmft9UlIStWrVKkzUEsEYwzuvTOfLhd/g4+PDhOkvcfMd7a2OVWxlpmfy1cQFrPu/7IFSEQ1r03/aUCIalN7PiFyeuI1/knr4JH7lgqne1X1rQZ8rZ4CLj4pFESmlXCoWK1eujK+v7wW9iLGxsRf0Nua1ePFiHnvsMZYsWUKnTp0uum9gYCCBXnRJ54O3PuI/cz8H4KV3nqfzPbdZnKj4OhZ9kPnDpnN81xEAbn70Tu5+rg/+WolFgIOL1wBQ8542+AZ75jOhy9AiUtq5NBo6ICCAFi1aEBkZed72yMhI2rUreO3VRYsWMXDgQBYuXEi3bt0Kl7SU+uKT5Xw4+f8AeG7iCO7u1dXiRMWT0+lk9dwVTL7nJY7vOkK5ymH8Y95o7n3lYRWKAoA9JZ2jX28CoE7vWzx23Nypc9SzKCKllMuXoUeOHEn//v1p2bIlbdu25f333+fQoUMMGjQIyL6EfPToUT7++GMgu1AcMGAAU6dOpU2bNrm9ksHBwYSFhRXhWyl51kZu4N+jJwPw2PABPPBwT2sDFVNJsQksenYWf675DYDGtzenz6RBlPXA4AUpOY5+tQlHagZl61WjYsv6Hjuups4RkdLO5WKxd+/exMfHM2HCBGJiYmjatCkrVqygTp06AMTExJw35+Ls2bOx2+0MGTKEIUOG5G5/+OGHmTdv3pW/gxJqe1Q0Lz45DqfTSffed/KPUY9aHalY2v6/LSwa9R4pp5LxD/Tnnpf60+6hzhrEIhfIuQRdu/fNHv18/HUZWj3cIlI6FWqAy+DBgxk8eHC+j+UtAFetWlWYQ5RqJ47G8s+BL5KRnkHbjq14YdKzKn7yyEzLYPnrC1g/fyUA1RvVof+0oVSrX9PiZFIcpRyMJW5jNNhs1H7AM6Ogcxj1LIpIKae1oT0sPTWdUY+O4dTJU1zT+Gomvj8eP381w7mO7jjI/GemcWLPUQBufbwb3Ub9Hb9Arbsr+cuZLqdqhyaUqVHJo8fOnTpHPYsiUkqpSvEgYwwTRrzBn9t2Ub5iGG999C/KhJSxOlax4XQ6WTP3W76etAhHpp1yVcrT9+2naHhzM6ujSTFmHE4OLFoFZF+C9vjxMzIB9SyKSOmlYtGD5k6dz3+/+hFfP1/+PedVqteKsDpSsZEYe5pF/5zFzrW/A9C0Uwt6T3qSshU1iEUuLua/UaQdjSegYllqdPP8RPY5PYuaZ1FESisVix7y06pfeP/NuQA8P3EEN7ZWb1mObSs3s/j52aScTsY/KICeLw+gbd/bdR+nXJb98/4LQJ2/34qvBdMo5fYsap5FESmlVCx6wMnjcYwd+hrGGO59qDs9+3W3OlKxkJmWwbJX57NxYfbJvkaTuvSfOpTwa2pYnExKipSDJzixKrs3+qoBt1uSwanl/kSklFOx6GZ2u50xT43ndHwC9Rtfw4jxQ62OVCwc+WM/85+ZTuy+YwB0fLI7d43spUEs4pL9H/8AxlC14/WUrXvxVaTcRaOhRaS0U7HoZu+/OZetm34npGwZJr4/nqBg7+59cDqdrP7wG75581McWQ7CwivQ953BNGh/ndXRpIRxZGTlDmypZ1GvIpwzz6JWEhKRUkrFohv9vHYL86YvAODFt0ZRu553zxGYcPwUC/85k93r/wDgujv+Ru83/kFIhXIWJ5OS6OjXm8g8lUxw9YpU69zcshzqWRSR0k7FopucSTrDqyPeAODe/j3o3OM2ixNZ6/fvfmbx6PdJTThDQHAg9459mNa9O2oQixTa/v/Lvte1br/b8PHztSyH5lkUkdJOxaKbTB77LieOxVKjTnWGvfKU1XEsk5GazrJXP+anRT8AUPO6evSf8jRVr65ucTIpyU5v3Uf8z7uw+flSt19HS7PkjIb2Uc+iiJRSKhbdYO3K9Xy1+FtsNhtjp7zgtRNvH962j/nDpnNyXww2m42OT3bnzpG98AvQx06uzO73vgGgZs+2BFerYGkWo9HQIlLK6axdxBJOJfKvUW8B0O/J3tzQ+nqLE3me0+nkx/e/5tu3F2cPYqlWkX7vDKF+uyZWR5NSIPXwSY5+tQmA+oPusjjNOfcsap5FESmlVCwWsSnjZ3Dq5Cmuql+HJ5971Oo4HpcQE8+CkTPZs3E7ANff2YpeE/9BSPmyFieT0mLPh99hHE6qdGhC+aZ1Lc1inM5zlvtTsSgipZOKxSK0ef2vrFjyPTabjZcnjybQy04ev327if+Mfp/UxBQCygRy37iBtHrwVg1ikSKTmZjCgU9+BKD+U3dbnAZMZmbu3zUaWkRKKxWLRSQzI5N/j54MwH0DetC0eWOLE3lORko6X0z4PzYtzj6J1252NQ9NeZoqV2ntaylaB+b/gD0lndCGtQjvaP0tHjmXoEGjoUWk9FKxWEQWzF7Mwb2HqFi5AoNHP2F1HI859Nte5g+bTtyB49hsNm4ffA9dhz+Ar78+WlK0nJl29sz5HoBrnryzWPRY5wxuwd8fm6910/eIiLiTzuhFIO5EPPOmZU++PXzcEMqFlf5Jpp0OJz+8t5xvJy/BaXdQvnol+r0zhGvaeE+PqnjWoaXrSI85RWDV8tS6r73VcQBwpqQB4OOlMx6IiHdQsVgE3ps0h7TUNJq2aMwd93ayOo7bnT4Wx4IRM9i7KRqAG7q14cHXH6dMmAaxiHs4s+z8OeULABo81Q3fYrKGuElJAVQsikjppmLxCu3avoevPl0BwPCxQ4rFpTF3ivp6I0te/JC0pBQCQ4K4b/wj/O3+m0v9+xZrHVqyjtRDJwmsHMpVFq4DnZczJRUAm4pFESnFVCxeoWkTZmKMoVP3jlzfsqnVcdwm/UwaX4ybx89LVwNnB7FMHUqVutUsTial3Xm9ikO64xdSfEYdm7PFonoWRaQ0U7F4BX796Td+XrsFP38/hox50uo4bnMwajefDH+XuIMnsPnY6DSkJ3c8c78GsYhHFNdeRVDPooh4B53tr8AHb38EQI8+d1GjdumbJsbpcPK/WV/y3eQlOB1OKtSoTL/JQ7i6VSOro4mXKM69ivBXsegTEmJxEhER91GxWEi/btzKlvVR+Pn7MfDph6yOU+ROHTnJgpEz2PfznwDc2L0dD772GMFhOimK5xz8z9pi26sIGuAiIt5BxWIh5fQq3tO3G9Vqhlucpmj9unwDS8Z8SHpyKoFlg7l/wiO0vLeDBrGIR9lT0ometASABk8Xv15F0GVoEfEOKhYLYduW7WzZsLXU9SqmJ6fy2dh5bP58DQB1m9en35SnqVy7dBXDUjLsnvUN6ScSKFO7CvUe6WJ1nHw5NcBFRLyAisVC+PSDpQB0vbcT4TWqWpymaBzYsov5w9/l1OFYbD42ugy9j85D78PXT6tSiOelHT/NrhlfA9B0TJ9iM69iXuZM9mVo9SyKSGmmYtFFx4+c4IdvsqeP+fsTD1qc5so57A7+O2MZK6d9htPhpGLNKvSb8jT1Wl5rdTTxYjsmLcGRlkHFlvWp0aO11XEK5EzNWcFF9/KKSOmlYtFFS+Z9gcPhoEX7G2nQ5Bqr41yRU4dj+WTEDPZv3glAi543cf+ERwkOVS+JWCdxxyEOLsr+D9l14/oV63tlNcBFRLyBikUXpKaksmzBVwD0LeG9iluWrWPpy3NIT04jqFwwD7z6GC163mR1LPFyxhh+HzsfjKFGjzZUatnA6kgXpQEuIuINVCy64L/LfyQ58Qy1rqpB+05trY5TKGlJqXz2yly2LFsHQN0WDXhoytNUqlU67r2Uku3IFxs4uXY7PkH+NB3T2+o4l5Q7wKWsLkOLSOmlYtEF3yz5HoAef++Gj4+PxWlct2/zThYMf5dTR07i4+tDl2fup9OQnhrEIsVCZsIZfn9lPgANh99LSJ3iPwo/9zJ0mWCLk4iIuI+Kxct09FAMUT/9hs1mo+v9na2O4xKH3UHk9M9ZOf1zjNNQsVZV+k95mrotivclPvEuf/zrUzLikihXvwYNBt9tdZxLMsbgTMke4GLTABcRKcVULF6mFWd7FVt1aEF49ZJzyTbu0AkWDH+XA7/uBqDlfR24f/wjBJXTPVZSfMT/vJMD838A4MY3H8MnoAT8asrMArsd0AAXESndSsBvZOsZY1ixNLtY7Narq8VpLo8xhs1frOWzVz4i40waQeXK8OBrj9H8nvZWRxM5jyMji6hRcwCo0/dWKrdpaHGiy+M8ewkawKbL0CJSiqlYvAxbf/6dowePUSYkmFu6Fv8Rw2mJKSx9eQ6/Lt8AQL1WDen3zhAq1qxicTKRC0VPWkrSziMEVgql6Ut9rI5z2c4dCW0rgfcwi4hcLhWLlyFyWfblsdu63UJwMe9B2PtzNAtGzOD00Th8fH3oOuJBbn/qHnx8dTKT4ufkhmh2zcxeqeXGtx8nsGI5ixNdPg1uERFvoWLxEpxOJ2tWrgfgtrtvtTbMRTiy7Hw/7TP+O2MZxmmoXCech6Y8TZ0b61sdTSRfmYkpbB46C4yhbr+OVO/a0upILnEkJAHgExZqcRIREfdSsXgJ0b/tJDbmJGVCgvnbTc2tjpOvuIPH+WTYuxzcugeAVg/cwr3jBhJUVj0eUnz99uI80o7GEVI3nOsn9Lc6jsucpxMA8KlQ3tIcIiLupmLxElZ/nz15ddvbWhMYFGhxmvMZY/hl6Wo+HzePjJR0gkNDePD1x7nx7pI5Ybh4j4P/WcPhz9aDj42W7z6FX0iQ1ZFc5jidCIBv+TCLk4iIuJeKxUvYtPoXAG4qZiu2pCaeYcmLH7L1m58AuLpVI/pNHkKFGpUtTiZycQnbDhD1XPbo50Yj7yv2S/oVRD2LIuItVCxeREJ8An/+vguA1jf/zeI0f9nz0w4WjJxBwrF4fPx8uXPEg9w2qIcGsUixl3EqmZ8enYwzPYvw22+g4ch7rY5UaI6Esz2LFdSzKCKlm4rFi/hl3a8YY7imUT0qh1eyOg6OLDvfTVnK/2Z+iTGGynWr0X/qUGo3u9rqaCKXZBxOfhn8LqmHTxJSN5y/zRhcoqec+atnsYK1QURE3EzF4kVsWrMZKB69iif3x/DJ8Hc59NteAFr3upV7xw4ksATe6yXe6Y/XFhG7ahu+wYG0mTuCgPJlrY50RZyn1bMoIt5BxeJF/P7LNgCat21mWQZjDD8vWcXn4+aRmZpBmbAQHpz4BDfc1cayTCKu2vPBt+ye9Q0AzSc/QVjj2hYnunIO3bMoIl5CxWIBEk8ncWDPIQCua9HEkgwpCWdY8uIH/LZiEwDXtG1Cv3cGUz7C+kviIpfryJc/8fsrnwDQZMzfqdWzncWJioZT9yyKiJdQsViAP37dAUDterUoX6m8x4+/e8N2Fv5zBgkxp/Dx8+WuZ3vT8Ym7NYhFSpST63eweehMMIZ6j3ahwdPdrY5UJIzdjjMpGVDPooiUfioWC/D75j8AuK6lZ3sV7Zl2vn3nP/w4+yuMMVSpF0H/qUOpdV09j+YQuVJxm/5k44C3cGbaqXF3K5q9OgCbzWZ1rCLhPLt6Cz4++ISWnCUKRUQKQ8ViAbaf7Vn05CXo2L3HmD/8XY5s2wdAmz630fPlAQSW0SAWKVlObohmw0OTcKRmUKVDE1q+OxhbKeoVdyQkANlL/ZXkEd0iIpdDxWIB9vy5H4Brm7p/bWVjDD99+gPLJnxMZloGZcqXpfcb/+D6rq3cfmyRoha7bjsb+7+JIy2TqrdeR9uP/olvUIDVsYqURkKLiDdRsZiPhFOJnDp5CoCrGtRx67FSTiezePT7bPs+e6WY+u2b0vftwZSvVtGtxxVxh6MrfuGXwe9mT7p9WzPazB1R6gpFAPuJWAB8KmuwmYiUfioW87Fv1wEAImpWo0xIGbcdZ9f6bSwcOZPEE6fx9fel26i/c8vj3fDRZS0pYYwx7Jm9gm3jF4IxRNzRglbvP4NvoL/V0dzCfvQ4AH41IixOIiLifioW87FvZ/YlaHf1Ktoz7ax4ezGr3v8aYwxV61XnoWlDqdX0KrccT8SdnHYHv7/0MfvmRQJQb2Bnrn9tAD5+vhYncx/HsRgA/KpXsziJiIj7qVjMx/6dBwCo16Doi7cTe44yf9h0jm7PPkbbvp3o+XJ/AoIDi/xYIu6WduI0vzw1g7gNO8Bm47qxfbnmybtKzajngtiPne1ZVLEoIl5AxWI+9u3K7lmsd23dIntNYwwbF/6PZa9+TFZ6JiEVytH7309yXZeWRXYMEU+KXbedX556l4yTifiFBNFi2iBqdPOOQVm5xaIuQ4uIF1CxmI+YIycAqFm3RpG83plTSSx+/n3+iMxea7pBh+vo+/ZgwqpWKJLXF/EkZ6ad6Mmfs3PKl2AMoY1q0fqDYZS7prrV0TzCZGbiiI0D1LMoIt5BxWI+ziSdASC0QugVv9bOtb+z8J+zSIo9jW+AH3c/14ebH71Tg1ikRDq9dR9bhs8m6c/DANTpeyvNXnsYvzLecxuF/XgsGIMtKEirt4iIV1CxmIfT6SQ58WyxGFb4lRnsGVl88+anrPrwGwDCr6lB/6lDqdGkblHEFPGorDNp7Jy8jN3vfYNxOAmsFEqziQOp2aON1dE87tz7FUv7vZkiIqBi8QIpySkYYwAoF1a2UK9xfPcR5j8znWPRBwFo378LPV7sp0EsUuIYp5NDS9ax/fVPST+RAEDNnm1p9trDBFa+8p73ksh+8Aig+xVFxHuoWMwj6WyvYmBQAIFBrhV3xhjWfxLJ8tfmk5WRRUjFcvR5cxBNbm/hjqgibmOMIXb1NrZP/A8Jv2UvPxlSN5zrJzxERBfv/jxnRu8EwL/hNRYnERHxDBWLeZxJTAagnIuXoM/EJ/Hp87PZ/t8tADS8uRl93nqK0KrlizqiiNvkFInRb33Gqc27AfArG0zD4T25+omupXaSbVdkbP8TgMDG11qcRETEM1Qs5pHTs+hKsfjn6t9Y+M+ZJMcl4hvgR/fRfekwsKsGsUiJ4cjI4siyjez54FsS/8i+fcInyJ96AzrRYGgPgqpoDWQAZ0oq9gPZg3sCVCyKiJdQsZhHck7PYuil71fMSs/k60mLWDP3WwCqNahJ/6lDqd7IvetJixSV5N1HObhkLQcXriIjLgn4q0isP+RugsM1vdO5MqN3gTH4hlfFt5LWbxcR76BiMY+khLPFYvmL9yzG7DrMJ89M59ifhwC46eE76P5CPwKCAtyeUeRKZMQncWTZRg4tXcfpqL2524OrV6TeI12o268jgRULPxNAaZbx+3ZAvYoi4l1ULOaRO8diASOhjTGs+/h7vnp9AVkZWZStHEafNwfRuOONnowp4pLkvTEcX/krMSt/Jf7nnRiHEwCbrw/htzWjTq+biejaAh9//Uq4mNT/rQEguK1WXhIR76EzQx5JFxngkhyXyKJR7xH9YxQAjTreSJ9JT1KuSnlPRhS5pPSTicRtjCZuYzSxa/7gzN6Y8x4Pu64udXp1oGbPdrof8TJlHTpC1s494OtD8G0drI4jIuIxKhbzyLlnMe+E3NE/RrFw1HuciUvEL8CfHmP6cdOAOzQpr1jOkZ5J4o5DJGw7QMLv+4n/eRfJu4+et4/Nz5cq7RpRrUtzIjo3J6ROVYvSllwpKyIBCGrVAt/yKrBFxHuoWMwj+ew9i2XPXobOTM/k6zcWsnbedwBENKxN/6lDibi2lmUZxTs5M+2cOXCCM3uPkbwnhuTdx0j84wBJO4/kXlY+V2ijWlRu24gq7RpT9eam+IeWsSB16eCIO0Xyws8ACOnR1eI0IiKeVahicebMmbz55pvExMTQpEkTpkyZQocOBV+WWb16NSNHjmT79u1Ur16d5557jkGDBhU6tDslnbPU37E/D/HJsOnE7MyeKuPmR+7k7uf74K9BLOIGjrRM0mLiST0aT9rReFKPxZN2LPv71IOxpByMzbcoBAioWI7yza6i/HV1qXjj1VRq3VCDVIqIcTg49cYUTGoaAY2vpcztN1sdSUTEo1wuFhcvXszw4cOZOXMm7du3Z/bs2dx5553s2LGD2rVrX7D//v37ueuuu3jiiSf45JNPWL9+PYMHD6ZKlSrcf//9RfImilLOAJfYzfuY/PJC7JlZlKscRp+3nqLRrTdYG06KNWMMzows7GfSsaekkXUmHXtyGvYzadjPpJOVkk7W6TNkxCeREZ9MRnwSmfFJZJxKJjM+GXtK+iWP4VsmkHLXRFD26uqUuzqCsKZ1KH/dVQRXr6hbItzAERfPqTemkrZqPfj7U+G5odg0f6qIeBmbyVkI+TK1bt2a5s2bM2vWrNxtjRo1omfPnkycOPGC/Z9//nmWL19OdHR07rZBgwbx22+/sXHjxss6ZlJSEmFhYSQmJhIa6t71aF9u/iDBpzII8cleqaJ647q06dWRoHLB2Ttc6p8rz+MX/PPmfXo+r3fec/I73gWvkff18h4zT6YLvsnvGHnfxyWec7H989twqf3zf5GLfosxGKcT48j+E2fO987sP50Gcv5+dp+c7cbhhJy/n32OM8OOsTtwZNoxWXacZ79Mlh1HpgNjd+DMzMrenmHHnpaBsZ8dZVzIus0n0J/AyqHZX5VCCawclv1n1TDK1KhEQMVy2a/t0k8tl/7cXun+5PNZL2rufg/G4ExJxZmUjP3gETJ37SFj6x/gcICvL5Vff0m9iiLilVzqWczMzGTLli2MHj36vO1dunRhw4YN+T5n48aNdOnS5bxtd9xxB3PmzCErKwt//wuXD8vIyCAjIyP3+6SkJFdiFtqpw7E8wmn8Kp9zkjm+FTNtK2keSSBFzXb2y618gOCzX0UhMxaOkf11VhaQWEQvL64JbNaUCqOeJqBhfaujiIhYwqViMS4uDofDQXh4+Hnbw8PDOX78eL7POX78eL772+124uLiiIiIuOA5EydOZPz48a5EKxIValbhuMMXP6cTH18fcssMt1cbl3GAIs9QiBe8ogwuPtnlY/3VVrbz//JXN58NbLnbL3zcZju3vW3YfLIfs9ls2fvYbNh8cv5O7nbbOY/ZfH3Of9ydb9rV13c5TmE+I+5+z66+vGtP8ClTBp/QsvhFhOPf4GoCr2uMf90Lb68REfEmhRrgkvckaIy56Ikxv/3z257jhRdeYOTIkbnfJyUlUauW+0cf22w26q75jICgQPwCL+zxFBEREfE2LhWLlStXxtfX94JexNjY2At6D3NUq1Yt3/39/PyoVKlSvs8JDAwkMDDQlWhFpkwBK7eIiIiIeCOXhvUFBATQokULIiMjz9seGRlJu3bt8n1O27ZtL9h/5cqVtGzZMt/7FUVERESk+HB5DoiRI0fy4YcfMnfuXKKjoxkxYgSHDh3KnTfxhRdeYMCAAbn7Dxo0iIMHDzJy5Eiio6OZO3cuc+bM4dlnny26dyEiIiIibuHyPYu9e/cmPj6eCRMmEBMTQ9OmTVmxYgV16tQBICYmhkOHDuXuf9VVV7FixQpGjBjBjBkzqF69OtOmTSuWcyyKiIiIyPlcnmfRCp6cZ1FERERE/qKlCERERESkQCoWRURERKRAKhZFREREpEAqFkVERESkQCoWRURERKRAKhZFREREpEAqFkVERESkQCoWRURERKRAKhZFREREpEAqFkVERESkQCoWRURERKRAflYHuBw5y1cnJSVZnERERESkdClXrhw2m63Ax0tEsZicnAxArVq1LE4iIiIiUrokJiYSGhpa4OM2k9NtV4w5nU6OHTt2ycq3KCQlJVGrVi0OHz580X84KT7UZiWP2qzkUZuVPGqzkseqNisVPYs+Pj7UrFnTo8cMDQ3VD1cJozYredRmJY/arORRm5U8xa3NNMBFRERERAqkYlFERERECqRiMY/AwEDGjh1LYGCg1VHkMqnNSh61WcmjNit51GYlT3FtsxIxwEVERERErKGeRREREREpkIpFERERESmQikURERERKZCKRREREREpkIpFERERESmQVxaLM2fO5KqrriIoKIgWLVqwdu3ai+6/evVqWrRoQVBQEPXq1eO9997zUFLJ4Uqbff7553Tu3JkqVaoQGhpK27Zt+f777z2YVsD1n7Mc69evx8/PjxtuuMG9AeUCrrZZRkYGY8aMoU6dOgQGBnL11Vczd+5cD6UVcL3NFixYQLNmzShTpgwRERE88sgjxMfHeyitrFmzhu7du1O9enVsNhvLli275HOKRQ1ivMynn35q/P39zQcffGB27Nhhhg0bZkJCQszBgwfz3X/fvn2mTJkyZtiwYWbHjh3mgw8+MP7+/mbp0qUeTu69XG2zYcOGmX//+9/m559/Nrt27TIvvPCC8ff3N7/++quHk3svV9ssR0JCgqlXr57p0qWLadasmWfCijGmcG3Wo0cP07p1axMZGWn2799vNm3aZNavX+/B1N7N1TZbu3at8fHxMVOnTjX79u0za9euNU2aNDE9e/b0cHLvtWLFCjNmzBjz2WefGcB88cUXF92/uNQgXlcstmrVygwaNOi8bQ0bNjSjR4/Od//nnnvONGzY8LxtTz75pGnTpo3bMsr5XG2z/DRu3NiMHz++qKNJAQrbZr179zYvvfSSGTt2rIpFD3O1zb799lsTFhZm4uPjPRFP8uFqm7355pumXr16522bNm2aqVmzptsySsEup1gsLjWIV12GzszMZMuWLXTp0uW87V26dGHDhg35Pmfjxo0X7H/HHXewefNmsrKy3JZVshWmzfJyOp0kJydTsWJFd0SUPArbZh999BF79+5l7Nix7o4oeRSmzZYvX07Lli2ZNGkSNWrUoEGDBjz77LOkpaV5IrLXK0ybtWvXjiNHjrBixQqMMZw4cYKlS5fSrVs3T0SWQiguNYifx45UDMTFxeFwOAgPDz9ve3h4OMePH8/3OcePH893f7vdTlxcHBEREW7LK4Vrs7zefvttUlJS6NWrlzsiSh6FabPdu3czevRo1q5di5+fV/1aKhYK02b79u1j3bp1BAUF8cUXXxAXF8fgwYM5deqU7lv0gMK0Wbt27ViwYAG9e/cmPT0du91Ojx49mD59uiciSyEUlxrEq3oWc9hstvO+N8ZcsO1S++e3XdzH1TbLsWjRIsaNG8fixYupWrWqu+JJPi63zRwOB3379mX8+PE0aNDAU/EkH678nDmdTmw2GwsWLKBVq1bcddddvPPOO8ybN0+9ix7kSpvt2LGDZ555hldeeYUtW7bw3XffsX//fgYNGuSJqFJIxaEG8ar/wleuXBlfX98L/tcVGxt7QeWeo1q1avnu7+fnR6VKldyWVbIVps1yLF68mMcee4wlS5bQqVMnd8aUc7jaZsnJyWzevJmoqCiefvppILsQMcbg5+fHypUrue222zyS3VsV5ucsIiKCGjVqEBYWlrutUaNGGGM4cuQI9evXd2tmb1eYNps4cSLt27dn1KhRAFx//fWEhITQoUMHXnvtNV0pK4aKSw3iVT2LAQEBtGjRgsjIyPO2R0ZG0q5du3yf07Zt2wv2X7lyJS1btsTf399tWSVbYdoMsnsUBw4cyMKFC3U/joe52mahoaFs27aNrVu35n4NGjSIa6+9lq1bt9K6dWtPRfdahfk5a9++PceOHePMmTO523bt2oWPjw81a9Z0a14pXJulpqbi43P+ad/X1xf4q7dKipdiU4N4dDhNMZAz1cCcOXPMjh07zPDhw01ISIg5cOCAMcaY0aNHm/79++funzNsfcSIEWbHjh1mzpw5mjrHw1xts4ULFxo/Pz8zY8YMExMTk/uVkJBg1VvwOq62WV4aDe15rrZZcnKyqVmzpnnggQfM9u3bzerVq039+vXN448/btVb8DquttlHH31k/Pz8zMyZM83evXvNunXrTMuWLU2rVq2segteJzk52URFRZmoqCgDmHfeecdERUXlTndUXGsQrysWjTFmxowZpk6dOiYgIMA0b97crF69Ovexhx9+2Nxyyy3n7b9q1Spz4403moCAAFO3bl0za9YsDycWV9rslltuMcAFXw8//LDng3sxV3/OzqVi0Rqutll0dLTp1KmTCQ4ONjVr1jQjR440qampHk7t3Vxts2nTppnGjRub4OBgExERYfr162eOHDni4dTe68cff7zo+am41iA2Y9T3LCIiIiL586p7FkVERETENSoWRURERKRAKhZFREREpEAqFkVERESkQCoWRURERKRAKhZFREREpEAqFkVERESkQCoWRURERKRAKhZFREREpEAqFkVERESkQCoWRURERKRA/w+5Ax9EzQlDwQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -209,7 +215,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "id": "b4f45d4c-3dbf-4b35-a719-55a53e5bac98", "metadata": { "editable": true, @@ -233,7 +239,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "id": "81e72352-779b-4ed0-9bf4-e593a7c55c90", "metadata": {}, "outputs": [], @@ -251,7 +257,8 @@ " p = sigmoid(x=agent.node_trajectories[1][\"expected_mean\"], temperature=temperature)\n", "\n", " # store observations and decisions separately\n", - " responses.append(np.random.binomial(p=p, n=1))" + " responses.append(np.random.binomial(p=p, n=1))\n", + "responses = np.array(responses)" ] }, { @@ -261,8 +268,9 @@ "tags": [] }, "source": [ - "## A multilevel binary HGF\n", - "In this part, we start embedding the HGF in a multilevel model using PyMC. We use the same core distribution (the [HGFDistribution class](pyhgf.distribution.HGFDistribution)) and leverage the possibility of automatic broadcasting (see below) to apply the same procedure to multiple HGF models in parallel. Note that the list of observations and decisions from all participants is provided and stored when we create the [PyTensor](https://pytensor.readthedocs.io) Op instance so it is not necessary to provide it thereafter." + "## Group-level inference\n", + "\n", + "In this section, we start embedding the HGF in a multilevel model using PyMC. We use the same core distribution (the [HGFDistribution class](pyhgf.distribution.HGFDistribution)) and leverage the possibility of automatic broadcasting to apply the same procedure to multiple HGF models in parallel. Note that the input data, time steps and responses should be provided as a Numpy array where the first dimension is the number of models to fit in parallel (in that case this corresponds to the number of participants). Thanks to automatic broadcasting, we can parametrize our distributions either using a float or using a vector that maps the number of models." ] }, { @@ -270,14 +278,24 @@ "id": "48020213-7f26-4201-b4b9-f072231bc225", "metadata": {}, "source": [ - "```{hint} Using automatic broadcasting\n", + "```{note} Using automatic broadcasting\n", "To estimate group-level parameters, we will have to fit multiple models at the same time, either on different input data, on the same data with different parameters or on different datasets with different parameters. This step is handled natively both by the [log probability function](pyhgf.distribution.hgf_logp) and the [HGFDistribution class](pyhgf.distribution.HGFDistribution) using a pseudo [broadcasting](https://numpy.org/doc/stable/user/basics.broadcasting.html) approach. When a list of *n* input time series is provided, the function will automatically apply *n* models using the provided parameters. If for some parameters an array of length *n* is provided, each model will use the n-th value as a parameter. Here, we are going to rely on this feature to compute the log probability of *n* model, using *n* time series as input and *n* different parameters to test.\n", "```" ] }, + { + "cell_type": "markdown", + "id": "d8626211-c4d0-4347-8711-2af1474b98a2", + "metadata": {}, + "source": [ + "```{hint} Observing the observer\n", + "As we explained in the first part of the tutorials, probabilistic networks *observe* their environment through the inputs they receive and update beliefs using inversion of the generative model they assume for this environment. Here, we are taking a step back and want to use actions from agents that we assume are using such networks to make decisions to infer the values of some parameters from those networks. This is often referred to as *observing the observer* and this comes with a different concept of observations. Here, observations are the behaviours we can observe from the network and are directly influenced by the response model we define (i.e. how an agent uses its beliefs to act on the environment). The input data that are fed to the network are fixed, therefore we declare it when we create the HGF function compatible with [PyTensor](https://pytensor.readthedocs.io). The actions, or responses we get from the participant, are the things we want to explain using the PyMC model, therefor we treat it as observation in a custom distribution, a distribution that can simulate the behaviour of HGF networks under a set of parameters.\n", + "```" + ] + }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 9, "id": "e3cb9a9e-951f-4048-b04b-c985028dba2d", "metadata": { "editable": true, @@ -291,17 +309,73 @@ "hgf_logp_op = HGFDistribution(\n", " n_levels=2,\n", " model_type=\"binary\",\n", - " input_data=jnp.array(\n", - " [u] * N\n", + " input_data=u[np.newaxis, :].repeat(\n", + " N, axis=0\n", " ), # the inputs are the same for all agents - just duplicate the array\n", " response_function=binary_softmax_inverse_temperature,\n", - " response_function_inputs=jnp.array(responses),\n", + " response_function_inputs=responses,\n", ")" ] }, + { + "cell_type": "code", + "execution_count": 10, + "id": "7ab89a5c-a0fe-45f7-83fe-a278f8d80a34", + "metadata": {}, + "outputs": [], + "source": [ + "def logp(value, tonic_volatility_2, inverse_temperature):\n", + " return hgf_logp_op(\n", + " tonic_volatility_2=tonic_volatility_2,\n", + " response_function_parameters=pt.flatten(inverse_temperature),\n", + " )" + ] + }, + { + "cell_type": "markdown", + "id": "5112c4f5-2bdb-4f3e-a8ee-43216711e30d", + "metadata": {}, + "source": [ + "```{note} Pointwise log probabilities\n", + "Model comparison requires pointwise estimates of the log probabilities of a model (i.e. one estimate per observation), while the log-probability function used internally by the custom distribution works with the sum of the log-probabilities. We therefore need to compute this a second time without summing. We are doing this during inference using the [HGFPointwise class](pyhgf.distribution.HGFPointwise) class. This class works exactly like [HGFDistribution class](pyhgf.distribution.HGFDistribution) and should simply be treated as a deterministic variable for later use.\n", + "```" + ] + }, { "cell_type": "code", "execution_count": 11, + "id": "a222b524-fa7f-4f4f-9ced-c7c70521b0f1", + "metadata": {}, + "outputs": [], + "source": [ + "hgf_logp_op_pointwise = HGFPointwise(\n", + " n_levels=2,\n", + " model_type=\"binary\",\n", + " input_data=u[np.newaxis, :].repeat(\n", + " N, axis=0\n", + " ), # the inputs are the same for all agents - just duplicate the array\n", + " response_function=binary_softmax_inverse_temperature,\n", + " response_function_inputs=responses,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "6d94b1c0-16fa-4e39-a4dd-32125d13247d", + "metadata": {}, + "outputs": [], + "source": [ + "def logp_pointwise(tonic_volatility_2, inverse_temperature):\n", + " return hgf_logp_op_pointwise(\n", + " tonic_volatility_2=tonic_volatility_2,\n", + " response_function_parameters=inverse_temperature,\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 13, "id": "b7d84b8a-b398-4c10-b001-d3743a38de16", "metadata": {}, "outputs": [], @@ -309,6 +383,7 @@ "with pm.Model() as two_levels_binary_hgf:\n", "\n", " # tonic volatility\n", + " # ----------------\n", " mu_volatility = pm.Normal(\"mu_volatility\", -5, 5)\n", " sigma_volatility = pm.HalfNormal(\"sigma_volatility\", 10)\n", " volatility = pm.Normal(\n", @@ -316,6 +391,7 @@ " )\n", "\n", " # inverse temperature\n", + " # -------------------\n", " mu_temperature = pm.Normal(\"mu_temperature\", 0, 2)\n", " sigma_temperature = pm.HalfNormal(\"sigma_temperature\", 2)\n", " inverse_temperature = pm.LogNormal(\n", @@ -324,12 +400,19 @@ "\n", " # The multi-HGF distribution\n", " # --------------------------\n", - " pm.Potential(\n", - " \"hgf_loglike\",\n", - " hgf_logp_op(\n", - " tonic_volatility_2=volatility,\n", - " response_function_parameters=inverse_temperature,\n", - " ),\n", + " log_likelihood = pm.CustomDist(\n", + " \"log_likelihood\",\n", + " volatility,\n", + " inverse_temperature,\n", + " logp=logp,\n", + " observed=responses,\n", + " )\n", + "\n", + " # pointwise log-likelihoods\n", + " # -------------------------\n", + " pm.Deterministic(\n", + " \"pointwise_loglikelihood\",\n", + " logp_pointwise(volatility, inverse_temperature),\n", " )" ] }, @@ -338,7 +421,7 @@ "id": "7d0e01e8-b6d2-43e7-b4ac-0476439156cd", "metadata": {}, "source": [ - "## Plot the computational graph\n", + "### Plot the computational graph\n", "The multilevel model includes hyperpriors over the mean and standard deviation of both the inverse temperature and the tonic volatility of the second level.\n", "\n", "```{note}\n", @@ -348,7 +431,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 14, "id": "2627d47c-4aa6-4f8e-b073-f2d2a1f5be95", "metadata": {}, "outputs": [ @@ -361,115 +444,140 @@ "\n", "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", "\n", "cluster10\n", - "\n", - "10\n", + "\n", + "10\n", "\n", - "\n", + "\n", + "cluster10 x 320\n", + "\n", + "10 x 320\n", + "\n", + "\n", "\n", - "sigma_volatility\n", - "\n", - "sigma_volatility\n", - "~\n", - "HalfNormal\n", + "mu_volatility\n", + "\n", + "mu_volatility\n", + "~\n", + "Normal\n", "\n", "\n", "\n", "volatility\n", - "\n", - "volatility\n", - "~\n", - "Normal\n", + "\n", + "volatility\n", + "~\n", + "Normal\n", "\n", - "\n", - "\n", - "sigma_volatility->volatility\n", - "\n", - "\n", + "\n", + "\n", + "mu_volatility->volatility\n", + "\n", + "\n", "\n", - "\n", + "\n", "\n", - "hgf_loglike\n", - "\n", - "hgf_loglike\n", - "~\n", - "Potential\n", + "sigma_temperature\n", + "\n", + "sigma_temperature\n", + "~\n", + "HalfNormal\n", "\n", - "\n", + "\n", + "\n", + "inverse_temperature\n", + "\n", + "inverse_temperature\n", + "~\n", + "LogNormal\n", + "\n", + "\n", + "\n", + "sigma_temperature->inverse_temperature\n", + "\n", + "\n", + "\n", + "\n", "\n", - "mu_volatility\n", - "\n", - "mu_volatility\n", - "~\n", - "Normal\n", + "sigma_volatility\n", + "\n", + "sigma_volatility\n", + "~\n", + "HalfNormal\n", "\n", - "\n", - "\n", - "mu_volatility->volatility\n", - "\n", - "\n", + "\n", + "\n", + "sigma_volatility->volatility\n", + "\n", + "\n", "\n", "\n", "\n", "mu_temperature\n", - "\n", - "mu_temperature\n", - "~\n", - "Normal\n", - "\n", - "\n", - "\n", - "inverse_temperature\n", - "\n", - "inverse_temperature\n", - "~\n", - "LogNormal\n", + "\n", + "mu_temperature\n", + "~\n", + "Normal\n", "\n", "\n", "\n", "mu_temperature->inverse_temperature\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "sigma_temperature\n", - "\n", - "sigma_temperature\n", - "~\n", - "HalfNormal\n", + "\n", + "\n", "\n", - "\n", - "\n", - "sigma_temperature->inverse_temperature\n", - "\n", - "\n", + "\n", + "\n", + "log_likelihood\n", + "\n", + "log_likelihood\n", + "~\n", + "CustomDist_log_likelihood\n", "\n", - "\n", + "\n", "\n", - "volatility->hgf_loglike\n", - "\n", - "\n", + "inverse_temperature->log_likelihood\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "pointwise_loglikelihood\n", + "\n", + "pointwise_loglikelihood\n", + "~\n", + "Deterministic\n", + "\n", + "\n", + "\n", + "inverse_temperature->pointwise_loglikelihood\n", + "\n", + "\n", "\n", - "\n", + "\n", "\n", - "inverse_temperature->hgf_loglike\n", - "\n", - "\n", + "volatility->log_likelihood\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "volatility->pointwise_loglikelihood\n", + "\n", + "\n", "\n", "\n", "\n" ], "text/plain": [ - "" + "" ] }, - "execution_count": 12, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -483,12 +591,12 @@ "id": "1ee804ce-aae3-4228-aa16-aaa07b337c5c", "metadata": {}, "source": [ - "## Sampling" + "### Sampling" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 15, "id": "3e98e263-093d-45cd-afea-e3cd316a2591", "metadata": { "scrolled": true @@ -507,7 +615,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ed28cfbe140d41919745503fb19ea050", + "model_id": "457ee01162d4499a82c38c4014e4de62", "version_major": 2, "version_minor": 0 }, @@ -544,7 +652,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "42724d1519524f06ada5cca9c017e9fb", + "model_id": "4fb52a176dad4cf7bcb21959bf000ca3", "version_major": 2, "version_minor": 0 }, @@ -582,11 +690,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 53 seconds.\n", - "There were 1000 divergences after tuning. Increase `target_accept` or reparameterize.\n", - "We recommend running at least 4 chains for robust computation of convergence diagnostics\n", - "The rhat statistic is larger than 1.01 for some parameters. This indicates problems during sampling. See https://arxiv.org/abs/1903.08008 for details\n", - "The effective sample size per chain is smaller than 100 for some parameters. A higher number is needed for reliable rhat and ess computation. See https://arxiv.org/abs/1903.08008 for details\n" + "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 60 seconds.\n", + "We recommend running at least 4 chains for robust computation of convergence diagnostics\n" ] } ], @@ -595,23 +700,36 @@ " two_level_hgf_idata = pm.sample(chains=2, cores=1)" ] }, + { + "cell_type": "code", + "execution_count": 16, + "id": "df9a3b00-c476-4700-a1ed-a200344c2b03", + "metadata": {}, + "outputs": [], + "source": [ + "# save pointwise estimate as log_likelihood for later use in model comparison\n", + "two_level_hgf_idata.add_groups(\n", + " log_likelihood=two_level_hgf_idata.posterior[\"pointwise_loglikelihood\"]\n", + ")" + ] + }, { "cell_type": "markdown", "id": "c7305635-b420-4d54-8015-72c0f3a03748", "metadata": {}, "source": [ - "## Visualization of the posterior distributions" + "### Visualization of the posterior distributions" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 17, "id": "506039b8-80a4-40d5-97e5-31f425535b5e", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABbUAAAIeCAYAAACMQOLvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD0KUlEQVR4nOzdd1iUZ77G8e/QOxZAsfeKBSuIBXvvmphkY0zPpnlSd1M2bTfZ9F42iUlMTzT23kVRUSzYu9i7ogJKf88fMKMjqKDAy8D9uS6v47z1npGTfebH8/4ei2EYBiIiIiIiIiIiIiIiDsDJ7AAiIiIiIiIiIiIiIvmloraIiIiIiIiIiIiIOAwVtUVERERERERERETEYaioLSIiIiIiIiIiIiIOQ0VtEREREREREREREXEYKmqLiIiIiIiIiIiIiMNQUVtEREREREREREREHIaK2iIiIiIiIiIiIiLiMFTUFhERERERERERERGHoaK2iIiIiIiIiJQZr732GhaLhddee63Y7lmrVi0sFgv79++32z5mzBgsFgvjx4+32z5+/HgsFgtjxowptowiIo5ERW0RKXP279/Pa6+9lmvgKEVv6tSpvPbaa8TFxZkdRURERESkUBTnGPfcuXO89tprfPzxx0V+LxGRkkxFbREpc/bv38/rr7+uorYJpk6dyuuvv66itoiIiIiUGvkZ49atW5eGDRvi6uqar2v6+/vTsGFDgoOD7bafO3eO119/XUVtESnzXMwOICIiIiIiIiJSmi1atKhAxw8dOpShQ4cWURoREcenmdoiIiIiIiIiIiIi4jBU1BaRm2axWLBYLABMmTKFDh064OPjQ6VKlbjnnns4fvy47dgffviB1q1b4+3tTVBQEI888gjnz5/Pdc0bLdpyqwumREZG0rVrVwCioqJs78FisVCrVq1cx69Zs4ZRo0ZRtWpV3NzcqFSpEiNHjmTDhg15Xr8oPpMr33NiYiJPP/00tWrVwsPDgzp16vDSSy9x8eLFa77ns2fP8tJLLxESEoK3tze+vr6EhYXx7bffkpWVlev4KxeriY+PZ8yYMVStWhUXFxfbv0tmZibTpk3jvvvuo2nTpvj7++Pl5UXjxo15/vnnOX36tN019+/fj8Vi4ccffwTg3nvvtfvsrde1HpfXv0Ven/G1tk+aNInOnTtTrly5XAvyFPTzEBEREXEkjjhGf/bZZ7FYLDz++OPXPGbLli1YLBaCgoLIyMiw27d161buvvtuqlWrZhuzDx8+nJiYmALlKKoxLlx7ochryeszHTNmDLVr1wbgwIEDdvey/puPGjUKi8XCBx98cM1r//XXX1gsFtq2bZuvLCIiJZGK2iJyyz777DOGDRvGoUOHqFevHufPn+enn36ie/fupKSkMHbsWO677z7OnTtH7dq1SUhI4Ouvv2bw4MEYhlGsWZs1a0ZISAgAfn5+RERE2P5cPaj76KOPCAsL488//yQlJYWQkBAyMzP566+/aN++PZMnT77mfYriM0lNTaVLly58/PHH+Pj4UL9+ffbv389bb71F9+7d8yxsb926lebNm/PWW2+xe/duatWqRaVKlVizZg0PPfQQt99++zXvt3PnTlq1asUff/xB5cqVqV+/vm2wfOzYMYYMGcKPP/5IQkIC9erVo2bNmuzfv5/33nuPtm3bcuLECdu1PDw8iIiIICgoCID69evbffY1atS4zr9awbzzzjuMGDGCXbt20aBBAwIDAwvl8xARERFxJI40Rr/zzjsBmDhxIpmZmXke89tvvwEwcuRIXFwud1KdPn06rVu35pdffiE5OZkWLVpgGAaTJ08mIiKCb7/9Nt85SvIYF6BBgwa0adMGAHd3d7t7RUREAHDfffcB2ArtebHuu9lfQoiIlAiGiMhNAgzA8Pb2Nn777Tfb9kOHDhn16tUzAGPIkCGGv7+/sXDhQtv+TZs2GRUqVDAAY/bs2XbXfPXVVw3AePXVV/O85w8//GAAxj333HPTuZcsWWIARpcuXa55zJw5cwyLxWIEBAQYkyZNsts3btw4w8XFxfD19TWOHj1qt68oPhPre3ZxcTGqVq1qxMXF2fZt3rzZqF69ugEYzz77rN15SUlJRt26dQ3AePLJJ43z58/b9m3dutVo2rSpARiff/653Xn33HOPARjOzs7GoEGDjDNnztj2Xbp0yTAMwzh37pwxfvx4u32GYRgJCQnG448/bgDGmDFjcn2u1mv/8MMPufYZhmHEx8cbgFGzZs089xvG5c/4Wtvd3NyMb775xsjKyjIMwzDS09ON9PT0m/48RERERByJo47RGzVqZADGvHnz8txfu3ZtAzCio6Nt244cOWL4+fkZgDF27FgjNTXVMAzDyMzMNN58800DMFxdXY2NGzfm6/0U1RjXMAyjZs2aBmDEx8fn69xrfaY3Gi9nZmYaNWrUMABj/fr1ufafOHHCcHFxMdzc3HK9TxERR6KZ2iJyyx544AHuuOMO2+tq1arx3HPPAdkrgb/22mt0797dtr9Zs2Y89NBDAMydO7d4w+bTSy+9hGEYfPfddwwbNsxu3/3338/YsWNJTExk3LhxeZ5fFJ9JRkYGn332GS1atLBtCwkJ4YsvvgDgq6++IjEx0bbv+++/Z+/evQwdOpRPPvkEPz8/274mTZrw22+/YbFY+PDDD/O8X2BgIL/99hsVKlSwbfPw8ACyV2O/55577PYBlCtXjs8++4zq1aszYcKEXI+GFoeHH36YBx980Dar3MXFBRcXl1v+PEREREQciaON0a1Zf//991z7YmJiiI+Pp2bNmnTo0MG2/csvv+TChQu0bNmSjz/+GDc3NwCcnJx48cUX6devH+np6bz//vv5ylCSx7j55eTkxD333APkPVv7119/JSMjg0GDBuV6nyIijkRFbRG5Zffff3+ubS1btrT93foI3JVCQ0MB2LdvX5HlulkHDhxg/fr1BAUFMWjQoDyPsW6PiorKc39RfCZVq1Zl8ODBubYPGDCAGjVqkJyczIoVK2zbre1RHnjggTyv17x5c2rVqsW+ffs4fPhwrv3Dhw/H29s7z3OtFi9ezFNPPUX//v3p3LkzHTt2pGPHjpw/f56LFy+ye/fu655fFEaPHp3n9lv9PEREREQciaON0a0tSKZMmUJqaqrdPmuh29ov2mr+/PkA1+zFPXbsWLvj8qskjnELwtrb+7fffiM9Pd1un1qPiEhp4XLjQ0RErq9u3bq5tln7GAcGBtrNiL16f1JSUtGGuwmbN28GICUlhY4dO+Z5TEpKCgBHjhzJc39RfCYNGzbEySn37yItFgsNGzbk4MGD7Nq1iz59+ti9j1deeYW33norz2taF7s5cuQI1apVs9vXuHHjPM8BSEtL4/bbb2fq1KnXPAayF2UsbtfKfaufh4iIiIgjcbQxer169Wjbti2xsbHMnj2boUOHApCVlcWECRMA7GaeA+zatQvIfuouL02bNgXgxIkTXLhwIc/3fKWSPMYtiNq1axMZGcmSJUuYM2eObULOxo0b2bhxI5UrV7Z9ZxARcVQqaovILfPy8sq1zTqDIq99V+43SuCifNYV3y9cuGA38zkvly5dynN7UXwm1gVo8lKpUiUAu/Yj1vexbt26a55nldf7uN4s7bfffpupU6dSuXJl3n33XTp37kzlypVxd3cHoGPHjqxYsSLXzJDicK3ct/p5iIiIiDgSRxyj33nnncTGxvL777/bitpLlizh+PHjNGnSxK4NH1wuvl9rnGwdI0P2OPlGRe2SPMYtqPvuu48lS5bw448/2ora1lnaf/vb33B2djYznojILVP7EREpUW40kE5OTi7yDD4+PgBERERgGMZ1/+zfv7/I81idOnXqmvtOnjwJgK+vr22b9X3s3r37hu8jMjKyQFl+/fVXAMaPH8/dd99NzZo1bYN9gEOHDhXoelZF+e9flJ+HiIiISGlWXGP022+/HScnJ2bOnGmbrGFtPXL1LG24PL6zjoWvduLECdvfrxwnX0tRjXHNMHz4cPz9/Zk5cyZnzpwhIyOD3377DVDrEREpHVTUFpESxTrL9loF3D179tzyPa7sw5cX6+OL27dvJysr65bvV1h27tyZZx7DMNi5cycADRo0sG23vo8tW7YUehZrMf/KhXqszpw5c822LDf67Ivy378oPw8RERGR0qw4xugAwcHBREZGcunSJaZOnUpaWpptXZS8itrWse+2bdvyvN7WrVuB7BnbN5qlDUU3xi1M+b2Xp6cno0aNIi0tjd9//505c+Zw4sQJ2rRpY2vLIiLiyFTUFpESpU6dOgDExsbm2pecnMwff/xxy/fw9PQErt1ion79+oSEhHD27Fl++umnW75fYTl8+DAzZszItX3WrFkcOHAAb29vIiIibNuHDRsGwKefflroj5BaP8MrZ79YffDBB2RmZl73vGt99hUrVsTf359Lly7ZvoRcady4cTcbuUg/DxEREZHSrDjG6FbWBSOthdiEhATatWuXZ4/w3r17A/D555/nea1PP/3U7rgbKaoxbmEqyL2si4H++OOPWiBSREodFbVFpETp2rUrHh4erF27lm+++ca2/dy5c4wZM4YzZ87c8j1q164NZM/ouNZsk3feeQeLxcJjjz3GuHHjyMjIsNu/b98+3nzzTdvMkeLg4uLCE088YVvwELLfg3W190ceecTuscqHH36YOnXqsGTJEu666y6OHTtmd72kpCQmTJjA008/XeAs1gU0n3nmGVsvQ8Mw+Omnn3j//ffx8PDI8zzrF6Jly5blWVi2WCy2Lx1PP/203SJFP/74I99//32Bs1oV5echIiIiUpoVxxjdavjw4bi7u7NgwQJbsdpa6L7a3//+d/z8/IiLi+Opp54iLS0NyF5c8t1332XWrFm4urryzDPP5OveRTXGLUyBgYH4+vpy8uRJtm/fft1j27VrR0hICGvXrmXatGm4ubnlOeNdRMQRqagtIiVK+fLleemll4DsImS1atVo06YNVapUYfny5bZ9tyIwMJBu3bqRlJRE3bp1CQsLIzIyklGjRtmO6devH5999hmpqak8+OCDVKhQgTZt2tC2bVsqV65M3bp1efnll6/Zv68ojBgxgoCAAFq0aEGzZs1o3rw5ISEhHDhwgLZt2/L666/bHe/j48OsWbOoXbs2v//+O9WqVaNJkyaEhYXRsGFDypUrx+23387KlSsLnOX111/H3d2d6dOnU7VqVdq0aUO1atW45557GDVqFO3bt8/zvKFDh+Lm5sYff/xB7dq16dy5M5GRkYwfP97u2j4+PsyfP5/KlSvTunVrqlSpwpgxY/jggw8KnNWqKD8PERERkdKsOMboVuXKlaNv375kZGSwcOFCnJycuO222/I8tkqVKvz888+4ubnx8ccfU7lyZdq1a0dwcDD/+Mc/cHJy4vPPP6d58+b5undRjnELi8ViYeTIkQC0atWKtm3bEhkZec01Ye69914AMjIyGDRoEBUqVCj0TCIiZlBRW0RKnJdffpkvvviCJk2acOrUKQ4dOsSIESNYu3YtNWvWLJR7/Pbbb4wZMwY/Pz/WrVtHVFQUMTExdsc89thjxMXF8cADDxAYGMjWrVvZvXs3AQEB3HHHHUycOJHRo0cXSp78cHd3JyoqirFjx3LhwgV27txJjRo1+Oc//8mSJUtsvQ6v1KhRIzZu3Mjbb79N27ZtOXLkCHFxcaSlpdGlSxfef//9m3pctHXr1ixbtoyePXuSlZXFjh07CAoK4tNPP7U92piXunXrMmPGDLp06UJCQgLR0dFERUXZLbjZqFEjli1bRp8+fXBycmLnzp3Url2bGTNm8MgjjxQ465WK6vMQERERKe2KY4xudeXM7K5duxIcHHzNYwcNGsS6deu466678PDwIC4uDsMwGDp0KNHR0Tz00EP5vm9RjnEL0yeffMLYsWOpXLkyGzduJCoqiqioqDyPvfvuu3F2dgbUekRESheLocaiIiIl2vjx47n33nu55557imS2h4iIiIiIlE47duygcePGVK5cmcOHD9sK3CIijk4ztUVERERERERESqHvvvsOsJ+xLSJSGqioLSIiIiIiIiJSysTHx/P111/j7OzMww8/bHYcEZFC5WJ2ABGRW/HWW28xe/bsfB0bHBzMxIkTiziRiIiIiEjZpjG6uf7v//6PNWvWsHHjRi5evMhDDz1E3bp1zY4lIlKoVNQWEYe2a9cuVqxYka9jC3sBGxERERERyU1jdHPFxcWxatUqKlWqxAMPPMDbb79tdiQRkUKnhSJFRERERERERERExGGop7aIiIiIiIiIiIiIOAwVtUVERERERERERETEYaioLSIiIiIiIiIiIiIOQ0VtEREREREREREREXEYKmqLiIiIiIiIiIiIiMNQUVtEREREREREREREHIaK2iIiIiIiIiIiIiLiMFTUFhERERERERERERGHoaK2iIiIiIiIiIiIiDgMFbVFRERERERERERExGGoqC0iIiIiIiIiIiIiDkNFbRERERERERERERFxGCpqi4iIiIiIiIiIiIjDUFFbRERERERERERERByGitoiIiIiIiIiIiIi4jBU1BYRERERERERERERh6GitoiIiIiIiIiIiIg4DBW1RURERERERERERMRhqKgtIiIiIiIiIiIiIg5DRW0RERERERERERERcRgqaouIiIiIiIiIiIiIw1BRW0REREREREREREQchovZAUREpPBlZGSwbsUGDu0/gpOTE3Ub1iakdROcnZ3NjiYiIiIiUqiSky4St3oTB/YexNXVlao1gwlp1RS/cr5mRxMRkSKioraISCmSlZXFjD/m8PV733H6xBm7fZWqBHHv2LsZ+reBWCwWkxKKiIiIiBSOpMRkfvzsV/4aP4XkpIt2+9w93Bk0qh8PPXcf/uX9TEooIiJFxWIYhmF2CBERuXUXziXyr8feYNWSNQCUq+BPi3bNyMjIZPPaLVw4lwhAeNd2vPnVq/j4+ZgZV0RERETkpsUsjeX1/3uLMyfPAhBcvTJNWzYmIyODvTvjObTvMAAVAsrz6qcvEh7Zzsy4IiJSyFTUFhEpBc6eTuDvw8cSv/sA7h7uPPKP+7nt3mG4urkCkJqSyqSfpvHV2+NITUmlTsPafDnxIyoElDc5uYiIiIhIwfz2zQQ+ef1LDMOgep1qPPny3+nUqwNOTtnLhhmGwdoVG3j/pY+J330Ai8XCk//6O3c9crvJyUVEpLCoqC0i4uCSky7y0JAn2L1tD0HBgXww/i0aNmuQ57E7Nu3imTEvcOr4aRo1b8hXf32Mt49XMScWEREREbk5P3/5O5/9538ADLlrAM/8+0ncPdzzPDY1JZUPX/2cKT9PB+CJlx/h7kfvKLasIiJSdFTUFhFxYIZh8K9H32D+tMVUCCjP11M+o2bd6tc95+C+wzw4+DESzpyj24Au/Pfr19VjW0RERERKvLmTF/DK4/8B4KFn7+WBp8fk67zvPvqRr9/7HoC3v32Dbv27FFVEEREpJk5mBxARkZs38885zJ+2GGdnZ94Z9+8bFrQBatSpxgc//hcXVxcWz4xi4g9TiiGpiIiIiMjN27hmM/9++h0A/vbIqHwXtAHuf+oe7nhoJACvPfkW8bv3F0FCEREpTipqi4g4qDOnzvLJG18C8Mjz99OiXbN8nxvSqglP/uvvAHz+5tccOXisSDKKiIiIiNyqIweP8dx9L5Gelk6XPh15/OWHC3yNJ15+hLYdW5NyKYVXHvsP6WnpRZBURESKi4raIiIO6qNXP+fCuUQahtTnrr8XfNGb2+8fTqvwlqRcSuGdf36IulGJiIiISEmTkZ7By39/nXNnz9OoeUPe+Pxl24KQBeHi4sJrn76If3l/dm7Zzfcf/1QEaUVEpLioqC0i4oBWLVnN/KmLcHJy4sX3n8PFxaXA17BYLLzw7rO4ubsRs3QN86YsLIKkIiIiIiI379sPx7N1w3Z8/X14d9y/8fTyvOlrBVYO4B9vPwXAj1/8xt6d8YUVU0REipmK2iIiDiYtNY13XvgIgNsfGE7j5g1v+lo161bn3rF3A/DhK59xPuFCoWQUEREREblV62M2Mv7TXwB44d1nqVyt0i1fs/uASDr3iiAjPYN3X/hITyuKiDgoFbVFRBzMlJ+nc/TgMQIrB/Dwc/fd8vVGP3oHdRrW5tzZ87YvDSIiIiIiZrqYfJHXnngTwzAYeHtfegzsWijXtVgsPPufsbh7uLEhZiNRc6ML5boiIlK8VNQWEXEgF5Mv8kNO4fn+p+7By9vrlq/p6ubKk/96BIAJP0zm2OHjt3xNEREREZFb8e374zl+5ARVagTzzH+eLNRrV65WiTseug2Az978HxkZGYV6fRERKXoqaouIOJCpv87k7OkEqtWqyqBR/QrtuuFd29M6IpT0tHS+fu/7QruuiIiIiEhB7d2xjz/G/QXAc2/+X6FM5LjaPY/fRbkK/hzad5j5UxcV+vVFRKRoqagtIuIg0tPS+e3rCQCMfuxOXFwLvjjktVgsFp546WEA5vw1n93b9hbatUVERERE8sswDD585XMyMzOJ7NuJiO5hRXIfbx8v7nr4dgC+//hnMjMzi+Q+IiJSNFTUFhFxEHMnL+DksVMEVKpIvxG9Cv36TVo2psfArhiGwVdvf1vo1xcRERERuZHl81cSG70OVzdXxr7yaJHea8S9Q/Er78fBfYdYMG1xkd5LREQKl4raIiIOICsri5+++B2AOx4ciZu7W5Hc55F/PICTkxPRC1exa+ueIrmHiIiIiEhe0lLT+OSNLwC486HbqFqzSpHez9vHiztzemv/8Ilma4uIOBIVtUVEHEDUvGgO7D2Ij58PQ+8eVGT3qVGnGt0HRALw0+e/Ftl9RERERESuNuH7yRyKP0LFoAqMefJvxXLP2+4bhq+/D/G7D7B4ZlSx3FNERG6ditoiIg7g16/+BGDEmCH4+HoX6b3uefxOABbOWMqh+MNFei8REREREYCzpxP47uOfAHj0nw/i7VP4i0PmxcfXm1EPjATgpy9+wzCMYrmviIjcGhW1RURKuO2bdrJp7RZcXF247b5hRX6/BiH1iegeRlZWFr989UeR309ERERE5Ot3vyM5MZlGzRrQ/7Y+xXrvkfcOxcPTg51bdrNm2dpivbeIiNwcFbVFREq4id9PBqD7gEgCgioWyz3vefwuAGZOmMup46eL5Z4iIiIiUjbt3RnPtN9mAfDUG4/j5FS8pYpyFfwZfGd/AH7535/Fem8REbk5KmqLiJRgCWfOMT9nJfbimKVt1bJ9c1q0a0Z6Wjq/fT2h2O4rIiIiImXP/94ZR1ZWFpF9OxHavoUpGUY9MAKA1VGxHDlw1JQMIiKSfypqi4iUYNN/m0VaahqNmjckpFWTYr33mCeyF+eZ/PN0zidcKNZ7i4iIiEjZsHndVqLmRuPk5MTf//mAaTmq1qxCWGQ7AKb8MsO0HCIikj8qaouIlFAZGRn89eNUIHuWtsViKdb7d+jWnvpN6nHp4iUm/jC5WO8tIiIiIqWfYRh88dY3APS/rQ+169cyNc/QuwcCMPPPOaSnpZuaRURErk9FbRGREmrFwhhOHD1JuQr+9BzUtdjvb7FYGP3YHQD89eM00lLTij2DiIiIiJReMVGxrF8Vh6ubKw8+PcbsOHTq0YGAShU5ezqBpXOXmx1HRESuQ0VtEZESaupvMwEYOKof7h7upmToPiCSoOBAzp46y4Lpi03JICIiIiKlT1ZWFl/mzNIeMWYIlatVMjkRuLi6MPiO7AUjJ/883eQ0IiJyPSpqi4iUQCeOnmTV4tUADMoZWJvBxdWFkWOGAvDHt39hGIZpWURERESk9Fg0cyk7t+zG28fLtpZLSTD4zgE4OTmxbsUGDuw9ZHYcERG5BhW1RURKoJl/ziErK4tW4S2pWbe6qVkG3zUAdw93dm7ZzYaYjaZmERERERHHl5Gewf/e/Q6Aux65nfIVy5kb6AqVq1UivFt7AKZqwUgRkRJLRW0RkRImKyuL6b/PBmDwnebN0rYqV8GffiN7A/D7txNNTiMiIiIijm7Gn7M5tO8w5SuW446HbjM7Ti7D7h4EwMwJc0lNSTU5jYiI5EVFbRGREmbNsnUcO3wcX38fuvbrYnYcAEY9MByAZfNWcOTAUZPTiIiIiIijSrmYwrgPfwTgvrF34+3jZXKi3Dp0a0+lKkGcTzjPktnLzI4jIiJ5UFFbRKSEmfZ79gKRfYb1xMPTnAUir1a7fi3Cu7bDMAz+/H6y2XFERERExEFN+GEyp46fJrhaZYbmzIguaZydnW3r2sz8c47JaUREJC8qaouIlCDnEy6wbN4KANvK6yXFqAdHAjDj91kkJSabnEZEREREHE3i+UR++uI3AB567l7c3N1MTnRt1vZ7sdHrOXH0pMlpRETkaipqi4iUIAumLyY9LZ36TerRIKS+2XHshHVpS+36NUlOusiMP2abHUdEREREHMxPX/zOhXOJ1GlYmz7Depod57qq1ggmNKwFhmEwd/JCs+OIiMhVVNQWESlBZk+cB0D/23qbnCQ3i8XC7Q+MAODP7yaRmZlpciIRERERcRSnjp/mj3F/AfDoPx/E2dnZ5EQ31m9E9ph89sS5GIZhchoREbmSitoiIiXEgT0H2bJ+G87OzvQe2sPsOHnqN7wXfuX9OHrwGMvmrzA7joiIiIg4iHEfjic1JZUWbZvRqVcHs+PkS/cBXXD3cCN+9wG2b9ppdhwREbmCitoiIiXErIlzAQjr2o6KgRVMTpM3Dy8Phv1tIAATtGCkiIiIiOTDgT0Hmf57dvu6x158CIvFYnKi/PHx86FLn07A5ScqRUSkZFBRW0SkBMjMzGT2X/MB6D+y5LUeudLw0UNwcnJi3YoN7N0Zb3YcERERESnhvnpnHJmZmXTsEU7L9s3NjlMg1rH5/KmLSE9LNzmNiIhYqagtIlICrFuxgZPHTuHr70OnniX7ccxKVYPo0qcjAH+Nn2JyGhEREREpyTau2cziWVE4OTnx6AsPmh2nwNp2ak3FoAqcO3ueVUvWmB1HRERyqKgtIlICzPor+3HGnoO74e7hbnKaGxsxZigAsyfOJ+lCkslpRERERKQkysrK4uPXvwBg4Ki+1Gtc1+REBefi4kKfoT2By+0CRUTEfCpqi4iYLDnpIktmLQOg/8g+JqfJnzYRodSuX5NLFy8xS/0FRURERCQPC6YtZuuG7Xh6efLw8/ebHeem9b8tuwXJ8gUrOZ9wweQ0IiICKmqLiJhuyawoUi6lUKNOdUJaNTE7Tr5YLBZG3ps9W3viD1PIysoyOZGIiIiIlCSpKal8+d9vARj9+J0EBFU0OdHNq9e4Lg2a1iMjPYMF0xebHUdERFBRW0TEdNbHGPvf1tthVoIH6DuiN94+Xhzcd4jY5evMjiMiIiIiJcgf4yZx7PBxgoIDueuh28yOc8v6jugFwLzJC01OIiIioKK2iIipjh46xrqVcVgsFvoO62V2nALx9vGiX85q8BPHTzU3jIiIiIiUGGdPJzD+058BePSFB/Hw8jA50a3rNbg7Tk5ObIzdzJEDR82OIyJS5qmoLSJiojl/zQegdUQolatVMjlNwY3MWTAyesFKjh46ZnIaERERESkJvv3gB5KTLtKoeUP6DOtpdpxCEVg5gLYdWwEwd4pma4uImE1FbRERkxiGwey/shdZ7J8z49nR1Kpfk3adWpOVlcXkn6abHUdERERETLZv136m/jITgP979VGcnEpP2aHP8OwC/dxJCzAMw+Q0IiJlW+n5XxcREQezKXYLh+KP4OnlSdd+nc2Oc9NG3jsMgGm/zSI1JdXkNCIiIiJips/+/RWZmZl06dORVuEtzY5TqCL7dsbdw50Dew+yfdNOs+OIiJRpKmqLiJjEukBktwFd8PL2MjnNzevYM5zKVStxPuE8C6YvMTuOiIiIiJhkzbK1rFgUg7OLM4+/9IjZcQqdt48XXfp0BLJna4uIiHlU1BYRMUHKpVQWzlgKOG7rEStnZ2eGjx4MwITvJ+tRTBEREZEyKDMzk4/f+BKAEfcMoWbd6iYnKhp9h2cv7j5/6iIyMjJMTiMiUnapqC0iYoJl86JJupBE5aqVSsVjmYPu7I+buxs7Nu1k64btZscRERERkWI29deZ7Nm2F19/H+5/6h6z4xSZ9p3bUL5iOc6eTiB2+Tqz44iIlFkqaouImMDaeqTfyN6lYvGc8hXL0XNwNwAm/jDZ5DQiIiIiUpzOnT3PV++MA+Dh5+6nXAV/kxMVHRdXF9u4d45akIiImMbxKykiIg7m9IkzrI5aC0C/EY7deuRKI+8dCsDCGUs5ezrB3DAiIiIiUmy+emccFxIuUK9JXYaNHmR2nCJnbUGydM5yLiZfNDmNiEjZpKK2iEgxmzt5AVlZWTRr3ZQadaqZHafQNGnRiKahjUlPS2fabzPNjiMiIiIixWD7pp1M/WUGAM+9ORYXFxeTExW9Ji0bUb1ONVIupRA1N9rsOCIiZZKK2iIixcgwDFvrkf639TE5TeGzztae9OM0LZwjIiIiUsplZWXx3osfYxgGfYb1JLR9C7MjFQuLxULfYT0BtSARETGLitoiIsVo5+bd7N0Rj5u7Gz0HdTU7TqHrMbAr5Sr4c/LYKVYuWm12HBEREREpQjP/nMOW9dvw8vbkiZcfMTtOseqTU9Res2wtp0+eMTmNiEjZo6K2iEgxss7S7twrAl9/X5PT5M/MmTPp0qUL/v7++Pn50aVLF2bOzLu9iJu7G/1HZs9Av1YLktTUVN5//33atGmDn58fPj4+NGzYkPvvv58jR47YHZucnMzPP//ME088Qbt27XB3d8disfD2228X7psUERERkQK5cC6RL976BoAHn7mXwMoBJicqHrt378bT05PqtatxNCOerKwsFkxbfNPXW7ZsGU5OTlgsFh55pGz9YkBE5FaoqC0iUkzS09KZN2Uh4DitRz799FMGDhzIypUr6dChA926dSM2NpaBAwfy6aef5nnO4Dv7A7BiUQwnj52y23fy5Enatm3Lc889x5EjR+jRowe9evXC3d2d77//nvj4eLvjd+/ezejRo/n888+JjY0lLS2taN6oiIiIiBTI1+99R8KZc9SuX5Pb7x9udpxi8/DDD5OamgpAQKWKwM23IElNTeWhhx4qtGwiImWJitoiIsVk5eLVnDt7nopBFWjfpY3ZcW5o165dPPPMM7i7u7Ns2TLmzJnD1KlTiYuLo2LFijzzzDPs3r0713m16tekZfvmZGVlMePPObbtWVlZDB48mM2bN/PSSy9x6NAhJk+ezOTJk9m0aRN79+6lUaNGdtfy9fXl/vvv5+uvv2b9+vW89NJLRf6+RUREROT6dm3ZzaQfpwHw7Jv/h4tr6V8cEuC7775jyZIlPPjggwAEBFXE2cWZHZt2Er97f4Gv95///Iddu3Zx//33F3JSEZHST0VtEZFiYm090mdoT4dYFf6TTz4hIyODRx55hPDwcNv2Bg0a8NJLL5GRkXHN2dpD7hoAwPTfZ5GVlQXA+PHjiYmJYfjw4fznP//J9RnUqVOHgAD7x1br1q3LuHHjeOihhwgNDXWIz01ERESkNDMMg/de+oSsrCx6DOxK246tzI5ULE6ePMlzzz1Hjx49uOOOOwBwcXWhQ9f2AMydvLBA19u2bRvvvvsu999/PxEREYWeV0SktFNRW0TKjP3792OxWIiMjCQ5OZmnn36a6tWr4+npSatWrZgxY4bt2IkTJ9KuXTu8vb2pVKkSTz75JJcuXcp1zaSkJN544w2aNWuGl5eXref01KlT7Y47d/Y80QtXcS7lDMs3LqFx48b4+fnh7e1NixYteOutt2yPMV5p/PjxWCwWXnvtNQ4ePMidd95JYGAgnp6etGnTxi5zYbP2zR4xYkSufSNHjgS45v279Y/E19+HY4eOs2bZOgC+/vprAJ555pmiiCsiIiIiFP2Y19PDk+9n/I+dCZtp0K5WnhlmzZrFfffd5xBj3vyyfjZfffWV3XbrgpFzJy+wTea4EcMwePDBB/H39+edd94p9KwiImWBitoiUuakpaXRvXt3fv75Z1q2bElYWBgbN25k6NChLFy4kI8++og777wTFxcXevXqRWZmJp999hkPPPCA3XVOnDhB+/btefXVV0lISKBnz560b9+edevWMXToULvFDOdPXURGegaHkvcxb8Fc/P396dOnD506deLQoUO89NJL9OvXj8zMzDwz79+/n7Zt27JixQo6duxIaGgo69atY8iQIcyfP7/QP6Nz585x8OBBAEJDQ3Ptr1atGgEBARw4cIDz58/n2u/h6W4b4E/9bQaJiYmsXbsWX19f2rdvz6pVq3jhhRd4+OGHefPNN9myZUuhvwcRERGRsqwoxrxnz57Fz6M8Pq6+pGZd5N4H7s1zAe/777+fiRMnlvgxb37Nnj2bP//8kxdffJF69erZ7evUswPePl4cO3ScTbH5G9N+9dVXrFy5kg8++IAKFSoURWQRkdLPEBEpI+Lj4w3AAIzIyEjj7Nmztn0//PCDARj16tUzKlSoYCxbtsy278iRI0ZQUJABGHv37rVt79u3rwEYzz//vJGWlmbbvnfvXqNu3bqGs7OzsXHjRsMwDGN0nweNtsGdjacffc5ISkqyy3XhwgVjwIABBmD8+OOPdvusuQDjiSeeMNLT0237Pv74YwMwOnXqlOu91qxZ03Zefv/Ex8fbzt+4caMBGOXLl7/m59myZUsDMDZt2pTn/l1b9xhtgzsb4TW6GfPmzjcAIzQ01Hjsscdy3dtisRjPPffcNe9l9eqrrxqA8d///veGx4qIiIiURUU55n3v5Y+NtsGdjeERdxnbt23PNea1mjJlikOMefMjKSnJqFmzptGwYUMjNTXVMAzDWLJkiQEYvXv3NgzDMF4f+5bRNriz8dbz79/wekeOHDH8/PyMrl275nr/Dz/8cIGyiYiUZWpOKiJljrOzM99++y3ly5e3bRs9ejTPP/88e/bs4ZVXXqFTp062fVWqVOGuu+7io48+YtmyZdSpU4e4uDjmzJlDhw4dePvtt7FYLLbj69SpwwcffMCQIUMYN24c//f402zfuBNnF2defuNFvL297fL4+vry0UcfMXPmTKZNm8bo0aNzZbZe88qe0o899hivv/46MTExpKWl4ebmZts3YsQITp8+XaDPxcfHx/b3pKQkALy8vK55vPV9WI+9Wv0mdWka2pitG7azYPoiADZv3syGDRt49tlneeyxx/Dx8WHq1KmMHTuW9957jzp16vDII48UKLeIiIiI5FbYY94HxzzE3b2yF0h85j9P0qhxI7sx75VrrQwZMiRXnpI45s2Pl19+mQMHDrB48WK7e1+pz/BezJwwl0UzlvDMG0/g5p73cZD9flJSUnK1MRERkYJRUVtEypxatWrlemzQycmJmjVrcurUKXr27JnrnLp16wJw7NgxABYsWADA4MGD7QraVh07dgQgNjaWWROyF4iM6BZG+Yrl2L17N7Nnz2bPnj0kJyeTlZWFYRgA7N69O8/MkZGRuLq62m1zcXGhTp06rFu3jjNnzhAcHGzb9/7779/4g7gOa5683tvVx1zP4DsHsHXDdlYuWQ1ARkYGd9xxB++9957tmAceeIDU1FQef/xx3nzzTRW1RURERApBYY55Bw0axAf/+pTMzEwi+3YiPLIdYD/mvZojjHlvZO3atXz22WeMHj2arl27XvO41h1aElg5gFPHT7Ny8Woi+3bK87jJkyczdepUXnnlFRo2bFhUsUVEygQVtUWkzKlatWqe260zj/Pab91nXdhm//79APzjH//gH//4xzXvdfr0aeZOzv4y0HdEL5555hk++uijaxaEExMT89xerVq1PLdbZ5rkteDOrfD19QUgOTn5msdcvHjRLkNeeg7uxoevfMapE8dt2+67775cx91777088cQTHD58mD179uT6AiYiIiIiBVOYY95//vOftmNiv1/Ge9+/aXfelbOlDcPg2WefdYgx77hx44iOjrbbFhAQwPvvv09GRoZtMccbFc+dnZ3pPaQHv/zvD+ZOXpBnUfvChQs88cQT1K9fnxdeeKFQ34eISFmkoraIlDnXm32cn/2AbXGbTp06UadOnWsel3Ypgz3LD+FXzpdjCYf58MMPqVatGh9//DHh4eEEBgbi6upKWloa7u7u1xz45yfTlZ599tkCP4r5/vvvExAQAECNGjUASEhIIDk5OVfLFIDDhw/bHZsXbx8vuvbrxNQJl1esr1mzZq7jvLy8CAwM5OTJk5w8eVJFbREREZFbVJhj3vLeFXHKcqFhSH3qN6mb6zjrGBLgzz//dJgxb3R0ND/++KPd/po1a/L+++9z+PBh4uLiqFy5MiNHjrQ75ty5cwCsWbOGyMhIfHx8+PCdj/nlf3+wfMFKEs8n4uvva3fO+vXrOXr0KLVq1aJPnz52+44fz54AMn36dHbs2EG9evUYN25cgd6XiEhZo6K2iMhNsM4iGTFiBE8++eQ1j3vx4dfYwyF6D+nBjJnZhd2vvvqKAQMG2B23b9++Qs33119/ceDAgQKd89prr9kG+OXKlaNGjRocPHiQDRs22B4ttTp8+DCnT5+mRo0a+Pv7X/e6/Ub0Zs6kBbg6u5Kemc7Zs2dzHZOVlWX7clDQPociIiIiUjSsY15f53K0bt6O3xf/gLuH+3XPmTJlCuAYY97x48czfvz46x5//PhxW9H5agkJCURFReHv70/9JnWp26g2e3fEs2hmFEPuGpDnOfv377fNgL/asWPHOHbsmG1cLCIi1+ZkdgAREUfUo0cPAKZOnXrNY86dPU/UvOzHGQfd0Y+EhAQAqlevnuvYCRMmFGq+/fv3YxhGgf7UqlXL7hr9+/cHsr8sXG3ixIkAub6o5KVNx1YEBQfi71YBgCVLluQ6ZuXKlaSlpeHp6UmjRo0K+nZFREREpAg0bdgUgISU0zz9xhM3LGgDDjfmvZZatWpd8xrW8Wzv3r0xDINz585hsVjoM6wXgK394JUiIyOveb0ffvgBgIcffhjDMIiLiyuUz0dEpDRTUVtE5CaEhYXRvXt3lixZwlNPPUVSUpLd/qysLN799/ucTTpNw5D6NGzWgAYNGgDwzTff2D1yuXz5cruFE0uKsWPH4uzszP/+9z9iYmJs23fv3s2bb76Js7NzrlnqR44coVGjRnaFaWdnZ/oM60ll72pYLBbee+89NmzYYNt/8uRJxo4dC2T3277WqvIiIiIiUrxWzIrFz60ciWnnmTRrQp5j3vnz59v1pXa0MW9h6jM0e+LLtHlTqFevPp9//rnJiURESi8VtUVEbtKvv/5K8+bN+fjjj6lZsybdu3dn1KhRdOrUicqVK/Pfj/9Dcnoig+7InvH85JNP4u3tzZdffklISAh33HEHnTt3pkuXLjzyyCMmv5vcGjZsyHvvvUdqaiqdOnWiX79+DBkyhBYtWnDmzBnee++9XKu2p6ens3PnTnbu3Gm3ve+IXni6elPTvx5nz54lPDycrl27MnDgQBo1asT69etp1aoV//3vf3PlGDp0KGFhYYSFhdl6C3755Ze2bUOHDi26D0FERESkjNq4ZjPL5q+gXsWmNGrU+Jpj3t69e7N27VrbeY425i1MlaoG0bpDS9Kz0ti7d0+B+32LiEj+qagtInKTKlWqRExMDB9++CH169cnNjaWqVOncvjwYerXa0BNv3oE+1ejd86MjQYNGhAbG8vAgQM5ffo006dPJykpia+//rrEzlp56qmnmD59OuHh4SxfvpxFixbRunVrpk2bxlNPPZXv69RtWJtGzRsS6BnMi0/9i86dO7NhwwYWLFhAcHAwr7/+OsuXL8fX1zfXuRs2bGD16tWsXr2aI0eOAHDo0CHbtitnfYuIiIjIrTMMg8/f/BqA4XcNZv36dXmOeUNDQ/niiy/429/+ZjvXEce8hcnaggS45oKYIiJy6yyG/isrIlLo/vuPD5jy83R6D+3Bv7/4l9lxSoTfvpnAx699QYu2zfh2mh7FFBERESmpls9fwTNjXsTdw51JK34lKDjQ7EgOI/F8In1bDiMtNY1f5o+jQUh9syOJiJRKmqktIlLIUi6mMH/qIgBb6xGBHgO7YrFY2Bi7mRNHTpodR0RERETykJmZyRf//RaAUQ+MUEG7gHz9fenYMxyAOZNyLxgpIiKFQ0VtEZFCtmjWUpITk6lSI5jWHVqaHafECAoOpGX75gAsnLHE5DQiIiIikpc5f81n3854/Mr5MvqxO8yO45D65rQgmTd1IZmZmSanEREpnVTUFhEpZNN/nw1kz9J2ctJ/Zq/Uc3A3AOZPW2RyEhERERG5WmpKKl+/9z0AY574G77+udc7kRvr0K09fuX9OH3iDOtWaP0XEZGioGqLiEghOrjvMBtiNuLk5MSA2/qYHafE6da/C87OzmzfuJND8YfNjiMiIiIiV/hr/FROHD1JUHAgI+8danYch+Xq5kqPgZEAzJmsFiQiIkVBRW0RkUI044/sWdrhXdup/2AeKgSUp03HVgAsmK4WJCIiIiIlReL5RH747BcAHn7uPtw93E1O5NisLUgWz4ziYvJFk9OIiJQ+KmqLiBSSjIwMZk2cC2iByOvpldOCZIFakIiIiIiUGL99PYELCReo3aAW/Ub2NjuOw2veNoTqdapx6eIlFs+MMjuOiEipo6K2iEghWbV4NadPnKF8xXJ07BFudpwSq0ufTji7OLN3RzwH9h4yO46IiIhImZeUmMyEHyYD8NCz9+Ls7GxyIsdnsVgYeHtfAKbnPM0pIiKFR0VtEZFCMi1ngch+I3rj6uZqcpqSy6+cL206hAIQNXe5yWlEREREZMrP00k8n0StejXo2q+z2XFKjX4jeuPk5ETc6k0c3Kf1ZERECpOK2iIiheD0yTOsWLgKgEF39jM5TcnXpU9HAKLmRpucRERERKRsS01J5devJwAw+rE7cXJSmaCwBAUHEhbZFoCZE+aYnEZEpHTR/1qJiBSC2RPnkZmZSbPWTaldv5bZcUq8zr2zi9qb123l9IkzJqcRERERKbtm/DmHs6fOUrlqJfoM62l2nFJn4KjsCS/W7wsiIlI4VNQWEblFhmEwPaf1iBaIzJ+g4EBCWjUBYNn8FSanERERESmbMjIy+PnL3wH4299H4eLqYnKi0qdTzw74lffj5LFTrFm21uw4IiKlhoraIiK3KG7NJg7uO4Snlyc9BnU1O47D6JIzW3vpHPXVFhERETHDgmmLOXboOOUrlmPQKLXQKwpu7m70zZkBrwUjRUQKj4raIiK3yDpLu8egrnj7eJmcxnFE9u0EwNoV60m6kGRyGhEREZGyJSsri/Gf/QrAHQ+NxMPLw+REpdfA2/sCsGzeCs6dPW9yGhGR0kFFbRGRW5CcdJFFM5YCMFitRwqkZr0a1K5fk4z0DFYsijE7joiIiEiZsmJRDPG79uPt682Ie4aYHadUaxBSn4Yh9UlPS2felIVmxxERKRVU1BYRuQWLZiwh5VIKNevWoFmbpmbHcTjWBSOjF64yOYmIiIhI2TLhu0kADL1rID5+PianKf0G5MzWnvnnHJOTiIiUDipqi4jcghk5g9IBt/XBYrGYnMbxRHQPA2DVktVkZGSYnEZERESkbIjfvZ/Vy9bi5OTEiHuHmB2nTOg9tAeubq7s3LKbXVt2mx1HRMThqagtInKTDu47zMY1m3FycqLfyN5mx3FIIa2b4FfejwvnEtmybpvZcURERETKhInfTwGgU68OVKkebHKasqFcBX/bQukzNFtbROSWqagtInKTZk2cC0BYZFsCKweYnMYxubi4EB7ZDkB9tUVERESKQeL5RGZNnAfA7fcPNzlN2TJwVHYLkjmTF5CWmmZyGhERx6aitojITcjMzGTWhOyitrU/ntwcawuS6IUrTU4iIiIiUvrN+HMOly5eom6j2rTuEGp2nDKlXec2BAUHciHhAsvmrzA7joiIQ1NRW0TkJsQuX8/JY6fwK+dLp54dzI7j0MK7tsfJyYm9O+I5fviE2XFERERESq3MzEwm/pDdeuS2+4ZpTZhi5uzsTP/b+gAw44/ZJqcREXFsKmqLiNyEmX9mD0J7D+mBu4e7yWkcm395P5q1aQpA9KJVJqcRERERKb1WLl7NkQNH8fX3oc+wnmbHKZMG5BS1Y5bGcuLISZPTiIg4LhW1RUQKKPF8IkvnRgMwYJRajxSGjt3DAfXVFhERESlKE76fDMDgOwbg6eVpcpqyqXrtarQKb4lhGMz6a57ZcUREHJaK2iIiBTR/2mLSUtOo17gOjZo1MDtOqRDRI7uv9trodaRcSjU5jYiIiEjpc2DvIVZHxWKxWBg+ZojZcco064KRM/6YTVZWlslpREQck4raIiIFNPPPOQD0v62P+hAWkrqN6hAUHEhqShob12wyO46IiIhIqTPtt5kAdOgeRtUawSanKdu69e+Ct48XRw4cJW61xr4iIjdDRW0RkQLYt2s/Wzdsx9nFmZ4Du5KRmo5hGGbHcngWi4X2ndsA2f0FRURERKTwpKWm2SZmDL1roMlpxNPLk56DuwEw/SYWjDQMg4zUdH0XEZEyTUVtEZECsH4Z6NA1jHlv/8Hvz31FZlqGyalKh7DIdgDERK0xOYmIiIhI6RI1L5pzZ88TWDmADt3bmx1HgIGj+gGwaMZSkhKTC3RuZloGvz/3lb6LiEiZpqK2iEg+ZWRkMGfSfAD6j+htcprSp22n1lgsFvbuiOfU8dNmxxEREREpNab+kt16ZNCofri4uJicRgBCWjWhdv2apKaksnD6YrPjiIg4HBW1RUTyaW30Bs6cPIt/eX/Cu7Y1O06pU66CP41bNARgdZRakIiIiIgUhkPxh4mNXofFYmHQnf3NjiM5LBaLbbb2zbQgEREp61TUFhHJpzmTs2dp9xrcDVdXV5PTlE62FiRL1YJEREREpDBM/z27YBretR3B1SqbnEau1HdEL5ydndmybhv7du03O46IiENRUVtEJB8uXbzE0tnLAegzvKfJaUqvsC7ZM+BXL1tHVlaWyWlEREREHFtmZiaz/5oHwOA7B5icRq5WMbACET3CAZj5xxyT04iIOBYVtUVE8iFqbjSXLl6iWq2qhLRqYnacUiukVRO8fbw4n3CeHZt3mR1HRERExKHFLl/PqeOn8SvvR0T3MLPjSB4G5bQgmf3XPDLSteijiEh+qagtIpIPcycvAKDP0B5YLBaT05ReLq4utOnYClBfbREREZFbNXNC9uzf3oO74+buZnIayUuHbu2pEFiBs6cTWLEoxuw4IiIOQ0VtEZEbOHPqLKuj1gLQe5hajxS1dp3aANkLc4qIiIjIzUm6kETU3Oz2ef1v621yGrkWF1cX+o3oBcCMP9WCREQkv1TUFhG5gYXTFpOZmUnT0MbUrFvd7DilXpuOoQBsWruZtNQ0k9OIiIiIOKaFM5aSmpJG7Qa1aNyikdlx5DoGjuoLwIqFqzh98ozJaUREHIOK2iIiNzDH2npEs7SLRa16NakYVIHUlDS2rN9mdhwRERERhzRr4lwA+o/srfZ5JVzt+rUIad2EzMxM5k5aYHYcERGHoKK2iMh1HNhzkG1xO3B2dqbn4G5mxykTLBYLrTtkz9Zeu0ItSEREREQK6lD8YTau2YyTkxN9h/cyO47kg3XByBl/zMYwDJPTiIiUfCpqi4hch3WByLDItlQIKG9ymrKjTYS1qL3e5CQiIiIijmf2xHkAtOvchsDKASankfzoMagb7h7uxO8+oKcVRUTyQUVtEZFrMAyD+dMWAdB7aA+T05QtbSJaAbBl/TZSLqaYnEZERETEcWRlZTH7r/lAdusRcQw+vt50HxgJZM/WFhGR61NRW0TkGnZu3s2h+CO4e7jTuXeE2XHKlKo1q1C5aiUy0jPYGLvZ7DgiIiIiDiNu9SaOHT6Ot683Xfp0MjuOFIC1BcmCaYu5dPGSyWlEREo2FbVFRK5hwfTFAET0CMPL28vkNGWLxWKhdYT6aouIiIgU1LwpCwHoPiASD093k9NIQYSGtaBaraokJ11k8awos+OIiJRoKmqLiOTBMAwWzlgCQI+BXU1OUzapr7aIiIhIwWSkZ7Aopxjaa0h3k9NIQVksFgbc3heAGX/MMTmNiEjJpqK2iEgetsXt4Nih43h6edKxe7jZccqkNh2y+2pv37iTpAtJJqcRERERKflWL1vLhYQLVAisQOsOLc2OIzeh/8jeWCwW1q+K41D8YbPjiIiUWCpqi4jkwdp6pFPPcDy8PExOUzZVqhpE9dpVycrKYsPqTWbHERERESnxrIuc9xgYibOzs8lp5GZUqhJEWGRbAGZOmGtyGhGRkktFbRGRq2RlZbFwek7rkUHdTE5TtrWJyJ6trRYkIiIiIteXcimVqDnLAeg1WK1HHNnAnAUjZ02YS2ZmpslpRERKJhW1RUSusnntVk4eO4W3rzfhXduZHadMa90hu6/2Oi0WKSIiInJdKxfHcDH5EsHVKtOsTVOz48gt6NwrAl9/H04eO8WGmI1mxxERKZFU1BYRuYq19Ujn3hG4e2jFeDO1zlksctfWPZw7e97kNCIiIiIl1/ypOa1HBnXFYrGYnEZuhZu7G936dwFg3pSFJqcRESmZVNQWEblCZmYmi3NWjO8xsKvJaaRiYAVqN6gFoFkqIiIiIteQlJjMikWrAOg1WO3zSoPeQ3sAsHhWFGmpaSanEREpeVTUFhG5wsY1mzl94gy+/j6EdWlrdhwBWoW3ANBikSIiIiLXsHz+ClJT0qhZtwYNQuqbHUcKQWhYC4KCA0k8n8SqJWvMjiMiUuKoqC0icoVFM5cC0KV3R1zdXM0NIwCEts8uasdppraIiIhInqytR3oO7qbWI6WEs7MzPXMWrVcLEhGR3FTUFhHJYRgGUXOjAeia08NOzNeyfXMgu6920oUkk9OIiIiIlCznzp4nJioWUOuR0sbagmT5ghUkJ100OY2ISMmioraISI4dm3dx8tgpPL08adeptdlxJEdQcCBVa1YhKyuLTWu3mB1HREREpERZMjuKzIxMGjStR636Nc2OI4WoYbP61Kxbg9SUNKLmLjc7johIiaKitohIjqVzsgeK4d3a4e7hbnIauVJozmztOPXVFhEREbEzf9piAHoN6W5yEilsFouF3kOz/13nTlYLEhGRK6moLSKSw9p6JLJPJ5OTyNVCw3IWi4xRUVtERETE6tTx06xfGQdAj0FdzQ0jRaLXkOwWJLHL13Hm1FmT04iIlBwqaouIAAf3HWbfznicXZzp0C3M7DhyFWtRe2vcdlIupZqcRkRERKRkWDxzKYZh0Kx1U6pUDzY7jhSBGnWq0aRlIzIzM1k0Y6nZcURESgwVtUVEwNajrk2HUPzK+ZqcRq5WtWYVAisHkJGewdYN28yOIyIiIlIiLJy5FNAs7dLOumDk/KmLTE4iIlJyqKgtIsLl1iNd+nQ0OYnkxWKx2Ppqb4jZaHIaEREREfOdOn6aTbHZi2h369/F5DRSlLoPiARg09otnDx2ytwwIiIlhIraIlLmnT55hs3rtgLQqVeEyWnkWlqqr7aIiIiIzeJZUbbWI5WqBJkdR4pQUHAgLdo2A2DJrCiT04iIlAwqaotImbd8/goMw6BJy0b6QlCCWWdqb163lYz0DJPTiIiIiJhrUU7rke4DI03NIcWj24Ds2fjWljMiImWditoiUuZZW49E9u1kchK5ntoNauFX3o+USyns2LzL7DgiIiIipjl94gwb12wGoHv/SHPDSLHo1i+7qL0pdgunTpw2OY2IiPlU1BaRMi0pMZnY6PWA+mmXdE5OTrRsp77aIiIiItbWIyGtm1Cpqp40LAsqVQ0ipHUTDMOwTcoRESnLVNQWkTJt1ZLVpKelU6NOdWrVq2l2HLmB0DAVtUVERERsrUdyFhCUssH67710znJzg4iIlAAqaotImRaVMyCM7NsJi8Vichq5kdCcxSLj1mwmMzPT5DQiIiIixe/0iTPErc5eOFutR8qWbv2zW5DErdlEakqayWlERMyloraIlFlpqWmsWBQDqPWIo2jQtB5e3p4kXUhi7454s+OIiIiIFLsls5dltx5p1YTK1SqZHUeKUXC1yjQNbYxhGJw4dtLsOCIiplJRW0TKrHWr4khOukjFoAo0DW1sdhzJBxcXF5q3bQZgm6EkIiIiUpao9UjZZv13P3FERW0RKdtU1BaRMmvZvOwFVjr37oiTk/5z6ChsfbVXq6+2iIiIlC2nT56xrS3SbUAXk9OIGbrmtCBJOJ1AaqpakIhI2aUqjoiUSYZhEL1gFQCde0WYnEYKomV762KRmzAMw+Q0IiIiIsVn2bwVGIZB4xYNCa5W2ew4YoKqNYJp1KwBhgEnj54yO46IiGlU1BaRMmnP9n2cOHoSdw93WncINTuOFECTFo1wc3fj7KmzHNx7yOw4IiIiIsVmyexlAHTrp1naZVlkn04AnDimoraIlF0qaotImRS9cCUA7Tq1xsPT3eQ0UhDuHu62Hugb1FdbREREyojE84msXbEegMi+nUxOI2bq3Dt7kfuzp86SlJhkchoREXOoqC0iZZK19UjHnuEmJ5GbERrWAlBfbRERESk7oheuIjMjk9oNalGzXg2z44iJatatjrevF0aWwaqlsWbHERExhYraIlLmJJw5x5b12wCI6K6itiMKzemrHaeZ2iIiIlJGWFuPdO3X2eQkUhIEBQcBsHz+CpOTiIiYQ0VtESlzVi6OwTAMGobUJyg40Ow4chOatWmKs7Mzxw4d5/jhE2bHERERESlSKRdTWLVkDQBd1XpEgKAq2d9jYpasIS01zeQ0IiLFT0VtESlzohfmtB7poVnajsrL24tGzRsAELdGs7VFRESkdFsVtYbUlFSCq1WmQUh9s+NICeBfzg93DzeSky+ybuUGs+OIiBQ7F7MDiEjJkpqcwq7ozeyJ2cbBjXs4fyKBpNPnsTg5Ua5KRep3CKHLfX0JrB2c5/nJCYksHz+X7UvjOL3/OCnJKTi7OONfuQK1WtWnw109qN264S3nXPDFFGa/96fdtsd+/xf1wpvabdu9cgvzPpnEoc37MDKzqNygOtu3bwGgY88OdsdmpGXwbp/nOLXvGHe8/3fajTB3VfmsrCzWTFjK2snLObbrEOmXUvENKk/Djs3o+vBAAmtVLvA110xcyu/P/e+Gxw17fQyd7ulzM7Fv2lO1RuX72N5jh9OyXXO2btjOhpiNhDZvwtZF64lfu5P963eRdOaC7di2wztz5weP3lSmPau28sUd/77hcZEP9mfwS3fbXmdmZLLoq2nETlpGwpFTePh40SAihP7/uIOK1YOueR+vcj68uPRjvMv53FReERERuTXbl8axeuJSDm3aR+Kpc2RmZOLp60VQvSqE9GhDxN964u7tkee5p/YfZ8nXM9gZvZkLJxJw83InuEF12gzrRLvbInFyKticsuSERHYuzx6Xr569gjauQbifduKFkHupWKMSjTo3p/N9ffGvVCHXuVePgYMb1aDbI4No0bd9rmNL2hi4oP5391vsXG4/yeGj/X+YkmXPqq3sWrGF+HW7OBi3h7RLqbZ9d7z3CO1GRl7z3Mz0DGL+XML66Ss4tuMQaSmp+AWWo354U7o9MohK9araHW+xkP3U6Z6TLJ0bTXjX3P+2VvvX72bZ97PZt3YnSWcv4OHtSZUmNWl/WyStB3fM85y4WTEs+WYGx3YcxOLsRI3mdek9dniu71uQ/bP6VtenuHguKc/vZCIiRUFFbRGxsz0qjh8f/TjPfSf3HuXk3qOsmbCEuz5+PNeg+OS+o3x++xsknjpntz0rI5PT+49zev9x1k5ezqCX/kbXBwfcdMaT+46y4NPJNzxuZ/Rmvh79FkaWgbu3By4ebhzavI/aeOHu50LjFvbF9aXfzuTUvmPUDK1P2+Hm9ipMu5TKuPvfZffKrXbbzx46yarfFxE7aRmjPx9Ls15tTEpovtCwFvz69Z9siNnISu9Alv0wx+xINn88/zVrJ2f3vfQNLEdyQiIbZq5iz+rtPDfnHXwD/G3HZmZkMunVHwDo9+ztKmiLiIiYZMobP7Ls+9zjieSEROJjdxIfu5OYPxbx+J+v4RdUzu6YzfPX8tPjn5CRlm7blpGWzt4129m7Zjvrp6/gge+ex83TPd951kxcyvS3frW9drc4Q5ZBanIKR7cf4Oj2A6z6fTEPfP88ddpcHtfmNQY+uHEv4//+EXd+8GiucW5JGgMXVOykZbkK2maa8sZPHN1+oMDnXbpwkW/G/Jf963fbbU84cpo1f0Wxblo0d334GKED7SflZBe1Ydm8aP7x36fy/MXJoq+mMevdPzAMw7YtOS2R3Su2sHvFFjbNWcPoz57E2fVyeWj1hKX88Xz2RBgvf28yMzLZE7ONfbE7eOTnl6jfwb5oPevdP7h4LonQAeEqaItIsVH7ERG5Ju/yvjTo1Iy67Rrj4uZq256ems5vT3/JueNn7Y6f9p+f7Qra3uV9adw1lCqN7Fdnn/n2byQcOX1TmQzDYMIL35Kemn7DY+d98hdGlkFAzUq8uupLXl/zP9wCfQGoZvG2G/SdO3aGBV9MweJkYfgb92KxWG4qX2H56+Xv7AralepXo3FkS1w93IDsL0k/Pf4JJ/cevel7eFfwpXnfdnn+CahZ8Fngt+paWZr3bYfPFUVggGrN6tCiXTMA9u85SEpKim2fl793keRz83S/Zr4qjWrajju1/7itoB35YH/eiP0fT097EydnJxJPnSP6p/l2110+fi7Hdx2mWkhtwu/sXiTZRURE5PoObtybq6Bdo0VdGnVpgbuPp23bqfjjzPlogt1xJ/cetStou3q40TiyJZUbVLMds3vlVib96/ubzpdqZJLknEnN0PpYnC6PUy9dSObHRz8m9eLlsVBeY+BarbPbts350D57SRsDF0TSmQtM+8/PZse4Jk+//I9J//zn13YF7QrVg2jYqTkevtk/e5npmfzy1Bcc3XHQ7rwKgeXx9vbizMmz7Ni0M9d1ty5ez8x3frcVtN283GnQqRmBtS+P9TfNXcPs9+2fgJ378UQAarVuwOtr/serK78goGYlsjKzmPfxX3bHHtq8j5g/F+Pm5c6gl/6W7/csInKrNFNbRHKp0qgGvf9vBCE92+DknF34Pbn3KJ+OeJXkhEQgeyZx3MxVRD7Q33be3tXbbX/3KufDPxd9gE8FPwB+e+ZLYidlF/qyMrM4ELeH8lUDCpwt5o/FtvuUrxpw3eL44c3xADTt0RpPPy8Mw+B4ahIVgKxL6SSduYBPxex80/7zM2kXUwm/swfVm9UpcK6bkZmRyY5lGzmwYTf9nrndtv3ojoO2zwqgRf8w7vl8LBaLhcNb4vloyMtkZWSSkZbOrPf/4N6vnr6p+1euX+2mz72RE3uOsHbyMtrf3jXfBfJrZUlJvMhrYZfbh1SoHkSTbqE4OTlRr3Ed9mzfB/4e/O3jx6nZqj5OFgv/7vRkobyPK3lX8M3X53V4S7zt722HZc92qtq0FsGNanBk634Obd5n25946hzzPvkLi8XC8NfvLfBjySIiIlI49q7Zbve615PD6Pv0bUD2L6zf7v40WZlZAMSv3WV37Kz3/rAVtJ1cnHnyr9epFlIbwzD48fFP2DgrBoA1f0XR5YH+uSZ8XE+ddo0462Uwa/5Sht4+kP9791ni1+3kyzv+Y7vnhZMJ7Fy2ieZ92gG5x8AAoQPC2b9uFwlHTpfYMXBBTXnjR5ITEnFycca3oh/nTyQUWsakMxdYP30FFaoFEtIz/09Gdrirh63t4rZF6/PV9u/kvqNsnL3a9rp224Y8+uu/cHFz4dT+47zb6zky0tLJyshk1ru/8+D3/7Ad6+TkRNvOrVkyZznRC1bRpGVju2sv/GLq5WOdnRg7+d9UaVSDrMwsvhnztm2W+9LvZtP5/n74B5Un8fR5zh09A2T/3Li4u+Li7krTHq2J+m623VjWMAwmvfIDRpZBz8eHUS64Yr4/KxGRW6VvzyJip15YE56e+V+a92lnK2gDBNWtQsTdPe2OPRV/zO71lY+sVageZCtoA1Rvbj9I9rhixkt+nT+ZwIz//gZwU49HHtx7iHNnz+XavnvlVuJmxeBVzof+z938wDq/jmw7wNR//8TrYY8y7r532bpwvd3+tVOW273u+kB/26yZaiG1adAhxLZv66L1XDqfXOSZ8yP5XBLRP8/no8Ev8XaPZ1j45TRSk1JufOINrPkritTky9fpOLqXrfgb2r4FAEeTz9N6SEcCalS65fsVGSP3pun//ZWUxEu0GdbJNoNKREREip+zi7Pd6xot6tr+Hlirst2s2yvHsZfOJ7N10Trb6wYRIVQLqQ2AxWIh8v7LE0Ag9zjvetoM7cSjv/+LVRuyC4+R/bLHvrVbN6TlgDC7Y68el1/tytYTViVtDFwQ25fGsX7aCgAi7+9HwE2sNXO1jLQMNs5ZzXcPvMer7f/OlNd/5MzBkwW6RsTfehLSo7Xd96AbuXJiEEC74V1wccv+XhVYqzJ1218uVO+I2kjS2Qt2x0d0y/5ZiF64ym57ekoaBzZcnv1dM7S+7RcqTs5Odr3TszIy2TB95XVz5vUztGbiUg5s2E1g7cp2k51ERIqDZmqLiJ3rDcB8A8vZvb66MN0gIoS4nJkoR7cfIG5WDE26t+LckdPE/LHk8nUC/KndtuCLRU5+5QcuXUjG2c2F2995yDbr5VqqN6/DvjU72LpwHb3HjmD5gpUEOGVnLl81AJ+Kfvb9jJ+5De/yvgXOlR+Jp86xbtoKYv+KyvXYoJuXfW/F/esuz/6xWCxUbVrbbn+1ZrXZsWwjAJlpGRzaso8GEc0KnOn88bNMfm08SWcu4OblTuX61Qjp2bpArUcy0zPYvjSO2EnL2Lp4PZlpGbZ9Ti7OuLi7XufsGzMMgxU/L7C9dvN0p/1tkbbXLcOaM3H8FOJWF30vxdTkFKa/9Qvnj5/Fxd2NgFqVaNqtFVUa17Q7rnqzy/9esZOXMfiluzmy7QDHdh7M2Z/9C574dTtZNyUaD19PBv7zziLPLyIiItdWPyIEi5MFIyu7cLfsh7lUaVQTr/I+rP5zie1pRYAW/S6vK3Nw8z4y0zNtr6+e7VytaS0sFoutILh/vf0s7+vxDSzHxjWbOXvqLD5+PrTpEGq370pXjsuvHgO7erjZxugleQycX6kXU5j40jgAAmpVpvdTI/nmnv/edMYDG3YTO3k5G2as5OK5pELJWBBXF6k9r2qld2VrvazMLA5t3Ev9Kya5tI9si8ViYcfmXZw8diq7zzZw8XyS7ec5r+te/dpaAPcN8KdclYqcO3qGuFkxdLirJ+kpaWxblP1LCOvP+KULF5n5bvaCnENfucdWiBcRKS76r46I5NvOqI12r+uGNbF7Pfjluzm26zAndh8mKyOTHx/7ONc1AmpVZvRnT+Lulfeq8deyef5aNs1dA0CPvw8muEH1Gxa1ez05nK9Hv8XpAyd4PfxRUlJS8XPK7knd95nsx0mXj5/Lid2Hqdq0FuF39ShQphtJT0ljy8J12QvYLNtoe2QVsgfIIT3b0GpwBI06t7A779T+47a/e5X3yTVAvPpLzKl9x26qqH36wAmWj59rt236W7/QcXRvhvxrtN1M/asd2ryP2EnLWD99BclnE+321QytT6vBEYQOCLdbEPFm7Fy+iZP7LvcNbz2kI17+lxdStM7U3rV1D0kXkvDxK7pFFi+eS2LJNzPtts1+709CB3bg9ncesv1MB9SsTJthnVk7eRlLv53FuqkruHgukazMLHwDy9FxdC+ysrKyH9U0DHqPHZHr31RERESKV3CD6gx84S5mvPUrhmGwK3ozb0Q8bneMk4szHUf3ost9/WzbTl81Q/rqBSRd3F3x9Pe2FUtPxR+nIJbOyZ7Z3bFHOK45a9wYhsGu5ZvtjqtzxWzeq8fAzi7OXMx5sq8kj4Hza/Z7f9paEN721oO45aw5UxAJR0+zdspy1k5abjfWBAioWYnQQR1oPbgjlepVvamMBeHp62X3+vR++5+RUwdO2O8/eMKuqF0xoAJNQxuzZf02Vi6OYchdAwHw8PGy+4XK1dc9feCq11fMSu/zfyP54/n/Eb92J6+2fZjMjExSk1Nwcnai9/+NALL7syedPk9Ij9Y07hqKiEhxU1FbRPIlblYMWxZefrSyWkhtGnWxH4iWC67I2L9e54dHP2L3ii25ruFd3pc+T42wPZKZXymJF5n0SvbCOpXqV6PHY0PzdV7Djs34+y8vMe+TSRzatA8jM4ukrHRuf+1e2g7rzIWTV/QzfiO7n/GWBWvZMHMVF06ewy/Qn5b9w2nWu22B8sav20nsX8uImxXDpQuXW4M4uzrTsFNzWg2OoFmvtrh55j3z48pzXPMYpLt52m+7lHipQPmux8gyWD5+LhYnC0Nfucdu3/kTZ1k3dQWxk6I4vuuw3b5K9avRalAHWg2OKNQWIFcvqtjxnt52rwMqVaR67aocij/CxtgtRHS3fxS3OGyYsZKM1HTu++YZ27ZR7z5MYO3KxE5aRsKRU7h7e9KwYzP6/+MOfAP8if55Pke27qdyg2p0GtOHlMSLRP+8gH2xO8hMz8jefk9vUxbsFBERKau6PjiA8lUC+O3pL/JclLxFn3Z0ubev3S/+L124aHfMtcZuF89l/z3lquOvxzAMlszJXmela7/LbfeWfDOTI9v2214369WW4AbVba/txsCb95GekkaNFnXp9sggWvRtX2LHwPlxIG4Py3/MnpQRNqob9Ts0zfe5qRdT2DRnDbGTl7Fn1Va7Wcw+Af6EDgin1aAIarWqf9P5bsbVE4WW/ziPemFNqNygOuumRnP4ih7WAClJucf+ET3C2bJ+G9ELVtmK2u7eHlRrVptDm7LPP7n3KEvHzSJsVDfOHDjB0nGz7a6RmnT5Z7P9bZG4e3uw5JsZHNtxEIuzE3XbN6bP/42gXnhTjm4/wIqf5+Pq7sqQV+8hKyuLdVOj2bpwHckJSVSoGkDb4Z2pF57/fx8RkYJSUVtEbmjzvFh+eepz22ufAH/GfPVUrkXtju06xDdj3rYtLOLp502NFnVJOnuBI1v3k5yQyC9jP2fzvFhGfz4234viTf/vb5w/fhaLk4VRbz9UoEfb6ncIoX6HEFYsiuGpu/9BcLXK9Lh3QM51f8npZ9yZ2q0bMv2/v7Lk6xl256+fvpLIB/sz+KW783W/PTHb+GLUG7bXFouFWm0a0HpQBC0HhBf80c48etfl1Zs5vzx8vWgzrBPN+7QnuFF1/IPKc+74WZaPn2s3azv6x3lE3t/fbjHPT4e/ytnDp2yvywVXIHRgB1oNiijwLyry4+yhk2xbfLnXYr3wpnkurNSyfQsOxR9hQ8zGQi9qu7i70bxPO1r0C6NaSC3KVQkg+cwFYidFMffjv2xfhjbPjyV+3U5qt85uq+Ps4kyvJ4bR64lhua6ZdPYCc3JWmB/22hhSki7x6fBXOLn38iyhXdGbWf3nEh756UX12hYRESkm0/7zM0vHzbK9rtK4Jn6B5Ti4cQ8XzyezYeYqtkdt5MHvn6dO20Z5XiOvvsN5DefyY/fWPRw9eAx3D3fCIrMLzNE/zWPm27/ZjgmqU4Xb330417nWMXBeSuoY+K+XvyPxzPlc21v2Dyd0QDiZ6Rn8+c9vMLIM/ILKM+iFu/KVzWryKz+w5q8o22t3H0+a9WpD68EdadCx2XWfUixKwQ2q06Jfe9tikeePn+Xjof+65vEubrnb+3XqEc7X737HmuXrSLmUikfOLw56jx3OuPvfsx037T8/M+0/P+frui37h9Gyf95j68mvjicrM4sejw2lQrVAfnr8E1uLG6s1f0Ux9LUxdB7T55rvRUTkVmihSBG5rnVToxn/2Me2Xsk+Ff34+88vUrF6UK5jf33qC1tB279SeV5Y/CGP/Pwiz856m/7PjbIdt3H26hsuRGJ1fPdhYn5fBEDH0b1vusC3cnH2ICusazssFgv71tr3Mz64aa9tMB/xt568uXEcHXIexVz67SwObtybvxtd9a2l1ZAIRr75ABF398p3QfvKRxDTU3LPEkpLSbvq+Pwvutm8Tzvu+vAxmvVqQ0CNSrh6uBFYqzLDXhtD8z7tbMdlZWax66rZ9ld+SQuoVZnhb9xH/+dGFUlBGyD6lwV2M2g6XTVL2yo0LPuJgQ0xG/PcfytqtarPvf97mlaDOhBUpwpuHm6UrxpAryeH2z16DLAjKn99vWe9+wcXzyfTon8Y9TuEMPejiZzcexQnZyce/e1l/rX8U8pXDSA1OYU/X/im0N+TiIiI5LZ5XqxdQbvvM7fx3Jx3ePinF3hhyUf4V64AZD9B+Oc/viErK7ulhoeffeuI9KvGaVdvu/r467G2HgmLbIunlycLv5xma18G2eOxv//6Et7l8t9+rSSPgbct2cCmOWty/TmxO/sJwZg/FnMspy/38DfuzdUT+sYRL2d09/Gk/3O3M+zVMTTq0sK0grbVqHcfyfUUrNXVbery+jzrN61HUHAgKZdSWL9qg2170+6tGf7v+3B2dc51jru3B+7el1tC5vffad3UaPau2U75qgF0f3Qwm+ausRW0+z13O/+JG0fTHq2B7NaG50+czdd1RUQKSkVtEbmmlb8u5NenvyArI3vxm3JVKvL4n6/mWhgPsnu7Hdm63/a6ed/2dv2Uw+/sbnf89qVx+cqQdPq8bQAaO2kZL4c+aPuz+KoZJd899D4vhz7I+jwK5jFLs/txd+janqzMLCa/kr0wTu+xI/ALKsfWK1qrdHtkEF7+PnR/ZJBt25Wr2l+Pf3BFqje/vEDQuinRvNvrOd7r8zyLvppm6/93PYG1g21/v3guiYyrHn+9cCLB/vg6wRSGqx99TDx1zu51oy4tcc1Z+PH0/uN89+D7vNL2ESa88C17YrblOTPpZqWnpLFmwlLb6/JVAwjp2SbPY61F7W0bd5ByMaXQMtzIjT6vvBzctJfVE5bg5unO4Jf+BsCWBWsBqNO2EfU7hFChepBtNfrjuw5z+uCJa15PRERECsemeWvsXkfc3cv2d58KfnatOE7uO8qZnP7DV47bIPc4LT0ljUvnL7fiCKyd/9ZiV7Yemf3+n8x693fbvuBGNXhiwmuUC66Y7+uV9DHwjSSevjyLe8IL39p9L4hfZ78Ap3V7wtHL963dpiE+Ff0ASE26xORXx/NK20f4/qEP2DBzVa6JI8XJw8eTh398gb//+hKRD/Sn1eAIIh/oz+jPnqTv0yPtjq3apFau8y0WCxE9wgGIXrDKbl/Hu3vx4pKP6f/8HbQZ1omwO7ox+OW7eW7uu3aLnFZpkvs73tVSk1OY8d9fARjyr9G4ebjZxrIubq50fWAA3uV8iLw/e/JHZloGO6IKf+KJiAio/YiIXMOSb2cy/c1fbK+D6lThkZ9ftGtHcaWkU7kfFbRjsdi9vHpxwfxISbx+D8KUnN7SGan2A9JD8Yc5FH8EZxdn2nRsxcpfF3Bk234q1c/uZwxw4eQ52/H+lcpn/9+cGTkAF/JRsAQIrFWZp6e/xfHdh4n9K4p1U6M5fyKBozsOcnTHQWa9+4ftUcwW/cPwqeCX6xq1WtUnfu1OIHtGyeGt++16+x3acrmvnrOrM9VD6uS6xrVkZmTi7JJ7pgZAwpFTdq89rpoBfttbDzDwn3cSN2sVsZOWEb92JxfPJbHq90Ws+n1RobYjWT99BckJl39GIv7W85ozaKpUr0xQcCAnj51i8/pt1K1Z7ZbufaVb+byuZhgGk/71PUaWQY/Hh1C+Svb/L1l/9vxyfu7A/mcv8dS5Qu1TLiIiIrklXjWWvWroiiWPsWxgrcrUaFYHZ1dnW3Hw8Jb9dscd3hpv94v/Wq3y99ThwX2H2bsjHmcXZy6sO8jqnCcXAWq1bsCD3z9vt3h2fpT0MfArKz7P48p5u3KceL39xhWLVIbf0Z12IyPZvmQDsZOWsXXxejLS0tk8P5bN82Nt7UhaDYqgQcdm1xwDFqUGEc1yLQD/1d/etP3dv3IFghtWt006ulLHHuFM+Xk60QtX8dxb/2f3M1uhWiA9Hh1sd/zaKcvJSLs8eaZxl5Y3zDfvk784fyKBBp2a2Z7ytP4MeZf3wSVnAszN/AyJiBSUitoiksvcjyYy75NJttfVmtXh4fH/tM1syMuVAxeATXPX0OuJYbZzVv260G5/+WqBdq/fiHjcNoOjbvvGPP7nq7f0Hq60akn2zJuW7ZphpGUw54MJAAx77R7bYNXzikdBkxOS8AsqR9IVg2VPv4I93li5fjUGvnAX/Z+/g13Rm4mdFMXm+WtJT0kjPnYn8bE7mfz6jzTs2IywUd3sWn+0HtKJJd/MtL1e8u0Mxnz5FBaLhUNb4tmzapttX5NurewevVwzcSm/P/c/2+vHfv+X3QItb/d4hu6PDCJ0UAfcvS4/brgnZhsrf7H/N8rrS5ennxfhd3Qn/I7unNp/nLWTl7F28nLOHj7FuWNnWfLNTJZ8M5OgulVoPTiCzvf1w8Mn/+1RrK5cINLVw42wUd2ueazFYiE0rAXzpiwkbvWmAhW196zayhd3/Nv2+o73HqHdyEjb689GvkbL/mG0HdHF7tHeYzsPseCzKXbXutGX1NV/LuHgxr0E1KpM1wcG2LZ7+nmRfDaRiwlJtm1X/tKnoD97IiIiUnBXj2VX/rKQHo8NAbLXw9g0134md/lq2b+c9vT3pkm3VmyeFwvArpVbOLQlnuohtTEMw66lCUCbIR3tXl9rDLw0Z5Z2u0q17Arajbq04N7/PV3gxRaTzl4o8WPg4uDs4kxIzzaE9GxD8rkkNkxfQeykZRzcuJfUpEusnbyctZOX4xPgT8t+7el8Xz8CaxX9wt2Ht8Tj7u1hN/M/IzWdOR9OYFf0Ztu2TmP64OTsZFfUfq7h5b7nDd3Ks/PICfbu2Ee9xnVJSbrEgQ27qd8hxG6CyM7lm5j6xk+215XqV6Nh5+bXzXhizxGW/TAHZ1dnhr06xrbd+jN06cJFsrKycHJy0lhWRIqFitoiYmfT3DV2BW0A73I+THx5XK5j64c3pePo7D7H5asGULNlPQ7E7QGyFzh5q+tT1GxZj6SzFzi8Jd7u3FYDw/OVp154Uz7a/0ee+64uvl9dwLValdN6JLxre2a+83t2P+N+7e1mQdQNa2IrJK+ZuJQejw0h9q9ll/e3b5yvvFdzcnaiUZcWNOrSgpTEi8TNimHNpCjiY3eSlZHJ9qVxnD+RYDegr9qkJq2HdmTdlGgANs1Zwzu9nqNC1QD2xGyzDWKd3VzsepXnx+n9x/nzn98w6ZUfqNq0Fj4V/Ug4cpqj2w/YHdeoS4sbzrYOrFWZvk/fRp+nRrI3Zhuxk5axcc5qUpNTOLn3KHM+nEjT7q2p2rRWgTLGr9tp9/PSanDEDXv8VXbxprlLRbZ8v4jzi3bY7du2ZAMfD3nZ9vreb57BP6j81ZfI04WTCUz7z8/MePs3qjSuiX+l8iSeOsfhLfFkXTHzJ7hhdVvvwLxcOp/MrPeyf46HvDLaNosFoF5YEzbOXs3eNds5ffAE/kHl2TAz+7FR3wB/gupWyVdWERERuXkt+4exZuJS2+tZ7/1B3KwYfAP9ORiXvVCkVd32je3GEv2fG8W2JRvITMsgKyOTz0a8Sr2wJpw9ctrWDxqgzbBOebbxy8vSOcup4uSN06nLTypanCy4uLrw69Nf5JE/ezHFa3GEMfCN9HlqJH2eGpnnvs9vf529q7fbXl/r+8OVvMv50HF0bzqO7s2JPUeInbSMdVOXc+7YWZJOnyf6p/kE1KxMl/v73fBaVn+9/J1tHJt09oLdvvmfTWZlzkQfv6Dy3PfNM7Z925ZsYM4HEwioVZkK1QPJTMvg+K7DdjPSqzWrY2vrcS0BlSqy81AC0QtXZRe1Ey/yv7vfwqucD0F1q+Dp583pA8c5te+Y7RxnV2fuePfhXE8jXG3ya+PJTM+k60MDqFSvqm27dSybdimVuBmraDU4gjWTbv1nSETkRlTUFhE7ebX42Lk87wXwrpzpC3DH+3/nizv+bestfOlCMjuW5e6h1v3vg/MsPheF1JRU1kavB6BO1apMfv9/Of2M7VdybxzZknrhTdmzaiuz3vuDZT/MsfXtqxfelCZdQ285i4evF2GjuhE2qhunDxwndtJy1k5ZnuexI998gHNHz9gG5yd2H7b7UuTi5srdnz5hN6AsiIy0dA5s2J3nvlqtG3D3p0/k+1oWi4V64U2pF96UYW/cy6a5a4idtIw9q7beVLboH+fZve40Ou8FIq9UwdcXXyc3SE7nyLb9dvuSzybazRbJTM29+Oa1WAf3WRmZHN68j8Obcx8TVLcKD4x77rqPqM7+4E+SzlygSfdWNO3Wym5f77Ej2L40jrSLqbzT41lcPdy4dCH7i/OAf9yBk5OWvxARESlqjSNb0mlMH5aPn2vbdvWYArLXmBn17sN22yrVq8roT5/kpyc/JTMtg/SUtFzrx9Rt35gR/7k/X1lOHjvFlvXbqOFs/0t9I8tgy8K8e1wHN6h+zesd3LiXNROWOsQY2CyV6lVlwD/uoN9zt7N7xRZiJy2zzb4viOO7D9sm+VztzMGTtl7s12rpeHr/cU7vP55re61W9Xngu+dxdr1+CScoOAgO7SF6wSrGPPE32/aL55LYf1Xfcchunzf60yepGVo/174rxc2OYVf0ZvyCytPryeF2+9qNjCT6p/mc2HOEX/7vc6b8+yeScn6G2g7vfN2fTRGRW6GitogUmkr1qvLPhe+z4ucFbFuygZN7j5KSeBFnVxf8K5WnZmh9wkZ1o95VC+wVpbjVm0hNSSWwUgBrvp+PYRj0eGxIroGkk5MTD3z3HHM/mkjczFVcOHWecsEVaNk/nL7P3HbDmQsFFVCzMn2fHkmfp0Zw/IpitZW7lweP/vYvYv5czNopyzm+8zBpKan4B5WnQcdmdH1oAEF1Cj6D958LP2Dj7Bj2xu7g3JEzXDiVQHpKGt7l/agWUotWgyIIHdjhpleAd/fyoO2wzrQd1pmEo6fx8PG68UlXSDx1jo1XPN5bp12jfM30LlexXAGT5s9jf7zCxtkx7InZxplDp0g8mUBKcgpe/t4EN6pBiz7taDcyElcPt2te48i2A6z8dSEubq4MfWV0rv3BDavz5MTXmfX+n+yL3UF6ShrVmtWh+98H0bJfWJG8LxEREclt2GtjCOnZmtUTlnIwbg/nTySQmZGJh48nlepVpUnXUDqO7oWHb+7xTfM+7Xh+7rss+WYmu6I3c/5kAm4e7lRuWI02QzsRdnu3fI+vouZmP60XFBwIJy/d0nsyDINJr3zvMGNgszk5OdGwU3MadmpOStIlLp5LuvFJhaBx11ASjpwmfu1OEk+dI/ViCl7+PlRtWotWgyNoPaRjviY6BAVnt3jcvG4r586cw6ucD72eHMbulVs5feAEF88n4eruSsXqlWjctSWd7+2Lb4D/da+ZdinVttbSoBfvytVa0M3Tncf/fJVZ7/3BloXruHQ+iYCalWg7ogs9Hh1ycx+IiEg+WIwrV60QESllPnrtc37/ZiIDR/XjXx/+o9Cum5Gazu/PfQXAHe/93a6dhJjj+ftfZumc5Tz24sPc8/idZscRERERuSmP3vYUa6PXM/aVR7nrkdvNjiMl0PW+i9zV4352b9vDa5++SL8RN37iUUTEUemZZhEp1WJyFons0K29yUmkqIWGtQAgbnXuljciIiIijuDc2fNsWJU9lons28nkNOKIOvbM7q0evWCVyUlERIqWitoiUmodO3yc+N0HcHZ2pl2nay/iJ6VDaPucovaazWRmZt7gaBEREZGSJ3rBSjIzM2nQtB5Va2qxaCm4jj2yi9qrlq4hIz3D5DQiIkVHRW0RKbVW5czSDmnVBF9/3xscLY6uftO6ePt4kZyYzJ5te82OIyIiIlJgS2YvAzRLW25ek5aNKF+xHMmJyWxau8XsOCIiRUZFbREptVYtWQ1AuFqPlAnOzs40bxsCZC8QKiIiIuJILiZfZPWytYCK2nLznJ2dCYtsC8CKRTEmpxERKToqaotIqZSelk7s8nUAhHdtZ3IaKS7WvtobVNQWERERB7M6ai1pqWlUq1WVuo3qmB1HHFiHbmHA5Uk+IiKlkYraIlIqbVq7hYvJl6gQUJ6GIfXNjiPFxNpXe0PMRgzDMDmNiIiISP5FzYsGoHPvCCwWi8lpxJG179IWJycn9mzfx4kjJ82OIyJSJFTUFpFSaeXi7FkJ7SOzB3RSNjRu0RB3DzcSzpzjwJ6DZscRERERyZeMjAyiF64CoHPvjianEUdXroI/TUMbA7BqqWZri0jppEqPiJRKq5ZmLxLZoav6aZclbu5uhLRqAsCG1RtNTiMiIiKSPxvXbOZCwgX8y/vTvE1Ts+NIKdAhZ10h9dUWkdJKRW0RKXVOHjvFnm17sVgstO/cxuw4UswutyBRX20RERFxDFHzVgDQqWc4Li4uJqeR0qBD9+y+2rHL15Gelm5yGhGRwqeitoiUOjE5s7SbhjamXMVy5oaRYtcyZ7HI9avi1FdbRERESjzDMFhm66et1iNSOBqG1KdCQHkuJl8ibs1ms+OIiBQ6FbVFpNRZmbPKd1hkO5OTiBmatW6Cs4szJ4+d4tjh42bHEREREbmuPdv3cfTgMdw93GjfRU8ZSuFwcnIiPKcFyarF6qstIqWPitoiUqpkZGSwZtk6AMK7qqhdFnl6edK4eUMA4larBYmIiIiUbNZZ2u06tcHTy9PkNFKaWNcXWrFYfbVFpPRRUVtESpWt67eTdCEJv/J+NGnZyOw4YpKW7ZsDsCFGi0WKiIhIyWbtp92lj1qPSOFq36UtTk5OxO/arycYRaTUUVFbREoVW+uRzm1wdnY2OY2YJTRMi0WKiIhIyXfiyEl2bNqJxWKhY88OZseRUsavnC/N2jQFYKVakIhIKaOitoiUKquWZC8Sae0fJ2VTi7bNsFgsHNx3iNMnz5gdR0RERCRPy+Znz9Ju3iaECgHlTU4jpVEH9dUWkVJKRW0RKTUSzpxj5+ZdALTv3NbkNGImv3K+1GtcF1BfbRERESm5rP20O/eOMDmJlFYR3cIAiI1eT1pqmslpREQKj4raIlJqxC5fh2EY1GtSl4BKFc2OIyZr2b4ZoL7aIiIiUjIlXUhi3ao4ALr06WRuGCm16jetR0Clily6eEmTPUSkVFFRW0RKjdXL1gLQvlMbk5NISWDrq63Bu4iIiJRAKxevJiM9g9r1a1KjTjWz40gpZbFYCO+a3YJkxeIYk9OIiBQeFbVFpFQwDIPVUbFA9irfIi3bNwdg7/Z9XDiXaHIaEREREXtRc62tRzqanERKO/XVFpHSSEVtESkVDuw5yMljp3Bzd7MVM6VsCwiqSI061TEMg41rNFtbRERESo70tHRWLskuMKqfthS19p3b4OzszP49Bzly8JjZcURECoWK2iJSKlhnabds1wwPT3eT00hJ0So8uwXJ2pUbTE4iIiIictm6lXEkJyZTMagCTUMbmx1HSjkfPx+atw0BYJVakIhIKaGitoiUCtZ+2u06q5+2XNYmohUAa6NV1BYREZGSY9m8nNYjvSJwctLXcil6HbqFAbBCLUhEpJTQ/3qKiMNLT0tn3co4AMLUT1uu0DoiFIDd2/Zw7ux5k9OIiIiIZK8Fs2z+CkD9tKX4WPtqr41eT2pKqslpRERunYraIuLwNq/fxqWLlyhfsRz1mtQ1O46UIBUDK1CnYW0A1q+KMzeMiIiICLB9005OHjuFp5cnbXJ+AS9S1Oo1rkNQcCCpKamsj9lodhwRkVumoraIODxrP+12ndvo8U3JxfplcW30epOTiIiIiMCyedmztMO7tsPdQ2vBSPGwWCyEd20HwCq1IBGRUkDVHxFxeNaidnu1HpE82Ppqr1BRW0RERMxn7afdpY9aj0jx6tDd2ldbi0WKiONTUVtEHNr5hAts37gTgHadWpucRkqiVuEtsVgs7N9zkFPHT5sdR0RERMqwIweOsmf7PpydnW0L94kUl7YdW+Ps4syhfYc5FH/Y7DgiIrdERW0RcWix0eswDIM6DWsTFBxodhwpgfzK+dKwWQMA1q3cYHIaERERKcuicmZptwxrjn95P5PTSFnj4+tNy/bNAVipFiQi4uBU1BYRh7Zm2Vogu5+2yLVY+2rHqq+2iIiImMjaT7tLb7UeEXN06NoegFVLVNQWEcemoraIOCzDMFgdlV3UDuuiorZcW9uO6qstIiIi5jp39jxxqzcB0Ll3hMlppKyy9tVet3IDKZdSTU4jInLzVNQWEYd1KP4Ixw4fx9XNldCwFmbHkRKsRbtmOLs4c+zQcY4cPGZ2HBERESmDoheuIisri/pN6lGlerDZcaSMqtOgFpWqBJGaksb6VWrNJyKOS0VtEXFYq6NiAWjeNgRPL0+T00hJ5uXtRUhoEwDWaba2iIiImGBZTj/tLpqlLSayWCy22dorFsWYnEZE5OapqC0iDmt1Tj/t9uqnLflg7au9doVmpIiIiEjxSrmUSszS7AkZndVPW0wW0S27qL1y8WoMwzA5jYjIzVFRW0QcUkZ6hm3GbfsubU1OI46gzRV9tTV4FxERkeIUG72OlEspVKoSRMNm9c2OI2Vcm46huLq5cuTAUQ7uO2x2HBGRm6Kitog4pC3rt5GcdBH/8v40DNEXA7mxkFZNcPdw4/SJM8TvPmB2HBERESlDouZmtx7p3DsCi8Vichop67y8vQht3xyAlYvVgkREHJOK2iLikNbktB5p16k1Tk76T5ncmLuHOy3bZQ/erT8/IiIiIkUtMzOT6AUrAeii1iNSQoR3aw9ktyAREXFEqgSJiEOKWZbdk7B9F/XTlvwLi2wHQMzSNSYnERERkbJi6/rtnD2dgI+fD63CW5odRwS43Fd7/ao4Ll28ZHIaEZGCU1FbRBxO4vlEtm3YAUD7zuqnLfln/SXIupVxpKWmmZxGREREyoKoedmtRzp0a4+Lq4vJaUSy1axXg+DqlUlPS9dC6iLikFTUFhGHs25lHFlZWdSsW4NKVYPMjiMOpG6jOlQMqkBqSiobY7eYHUdERETKAGs/7S591HpESg6LxWKbra2+2iLiiFTUFhGHs3bFegDadmxlchJxNBaLhfZdsmf3r46KNTmNiIiIlHb7dx/g4L5DuLi6EN61vdlxROxc2VfbMAyT04iIFIyK2iLicGKjs4vabVTUlpsQllPUVl9tERERKWrWWdptIlrh4+ttchoRe20iQnFzd+PYoePs33PA7DgiIgWioraIOJTTJ84Qv2s/FouF1h1CzY4jDqhd5+y+2ru27uHMqbMmpxEREZHSzNpPO7JvJ5OTiOTm6eVJaFgLIHu2toiII1FRW0QcirX1SMOQ+viX9zM5jTiiCgHlaRhSH4DY5etMTiMiIiKl1cljp9iyfhsWi4XOvSLMjiOSp4juOX21F6moLSKORUVtEXEoaj0ihcHaVztGfbVFRESkiCybvwKAkFZNCKhU0eQ0Inmz9nrfsHojF5MvmpxGRCT/VNQWEYdhGAZro7VIpNy6KxeL1KI4IiIiUhSi5iwHoEufjiYnEbm2GnWqUa1WVTLSM4hdvt7sOCIi+aaitog4jCMHjnLs8HFcXF1o2b652XHEgbVoG4KHpwdnTp5lz/Z9ZscRERGRUibxfCJrV24AILJvZ5PTiFybxWIhvGs7AFYuUQsSEXEcKmqLiMOIjc7ufxzSqgmeXp4mpxFH5ubuRusOLYHs2doiIiIihWnFohgyMzKp3aAWNepUMzuOyHVd7qsdo6cYRcRhqKgtIg5jbXT2bJe2HVubnERKgytbkIiIiIgUpqVz1XpEHEer8FDcPdw4cfQk+3btNzuOiEi+qKgtIg4hKyuLtSusi0SGmpxGSoOwnKL2+piNXLp4yeQ0IiIiUlqkpqSyavEaACL7djI5jciNeXi607pD9neslYtiTE4jIpI/KmqLiEPYuyOehDPn8PD0ICS0idlxpBSoWa8GVWoEk56WrkVxREREpNCsWb6OSxcvERQcSOPmDc2OI5Iv4V3bA+qrLSKOQ0VtEXEI1n7aoWHNcXVzNTmNlAYWi8XWP3DFolUmpxEREZHSImpuNJDdesRisZicRiR/OnTLLmrHrd5EUmKyyWlERG5MRW0RcQhro7Nn0qqfthSmy0VtLYojIiIity4zM5Pl81cA0KWPWo+I46heuxo16lQnMyPTNqFIRKQkU1FbREq8jIwMNsRsBKBNRCuT00hpkr0ojjsnj51i97a9ZscRERERB7dp7RYSzpzDr5wvrcJamB1HpECss7XVV1tEHIGK2iJS4m2L20Fy0kX8yvvRIKSe2XGkFPHwdKdtx+xflKgFiYiIiNyqpXOWAxDRIxwXVxeT04gUTIdu2U8xrlqyRk8xikiJp6K2iJR4sTmtR9p0CMXJSf/ZksIV0SMcgBULNSNFREREbp5hGLZ+2pF91XpEHE9oWHM8PD04eewUe7bvMzuOiMh1qTokIiXe2hU5Re2Oaj0ihS8iZ0bKlvXbOHf2vMlpRERExFHt3raXoweP4e7hRliXtmbHESkwdw932kSEArBy8WqT04iIXJ+K2iJSoqVcSmXz2q0AtFU/bSkClatVol7jOmRlZRGzdI3ZcURERMRBWWdpt+/SDk8vT5PTiNwcW1/txXqKUURKNhW1RaRE2xS7mbTUNIKCA6lRt7rZcaSU6tizAwBR86JNTiIiIiKOytpPO7JPR5OTiNy88JynGDfFbiHpQpLJaURErk1FbREp0a5sPWKxWExOI6WV9cvnqsWrSU1JNTmNiIiIOJojB4+xe9senJyc6JizXoeII6paI5ha9WqQmZlJTFSs2XFERK5JRW0RKdGsi0S2VT9tKUKNWzQiKDiQi8mXWLtig9lxRERExMEsy3naKzSsOeUqljM3jMgtiuie/YuZ5fNXmJxEROTaVNQWkRIr8Xwi2zfuBKCN+mlLEbJYLHTpnT1be+mcZSanEREREUdjbT3SpU8nk5OI3LouOU8xRi9cRUZ6hslpRETypqK2iJRY61dtJCsrixp1qlOpSpDZcaSUsw7el89fSWZmpslpRERExFEknDnHxjWbgcvjCRFH1qxNUyoElCfxfBLrV8WZHUdEJE8qaotIiWXtp922k2ZpS9FrFd4SHz8fzp5OYMu6bWbHEREREQexfP4KsrKyaBhSn+Bqlc2OI3LLnJ2d6dw7Arj8FIKISEmjoraIlFjWftpqPSLFwcXVxbawU9TcaJPTiIiIiKOwjhsi+6r1iJQe1lY6UfOiycrKMjmNiEhuKmqLSIl0+uQZ9u2Mx2Kx0LpDqNlxpIywfhldOnc5hmGYnEZERERKuovJF1m9bC2g1iNSurTt2ApvHy9OHT/NtrgdZscREclFRW0RKZHW5szSbtC0HuUq+JucRsqKsMi2uLm7cXj/EfbtjDc7joiIiJRwMUtjSUtNo1qtqtRtVMfsOCKFxs3djQ7dwgA9xSgiJZOK2iJSIq1dsQGAth1bm5xEyhIvby/adcr+mVuqwbuIiIjcgLXfcJfeHbFYLCanESlc1qcP1FdbREoiFbVFpESKjV4HQJuOaj0ixcvWP1BFbREREbmOjPQMoheuAtRPW0qnDt3DcHVz5cDeg8Tv3m92HBEROypqi0iJc+TAUY4dOo6zizMt2zc3O46UMZ16dcDJyYkdm3Zy/PAJs+OIiIhICbVu5QaSLiRRIaA8Ia2bmB1HpND5+HrTtmMrQBM+RKTkUVFbREoc6yztkFZN8PL2MjmNlDUVAsrTol0zABbPjjI5jYiIiJRU1iJfp14dcHZ2NjmNSNFQCxIRKalU1BaREse6SKT6aYtZegzsCsDCGUtMTiIiIiIlUVZWFsvmrwAgsm9nk9OIFJ3OOf3it8Xt4MSRk2bHERGxUVFbREoUwzBsi0S2yXnUTaS4de3fGYvFwpZ12zh2+LjZcURERKSE2b5xJyePncLL25M2EVoDRkqvioEVaN42BNBTjCJSsqioLSIlyr6d8Zw9nYCHpwfNWqk3oZgjIKgircJbALB4pgbvIiIiYi9qbnYrhg7dwnD3cDc5jUjRsj7FuGD6YpOTiIhcpqK2iJQosTmtR1q2b46rm6vJaaQs6z4gElALEhEREcnN2l/Y2m9YpDTrPiBSTzGKSImjoraIlCjWftp6jFPMFtmvM05OTmzdsJ2jh46ZHUdERERKiP27D7B/z0FcXF2I6B5mdhyRIhdQqSKhYdlPMS6asdTULCIiVipqi0iJkZGRwbpVcYD6aYv5AoIqEhquwbuIiIjYi5obDUCbiFb4+PmYnEakePQYpIXURaRkUVFbREqMnZt3k5yYjK+/Dw1D6psdR8TWP1CDdxEREbGKmpdd1I7s28nkJCLFp2vOU4zb4nZw5MBRs+OIiKioLSIlR2z0OgBahbfE2dnZ5DQilwfv2zfu1OBdREREOHnsFFvWb8NisdC5V4TZcUSKTcXACrTq0BKA/2/vvsOjqN42jn83vZFO7z303qT33lFpUkVBRVFBEEV+FgSxYUWUJiJFqvRO6EV6R1qooRMgPZvM+0dINC9FCEkmm9yf68q1cXZ29p5x2Jx59sw5axYHmhlFRARQUVtE0pGE8bSr1KpkchKReL7+PlR6Jn58dzXeRUREZOOqLQCUrlgS/+x+JqcRSVuNE4YgWbTO5CQiIipqi0g6ER0Vzf6/DgIaT1vSl0Zt6gFqvIuIiAhsWL4JgLrNapmcRCTt1W9eB3t7e44fOsG50xfMjiMimZyK2iKSLhzcfZioyGj8svlSsGh+s+OIJKr3r8b7mRNBZscRERERk9y9fZddW/cCULeZxtOWzMfbzzuxA5LmnBERs6moLSLpQsLQI5VrVsRisZicRuQfPn7e1KhfFYDlc1eZnEZERETMsmXtdmKtsRQsVoD8hfOaHUfEFIkTqesuRhExmYraIpIu/JU4nraGHpH0p8WzTQFYPm81cXFxJqcRERERMwSu0NAjIvWa18bB0YGTR09z6thps+OISCamoraImC4sNJzD+44CGk9b0qfajZ/Bw9ODK5eusmfbPrPjiIiISBqLioxi27qdQHxRTySz8vLx5JkG1YH4Dh8iImZRUVtETLdvxwFirbHkzp+LXHlzmh1H5D7OLs40al0P0BAkIiIimdGODbuICI8gW86slChb3Ow4IqZq0akJACvm6y5GETGPitoiYrp/xtOuYHISkYdr0Sl+CJK1SwKJDI80OY2IiIikpbVL4ifFa9CqnuZ/kUyvZsPqeHh6cDX4mu5iFBHTqKgtIqb7a/NuIH6SSJH0qlzVMuTKl5PwsAg2rNxsdhwRERFJI9FR0WxctRWAhi3rmpxGxHy6i1FE0gMVtUXEVCE3b/P34ZOAxtOW9M1isdCiY/ytlsvmrjQ5jYiIiKSVnZt2E3Y3jKw5/ClTuZTZcUTSheb3hiBZt3QDkRFRJqcRkcxIRW0RMVXC7WqFihfEL6uvuWFE/kOze0XtHRt2cf3qDZPTiIiISFpYuyQQgPot6mBnp0toEYByVcqQM08OwkLD2bRqi9lxRCQT0l9kETFVwtAjVdRLW2xAvkJ5KFOpFHFxcaxcsMbsOCIiIpLKYqJj2Hhv2LEGreqZG0YkHbGzs6NZx8YALJ+nIUhEJO2pqC0iptq1eS+g8bTFdrR4Nn7CyKV/rMAwDJPTiIiISGr6a/Nu7t4OxS+bL+WqlDY7jki60rxDfFF7W+BObt0IMTeMiGQ6KmqLiGmuBl/j7Klz2NnZUbFGObPjiDyWxm0a4OTsxMmjpzl28G+z44iIiEgqWrtkAwD1m9fB3t7e5DQi6UuBovkpUa44sdZYVi1ca3YcEclkVNQWEdPs2rIHgICyxcjilcXkNCKPx9M7C/Wa1wZg0cylJqcRERGR1GKNsbIhceiRuianEUmfNJG6iJhFRW0RMc1fm+OL2lVqVTI5iciTadOlJQArF6zVbO8iIiIZ1K4te7lz6w4+ft5UqK67CkUepGn7Rjg4OnB0/3H+PnzS7DgikomoqC0ipjAMg133itqVa1YwOY3Ik6lcswI58+Qg9E4ogcs3mh1HREREUsG6pYEA1GuhoUdEHsbbz5u6zWoBuotRRNKWitoiYooLQRe5cukqjk6OlKtSxuw4Ik/Ezs6OVs83B2DxrOUmpxEREZGUZrVaCVy+CYCGreqZG0YknWvbpRUAy+et0l2MIpJmVNQWEVMkDD1SplIpXNxcTE4j8uRaPd8Mi8XCX5t3c/FcsNlxREREJAXt2bafkJu38fLx0oTmIv+hap1K5MyTg7u3dRejiKQdFbVFxBQaekRsXc48OahSqyIAS2ert7aIiEhGkjj0SPNaODg4mBtGJJ2zs7Ojdef4uxj/1BAkIpJGVNQWkTQXFxfHri2aJFJsX8KEkYtnLyc2NtbkNCIiIpISYmNjCVyWMPRIfZPTiNiG1s+3wGKxsHvLXs6fuWB2HBHJBFTUFpE0d+rYGUJu3sbVzZWS5QPMjiOSbHWb1SKLlwdXLl1NvPtAREREbNu+HQe4ef0Wnj6euqtQ5DFlz52NGvWrArB41jKT04hIZqCitoikub827wagQvWyODo5mpxGJPmcXZxp1r4xAItmqvEuIiKSEaxbsgGAuk1r4eCooUdEHlfbrvETRi6evRyr1WpyGhHJ6FTUFpE0t3PjLkBDj0jG0LpzCwACV2zi9q07JqcRERGRpxEXF8e6ZfFF7Yat6pqcRsS21GpUAx8/b25cvcmWNdvNjiMiGZyK2iKSpqKjotm9dR8A1epWNjeMSAooXqYoRUsWISY6hpUL1pgdR0RERJ7C/r8OcuPqTbJ4eagDhsgTcnRypOWzzQBY+Ptik9OISEanoraIpKn9fx0iKjIKv2y+FA4oZHYckadmsVhoc2+290Wa7V1ERMSmrVm0HoA6TWtpmDyRZGjXvTUAW9ft4OK5YJPTiEhGpqK2iKSpHRv+AqBa3SpYLBaT04ikjKYdGuPo5Mjfh09y7MDfZscRERGRZLBaraxdHAhA4zb1Tc0iYqvyFcpDtTqVMQyDhdPVW1tEUo+K2iKSphKK2tXrVjE5iUjK8fb1ol6z2oB6a4uIiNiqPdv2c/P6LTx9PKlaW8PkiSRXhx5tgfh2cUx0jMlpRCSjUlFbRNLMzeu3OH7oBABVamuMQslY2nSJnzByxYI1REZEmZxGREREntTqP9cC0LBlXRwcHUxOI2K7ajd5hqw5/Ll1I4T1yzaaHUdEMigVtUUkzezcuAuAYqWK4JfV1+Q0IimrSu1K5MyTg9A7oQQuV+NdRETElsRExyQW3xq3bWByGhHb5uDgQNuurQCYN+1Pk9OISEaloraIpJkd94ra1TT0iGRAdnZ2tHo+fsLIPzUEiYiIiE3ZsXEXd0Lu4pfNlwrVy5kdR8TmtevWCnt7e/Zu38+p42fMjiMiGZCK2iKSJgzDSDJJpEhG1Pr55lgsFnZv2cuFoItmxxEREZHHlDD0SKPW9bG3tzc5jYjty5YzK7WbPAPAfPXWFpFUoKK2iKSJ038Hcf3KDZxdnClXpbTZcURSRY482RO/tFk0a5nJaURERORxREZEsWHFZkBDj4ikpA4vxE8YuWzuKiLCI0xOIyIZjYraIpImEnppV6xRDmcXZ5PTiKSehAkjl/6xAqvVanIaERER+S9b120nPCyCnHlyUKZSKbPjiGQYVetUIm/B3ITdDWP5vNVmxxGRDEZFbRFJEwlF7ap1KpucRCR11WlSEy8fL65dvs72wL/MjiMiIiL/YVXC0CNt6mOxWExOI5Jx2NnZ8WzvDgDM+mUOcXFxJicSkYxERW0RSXVRkVHs2bYfgOoaT1syOCdnJ5p3agLAIk0YKSIikq6FhYazZc02AJpo6BGRFNfq+ea4e7gRdPIcOzbuMjuOiGQgKmqLSKrbv/MgUZFR+Gf3o1DxgmbHEUl1be8NQbJp9VZuXLtpchoRERF5mE2rthAVGU2+QnkpVrqo2XFEMhyPLO607tISiO+tLSKSUlTUFpFUt3ntdgBq1KuqWzolUygcUIhSFUoQa41l+dxVZscRERGRh1i1MH7okSZtG6idKpJKnu/TAYvFwrb1OzlzIsjsOCKSQaioLSKpbsva+Fs6azaqYXISkbSTMGHkoplLMQzD5DQiIiLy/92+dYft9+Z9aaShR0RSTe78uajTtCYAsyfNMzmNiGQUKmqLSKo6d/oC509fwMHRIVNMErl9+3batm2Lv78/Li4uFCtWjPfff5/w8PDH3kajRo2wWCxYLBYuX7583/ORkZG8+uqr+Pv74+7uTps2bTh79uwDt3X79m1y5MhBly5dnnhfgoKCsFgsFChQ4JHr9erVC4vFwtSpUx+4POHHzs4OLy8vChQoQOvWrRk7dixXrlx54u3aisZtG+Li6kLQyXMc3HXY7DgiIiLy/6xfthFrjJUiJQpRqFgBs+OkOrVT71+eWdupZujS71kAlv6xktu37picRkQyAhW1RSRVJfTSrlCtHB5Z3E1Ok7p+//13atWqxaJFiyhQoAAtWrQgMjKSUaNG8cwzz3D37t3/3MbUqVNZu3btI29/feONN/jxxx/Jnz8/tWvXZsmSJbRo0YLY2Nj71v3ggw8ICwvjiy++eKp9exo1a9akZ8+e9OjRgyZNmpAnTx7Wrl3L0KFDyZcvH5999lmG7MnskcWdRq3rAfCnJowUERFJd1bMXw1Ak3YNTU6S+tROfbDM2k41Q4Xq5ShWqghRkVEs/H2J2XFEJANQUVtEUlXCbPI1G1U3OUnqunDhAi+++CKxsbFMnjyZXbt2MX/+fE6cOMGzzz7L/v37eeeddx65jWvXrjF48GCaNGlCvnz5HrhOcHAwkydPpnnz5uzatYsVK1bw8ccfc+TIERYsWJBk3UOHDvHjjz8yYsQIcufOnWL7+qRefPFFpk6dytSpU5kzZw6bN2/mxo0bfPvttzg4ODBs2DDee+890/Klpjb3JsVZs2g9YaGP3wtKREREUlfwhcvs2bYPgGbtG5sbJpWpnfpwmbmdmtYsFgud7/XWnjNlPtYYq8mJRMTWqagtIqkmLDScPdv3A1CzYcYeT3vq1KlERkbSuHFjevfunbjc2dmZH374ATc3NyZNmsSNGzceuo1BgwYRFhbGjz/++NB1Dh06hNVqpUePHom9ZPr06QPAvn37kqz72muvUbhwYd58882n2LPU4erqysCBA1m6dCn29vaMHj2a/fv3mx0rxZWrWob8hfMRER7B6j/XmR1HRERE7knopV3pmfLkyJPd5DSpS+3UJ5NZ2qlmaNK2Ab7+PlwNvsb6ZRvNjiMiNk5FbRFJNTs37cIaYyVvwdzkL5zX7Dipavfu3QDUq1fvvueyZs1KyZIliYmJYdmyZQ98/cqVK5kxYwbvvfcehQsXfuj73Lp1CwAfH5/EZQm/37x5M3HZjBkz2LBhA9999x2Ojo5PvD9ppV69eonjKH733Xcmp0l5FouF1p2bA7BoloYgERERSQ8Mw2D53FUANO/YxOQ0qU/t1OTJ6O1UMzg5O9GxZzsAZk6cY24YEbF5KmqLSKrZsmY7kPF7aQOEhYUBSRvx/+br6wvwwF4e4eHh9O/fn4CAgP+89TPhds8TJ04kLvv7778ByJ8/PwChoaEMGTKEjh070rhx+r+dtnPnzgCsX7/e5CSpo8WzTbG3t+fQ7iOc/jvI7DgiIiKZ3tEDxwk6eQ5nFycatKpndpxUp3Zq8mX0dqoZOvRog6OTI4d2H+Hgbk2mLiLJp6K2iKSKuLg4NieMp90wY4+nDfG9XICHzu6esDwoKOi+50aMGEFQUBDjx4/Hycnpke9Tvnx5cubMyVdffcWhQ4e4cuUK77zzDhaLhebN43sEf/TRR4SEhPDVV189xR6lnfLlywNw+vRpoqOjzQ2TCvyz+VGzUfwXO4s0YaSIiIjpEnpp12lSK8NPZA5qpz6NjN5ONYNfVl+atW8EwPTxs0xOIyK2TEVtEUkVh/Yc4ea1m3h4elCxRnmz46S6unXrAjBz5sz7Grzbt2/n+PHjAPfNLL9nzx6++eYbevbs+cBbQv8/FxcXPv/8c4KCgihTpgw5cuRg5cqV9O/fn7Jly3L8+HHGjRvH8OHDk0ziExERkeyZ28+ePYvFYnnoz6+//pqs7Sbw9/dP/D3httWMpm2XFgAsm7OSmOgYk9OIiIhkXtYYK6sWrgXi76bKDNROTb7M0E41Q7cB8T3gA5dv4uzJcyanERFb5WB2ABHJmAKXbwLie2k7OqXfsfJSSrdu3Rg1ahTnzp2jbdu2fPHFF+TLl48tW7bQr18/HBwcsFqt2Nn9811ibGws/fr1w9vbmy+++OKJ3qtQoULMmTOHyMhIGjRoQMeOHQEYOHAg+fLlY/DgwQDMmjWLYcOGcfbsWby8vHjttdf46KOPkuT4L+7u7nTq1Omhz2/evJlTp0499vb+v39fxCRMKpTR1GhQDf/sfly/coNNq7fSoGVdsyOJiIhkStsCd3LrRgi+/j5Uq1vZ7DhpQu1UtVPTm0LFClC78TNsWr2V3yfMZvjnQ8yOJCI2SEVtEUlxhmGwYUV8Ubtus1omp0kb7u7uLFmyhFatWrFixQpWrFiR+Fy+fPl46623GDt2bJKxDMeNG8eePXuYNGlSkl4gj6NGjRrUqJF0rPJ58+axevVqlixZgrOzM7t376Zr1640bdqUb775hg0bNjBq1CiyZcvG66+//tjv5e/vz9SpUx/6fK9evZ7qYuH69euJvz9srEdb5+DgQKvnmjH1u99ZPGuZitoiIiImSRh6pEm7hjg4ZI7LYbVT1U5Nj3q82pVNq7eydM5KXhrcB//sfmZHEhEbkzn+iotImjpz4iznz1zE0cmRGvWrmR0nzZQpU4Zjx44xZ84cdu3ahdVqpVy5cnTt2pVPPvkEgFKlSiWuv3jx4sTbIqdNm5ZkW5cvXwagQ4cOODk58cknn1Cr1sO/IIiIiODtt9+mdevWtGzZEoAvv/wSDw8P/vjjD7JkyULbtm3Zs2cPn3/++RNdLKS2ffv2AVC0aFEcHTNur/6Wz8YXtbcH/sWNazfxy+prdiQREZFMJfROKBtXbQGgeacmJqdJW2qnJk9maaeaoVzVMpStXJoDuw4xe9I8Xh3+ktmRRMTGqKgtIikuoZd21dqVcPdwMzlN2nJ1daVHjx706NEjyfI1a9YA3DceoWEYbNy48aHb27YtfrLNf/cSeZBPP/2UK1euMG7cuMRlx44dIyAggCxZsiQuq1q1Khs2bODOnTt4eno+zi6lulmz4ieIqV+/vslJUlf+IvkoXbEkh/YcYdXCtXTp96zZkURERDKVtUs2EB0VTcGi+QkoU8zsOGlO7dQnl1naqWbp8WpXBvcezrxpf9JzYLdMMXGriKQcTRQpIiluw4rNQOYZeuS/bNiwgT179lCqVClq1qyZuDwwMBDDMB74kz9/fgCCg4MxDIN27do9dPunTp3i888/55133qFQoUJJngsPD0/y32FhYUD6GRMwMDCQWbNmYbFYGDhwoNlxUl2Le73Cls1ZaXISERGRzGf5vPihR5p3apJu2kJmUzv14TJbO9UMtRrXoGDR/ITeCWXh9MVmxxERG6OitoikqCuXrnJk3zEsFgu1m9T87xdkIPv27cNqtSZZtmfPHrp27YrFYuG7775Llfd94403yJkzJ8OGDUuyvFSpUhw5coS9e/cC8TPaL168mHz58iXpFWOGyMhIvv/+e1q2bElsbCwjRoygdOnSpmZKC43aNMDB0YHjh05w8mjyx3cUERGRJxN84TJ7tu0DoFn7xuaGMYHaqY8vs7ZTzWBnZ0f3AZ0BmPnLHKKjok1OJCK2RMOPiEiKClwWf4timUqlMt2YwYMGDeLIkSOUL18ef39/goKC2LFjB3Z2dkyYMCFVbltcunQpS5cuZcGCBbi6uiZ5bsiQIcyYMYP69evToEED9u7dy/nz5/npp59SPMejTJw4kcDAQCC+R87ly5fZvXs34eHhODs7M3bsWAYPHpymmczi7etFrUY1CFy+iWVzV/H6iAFmRxIREckUls9bDUClZ8qTI092k9OkPbVTH0ztVPM1bd+In8ZO4trl66xcsIbWnVuYHUlEbISK2iKSolb9uQ6ARm0y37hz3bt3Z/r06ezbt4+QkBCyZs1K586dGTJkCOXLl0/x94uKiuKNN96gadOmD7zts2zZsixcuJD333+fJUuWkCNHDsaMGcPLL7+c4lkeZcuWLWzZsgWLxYKHhwe+vr7Ur1+funXr0rNnT7Jly5ameczWolNTApdvYsX81bw6/CXs7e3NjiQiIpKhxcXFsXjWMiB+4ubMSO3UB1M71XxOzk506fcs3348nunjZ9HyuWbY2WlQARH5bxbDMAyzQ4hIxnD5whXaVH0Oi8XCkt1zyZrD3+xIqcYaFcPMIeMB6PL5ABycNRu6PJ6Y6BiaV+jAnVt3+HbGF1SvV8XsSCIiIhna7q17GdBpEO4ebizbNx9XN9f/fpFIOpbRrkVC74bRpspzhN4J5Yspn1KnaeYaxlJEkkdff4lIilmzeD0AFaqXy9AFbZGn4ejkSNO2DQFYNlcTRoqIiKS2RTOXAtC4bQMVtEXSIY8s7nTs0RaA336caXIaEbEVKmqLSIrJzEOPiDyJFs82BWD9so2EhYabnEZERCTjunv7LuuWbgCgTZeWJqcRkYd5vm9HHJ0c2f/XQfbvPGh2HBGxASpqi0iKOH/mAscOHMfe3p4GLeuaHUckXStZPoD8hfMRFRnFuiWBZscRERHJsFYuXEtUZDSFihekVIUSZscRkYfwz+5Hy3sdP9RbW0Qeh4raIpIiEoYeqVyzAr7+PianEUnfLBYLzTs1AWD5/NUmpxEREcm4Fs2MnyCyTZcWWCwWk9OIyKN0698Zi8XCxlVbOP13kNlxRCSdU1FbRJ6aYRisWrgWgEZtGpicRsQ2NOvQCIDdW/Zy5dJVk9OIiIhkPH8fPsmxA8dxcHSgRccmZscRkf+Qv3Be6jWvDcDv42eZnEZE0jsVtUXkqR0/eIJTx87g5OxE/RZ1zI4jYhNy5c1J+WplMQyDlQvWmB1HREQkw1k8K76Xdp2mNfH28zY3jIg8lhde6QLE382ojh8i8igqaovIU1vyx3IA6jWrhad3FpPTiNiOFveGIFmhIUhERERSVHRUdOIQX201QaSIzShdsSQVa5THGmNl9sR5ZscRkXRMRW0ReSrRUdGsuNfLtOXzzU1OI2JbGrSsh6OTIyePnubvwyfNjiMiIpJhrF+2kTu37pAtZ1aq1qlsdhwReQI9Xo3vrb1g+iLu3r5rchoRSa9U1BaRp7Jl7Xbu3LpD1hz+VK1dyew4IjbF0zsLtRrVAGDFPPXWFhERSSlzf10IQLturbC3tzc3jIg8kRr1q1GkRCHCQsOZP22R2XFEJJ1SUVtEnsqS2fFDj7To1FQXDCLJ0PzexFUrF64hNjbW5DQiIiK278SRU+zfeRB7B3vadm1ldhwReUIWiyVxbO2ZE+cSFRllciIRSY9U1BaRZLtx7SZb1+0AoOWzTU1OI2KbnmlQDU/vLFy7fJ3dW/aaHUdERMTmzZu2EIB6zWuTNYe/uWFEJFkat2lAjtzZuXntJkvnrDQ7joikQypqi0iyLZm9gtjYWEpXLEmBovnNjiNik5ycnWjUpj5A4oRWIiIikjyhd8NYPjf+72mnnu3MDSMiyebg6EC3l58D4LcfZ2K1Wk1OJCLpjYraIpIssbGxzP/tTwA6vNDG5DQitq15h/ghSNYv3UBkeKTJaURERGzX8rmriAiPoGDR/FSsUd7sOCLyFNp2bYW3rxcXz15izaL1ZscRkXRGRW0RSZZt63cSfP4ynt5ZaNSmgdlxRGxa2SqlyZUvJ+FhEWxYudnsOCIiIjbJMIzECSI79myHxWIxN5CIPBUXNxe6vPQsAL9+/ztxcXEmJxKR9ERFbRFJlnn3LhhaPd8cF1dnc8OI2DiLxULzDo0BWKEhSERERJJl7/b9nPk7CFc3V1p0amJ2HBFJAZ16tsM9izunjp1h8+ptZscRkXRERW0ReWIXzwUnThDZ4YW2JqcRyRiadYy/+N4e+Bc3rt00OY2IiIjtmTt1IQDNOjbGw9PD3DAikiKyeGXh2V7tAJjy7W8YhmFuIBFJN1TUFpEntuC3RRiGQbW6VchXKI/ZcUQyhPyF81KqQgliY2NZ8+c6s+OIiIjYlKvB11i/fCMAHXuo04VIRtK537M4uzhxeO9Rdm3Za3YcEUknVNQWkScSER7BwhlLAF0wiKS0ZveGIFk2b5XJSURERGzL3KkLiLXGUr5aWYqVKmJ2HBFJQb7+PrTt2gqAqd9ONzmNiKQXKmqLyBNZNHMZd27dIU+B3NRu8ozZcUQylCbtGmJvb8/R/ccJOnHW7DgiIiI2ISI8gvm/LQKg60vPmZxGRFJD9/6dsXew56/Nuzm054jZcUQkHVBRW0Qem9VqZcbPfwDQ9eXnsLe3NzmRSMbi4+dN9fpVAViuCSNFREQey9I5K7kTcpfc+XOp04VIBpUjT3Za3JuDRr21RQRU1BaRJ7BuyQaCz1/G29eLVs81NzuOSIaU0FhfMX81cXFxJqcRERFJ3+Li4pj1y1wAOvftqE4XIhlYj1e7YrFY2LhqCyePnjI7joiYTEVtEXkshmEwffwsAJ7r0wEXV2eTE4lkTLWb1MTdw43g85c58Nchs+OIiIika1vX7eDc6fO4Z3GnVecWZscRkVSUv0g+GrSqC8Cv388wOY2ImE1FbRF5LH9t2s2xg3/j7OJMp57tzI4jkmG5uDrToGV8Y325JowUERF5pIROF+26tsLdw83kNCKS2nq91g2A1X+u40LQRZPTiIiZVNQWkf9kGAa/fDUVgLZdW+Lt521qHpGMrtm9IUjWLF5PdFS0yWlERETSp4O7D7Nn2z4cHB3o3K+T2XFEJA0UL1OMZxpUIy4ujt9+nGl2HBExkYraIvKf/tq0m/07D+Lk7ETPe9+Mi0jqqVijHNlyZuXu7VC2rN1udhwREZF0adoP8cMPNGvfiOy5spmcRkTSSu/XXwBgyR8ruBp8zeQ0ImIWFbVF5JEMw+DnL6YA0L57a7Lm8Dc5kUjGZ29vT9P2jQANQSIiIvIgQSfOsnHlFgBeeLWLyWlEJC2Vq1qGCtXLERMdw4yf/zA7joiYREVtEXmkHRt2cWDXIZxd1EtbJC0179gYgM1rtnH71h2T04iIiKQvv42fhWEY1Glai4JFC5gdR0TSWK/XuwMwf9oiQm6EmBtGREyhoraIPJRhGPz85WQA2r/QFv/sfiYnEsk8ipQoTNGSRbDGWFm7JNDsOCIiIunG5QtXEu9k6qFe2iKZUvW6VQgoU4zIiEhmT5pndhwRMYGK2iLyUOuXbeTQ7iO4uLrogkHEBAm9tTUEiYiIyD8mfzMNa4yVSjUrULZyabPjiIgJLBZLYm/tP6bMJ/RumMmJRCStqagtIg8UEx3DD59OAKB7/+fxz6Ze2iJprWn7RlgsFvbvPMjFc8FmxxERETHdxbOXWDx7OQD9h/Q1OY2ImKle89oUKJKPu7dDmT/tT7PjiEgaU1FbRB5o/m+LOH/mIr7+PnQb0NnsOCKZUtYc/lSpVRGAFfNXm5xGRETEfBO//pVYayzV61WlXNUyZscRERPZ2dnR4968TzN+nkNkRJTJiUQkLamoLSL3Cb0TyqSvfwWg3+DeuHu4mZxIJPNq1rEJAMvnrsIwDJPTiIiImOfsyXMsnxs/JNfLQ/qYnEZE0oNm7RuRI3d2bl67yaKZS82OIyJpSEVtEbnPtB9mEHLzNvkL56Nt15ZmxxHJ1Oq3qIOzizPnTp/n6P5jZscRERExzS9fTiEuLo46TWpSqkIJs+OISDrg4OiQOP/TtB9mEB0VbXIiEUkrKmqLSBJXLl5l5i9zAHjtvZdxcHAwOZFI5ubu4UbdZrUAWDZXE0aKiEjmdOrYaVYvWg/AS+qlLSL/0rpzC7Lm8Odq8DUWzVpmdhwRSSMqaotIEj9+9gtRkdGUr1aWOk1rmh1HRICWzzYFYMWCNURFaqxAERHJfCZ8PhnDMGjQqi7FShUxO46IpCPOLs70eLUrAL9+9zsx0TEmJxKRtKCitogk2rfjAMvnrsJisTBo5CtYLBazI4kIULVOZXLkzs6dW3dYv2yj2XFERETS1L4dBwhcvgk7OzteGqxe2iJyv3bdWuGf3Y8rl66y5I/lZscRkTSgoraIAGC1Whn73jgA2nZtScnyGqdQJL2wt7endecWAPw5Y4nJaURERNJOXFwc33z0IwBturSgULEC5gYSkXTp3721p36r3toimYGK2iICwLypCzl55BSePp68Mqyf2XFE5P9p07kFFouF3Vv3ce70BbPjiIiIpInVf67j8N6juLm7aixtEXmkdt1a45fNl+ALl1k6Z6XZcUQklamoLSLcuHaTnz6fDMCAoS/i7edtbiARuU/23NmoUb8qAItmLjU5jYiISOqLjIjih09/BqDHa93wz+ZnciIRSc9cXJ154ZUuAEz59jesMVaTE4lIalJRW0T4ftQEwu6GEVC2OO26tTI7jog8RNt7/z6X/LFCjXQREcnwZk+cy+WLV8iWMytd+z1rdhwRsQEdurfB19+H4POXWTZXvbVFMjIVtUUyuf07D7L0jxUAvPPpIOzt7U1OJCIPU7vRM/hm9eXmtZtsWr3V7DgiIiKp5ub1W0z9bjoAr7zbDxc3F5MTiYgtcHFzofuAzgBM+Xa6OoKIZGAqaotkYlarlbHDxwHQpktLSlcsaW4gEXkkB0cHWj3XDICFvy82OY2IiEjq+emziYSFhhNQtjjNOjQ2O46I2JCOPdvi4+fNxbOXWDF/tdlxRCSVqKgtkonNn7aIE0dO4umdhVeHv2R2HBF5DG27tgRge+BfXL5wxeQ0IiIiKe/ArkMs/H0JAG9++Cp2drpsFZHH5+rmSrf+zwP3xta2qre2SEak1oFIJnXj2k1+GjsJgP5DX8RHk0OK2IS8BfNQqWYFDMNg4YwlZscRERFJUVarlTHDvgKg9fPNqVCtnMmJRMQWderVDm9fL86fuciqhWvNjiMiqUBFbZFM6vtREwi9E0pAmWK0797a7Dgi8gQ6vNAGgIXTFxMdFW1yGhERkZQze9I8Th45haePJwPf7292HBGxUW7ubnR7Ob639uRxvxEbG2tyIhFJaSpqi2RC+3YcYOkfK7BYLLwz+k1NDiliY+o3r0O2nFm5ef0Wa5cEmh1HREQkRVw6H8zPn08B4PX3++OtOwlF5Cl06t0eTx9Pzp0+z+o/15kdR0RSmIraIpmM1Wpl7HvjgPixeTU5pIjtcXB0oEOPtgD8MXm+yWlERESenmEYjHr7cyLCIyhXtQytnm9udiQRsXHuHm50e/k5ACZ9PU29tUUyGBW1RTKZuVMXJt7S+cqwfmbHEZFkatetFY5Ojhzee5TDe4+aHUdEROSpLPx9MX9t3o2zixMjvhqmySFFJEU827sDnt5ZOHvqHGsWrTc7joikILUURDKR61duMOHzyQC8+m4/3dIpYsN8/X1o3LYBAH9MnmdyGhERkeQLvnCZbz78EYABw/qRr1AekxOJSEbhkcWdLv2eBWDyOPXWFslIVNQWyUS+/Xg8YXfDKFk+gDZdWpodR0Se0nN9OgCwetF6rl2+bnIaERGRJxcbG8tHg0YTHhZB2cqleb5vR7MjiUgG83zfjmTx8uDMibPqrS2SgaioLZJJ7Nm2jxXzV2tySJEMpGS5AMpXK4s1xsrMX+aYHUdEROSJTf12Oru37sPVzZURXw9TG1VEUpyHpwddX4ofW/uXL6ditVpNTiQiKUFFbZFMwBpjZezwcQC0f6E1JcsFmBtIRFJMj1e7ArDgt0XcvX3X5DQiIiKPb++O/fzy5VQAho55k/yF85obSEQyrM79nsXLx4tzp8+zYt5qs+OISApQUVskE5g9eR6nj5/By8eLAUM1OaRIRvJMg2oUKl6QsNBw5k9bZHYcERGRxxJy8zYjXvmYuLg4WjzblBadmpodSUQyMHcPN3q+Ft8Z5JevphITHWNyIhF5Wipqi2RwV4Ov8csXUwB47b2X8fLxNDmRiKQkOzs7XnilMwAzJ84lKjLK5EQiIiKPZhgGH785hqvB18hbKA/vfDrI7Egikgl06tkOv2y+BJ+/zJ8zl5odR0SekoraIhnctx/9SHhYBKUrlaR15+ZmxxGRVNC0XSOy58rGzWs3WTpnpdlxREREHun3n2azafVWHJ0c+XT8SNzc3cyOJCKZgIubC71ffwGAKd/8RmSEOoOI2DIVtUUysL8272HVn+uws7PjnVFvYmenf/IiGZGDowPd+j8PxE+4pdspRUQkvdqx4S++HzUBgEEjX6V4mWImJxKRzKRdt1bkyJ2da5evM/+3P82OIyJPQRUukQwqJjqGL94bB0DHHm0JKKsLBpGMrF231vhn9+PyxSssmrXM7DgiIiL3uRB0kfcGfEhcXBytn29Op17tzI4kIpmMk7MTfd/sCcCv3/1OeFi4yYlEJLlU1BbJoGb+MoczJ87i4+fNy+/0NTuOiKQyF1dneg3sDsTfTqmxtUVEJD25e/sug3u/x52Qu5SqUIJ3Rr+JxWIxO5aIZEItn21K3oK5uXUjhNmT5pkdR0SSSUVtkQzoysWrTPp6GgADRwzA0zuLyYlEJC207dqSbDmzcjX4Gn/O0OQ3IiKSPkRHRTOkz/ucPn4G/+x+fDbxY5xdnM2OJSKZlIOjA/3e7g3A9PGzuHv7rsmJRCQ5VNQWyYDGffQDEeERlKtShhadmpgdR0TSiLOLM71ej++tPfW76USER5icSEREMru4uDj+9/qn7Nm2D3cPN8ZNH0u2nFnNjiUimVzjtg0oWKwAd2+H8tv4WWbHEZFkUFFbJIPZHvgXaxcHYmdnx5BPB2lySJFMpk3nFuTKl5PrV24wffxss+OIiEgmZhgGY4d/zZrF63FwdOCzSZ9QrFQRs2OJiGBvb88rw/oBMPPnOVy7fN3kRCLypFTtEslAoqOi+eL9bwB4tnd7XTSIZEJOzk689t7LAPz240yuBl8zOZGIiGRGhmHwxXvfMH/aIiwWCx98PYyqtSuZHUtEJFGdpjUpW7k0UZFRTPxqqtlxROQJqagtkoHM+PkPzp0+j29WX14e0sfsOCJikoat6lGuShkiIyIZ/9lEs+OIiEgmYxgGX33wHXOmLsBisTDiq6E069DY7FgiIklYLJbEziCLZi4j6MRZkxOJyJNQUVskgwi+cDlxcsg3PhiAh6eHyYlExCwWi4U3P3wVgKV/rODogeMmJxIRkczCMAy++ehHZk+aB8Dwz4fQ6vnmJqcSEXmw8tXKUqdJTWJjY9UZRMTGqKgtkgEYhsHnw8cRFRlFherl1BNGRChZvgTNO8Z/FowZ+iWxsbEmJxIRkYzOGmPlk7c+Y8aEPwB4d+zbtO3a0uRUIiKPNuDdftjZ2bF+2UYO7j5sdhwReUwqaotkAIHLN7F5zTYcHB0YOuYtLBaL2ZFEJB0Y+H78XRtH9x9n7pQFZscREZEMLCw0nLd6vsvi2cuxs7Nj+OeDad+9jdmxRET+U+HiBWn5XDMAvvvkJwzDMDmRiDwOFbVFbFzo3bDEySF7vNqVQsUKmBtIRNIN/+x+ieME/jhmIpcvXDE5kYiIZETXr9ygf4fX2R64ExdXFz6fMop23VqbHUtE5LG9NLg3zi5O7NtxgMAVm8yOIyKPQUVtERs3Yewkrl2+Tt6Cuek1sLvZcUQknWnXrRXlqpQhIjyCscO/Vs8TERFJUUf2HaV3y/4cP3QCX38ffpo3jtqNnzE7lojIE8meKxtdX34egG8/Gk90VLTJiUTkv6ioLWLDjuw7yh+T5wMwdPRbuLg6m5xIRNIbOzs73v18MA6ODmxes40ls5ebHUlERDIAwzCY/9si+rUbyJVLV8lXKC+TFv9IyfIlzI4mIpIsPV/rin92Py6evcSsiXPNjiMi/0FFbREbZbVaGf3OlxiGQbMOjalap7LZkUQknSpUrAAvD+kLwJcjvuVC0EWTE4mIiC2LjIji4zfHMGbol8REx1CveW2mLvuJ3PlzmR1NRCTZ3NzdeHX4SwBM+eY3bly7aXIiEXkUFbVFbNS0H2Zy/NAJPL2zMOh/r5odR0TSue4DnqdC9XKEh0UwcuAorFar2ZFERMQGHT/4N71avMySP1ZgZ2fHa++9zGcTP8bD08PsaCIiT615xyaULB9AWGg448dMNDuOiDyCitoiNujk0VNM/GoqAG9//Dq+/j7mBhKRdM/e3p7/fTsc9yzuHNx9mIlf/Wp2JBERsSFWq5VJX/9Kr5b9OX38DL7+Pnw360t6vNoVi8VidjwRkRRhZ2fHWx8OBGDxrGUcP/i3yYlE5GFU1BaxMdYYKx++MRprjJU6TWvRrENjsyOJiI3ImScHw8a8BcDkcdPYtGqLyYlERMQWnDkRxIttXmXC55OJtcbSoFVdZq2fSpVaFc2OJiKS4spWKU2Tdg0xDIMvRnyridZF0ikVtUVszNTvpscPO+LjybDP3lLPGBF5Ik3bN+LZ3u0B+GDgKM6dvmByIhERSa/i4uKY8fMf9GjajyP7jpHFy4OPvn+f0RM+xNvP2+x4IiKpZuB7/XFxdWH/zoMsnbPS7Dgi8gAqaovYkL8PnWDSuGkADPnkDfyz+ZmcSERs0aCRr1KuShnC7oYxpM97hN4JNTuSiIikMxfPBTOg0yDG/e8HoiKjqVG/KjPXTaVZh8bqVCEiGV723Nl48a2eAHz70Y+E3LxtciIR+f9U1BaxEZERUfzvjU+JtcZSr3ltmrRraHYkEbFRjk6OjP75Q/yz+3Hm7yDefWkk1hhNHCkiImAYBgt/X0y3hr3Zu30/rm6uvDv2bcZNH0u2nFnNjicikma6vvQchYoXJOTmbX4c/bPZcUTk/1FRW8RGfPXBt5w8ehpffx+GjtGwIyLydPyz+/Hlr6NxcXVhx8ZdjBn2lcYLFBHJ5K5dvs6bLwzl0yFfEB4WQflqZZmxdjLtu7dR21NEMh0HRweGjnkTgIW/L+HAX4dMTiQi/6aitogNWLlgDQt/X4LFYuGj79/HL6uv2ZFEJAMoUbY4o34aiZ2dHYtmLuWXL6eaHUlERExgGAYrF6yhS4NebF23AydnJ9744BXGzx1H7vy5zI4nImKaCtXK0fr55gCMGfal7m4USUdU1BZJ586ePMfod74AoM8bL1C1TmWTE4lIRlK78TMM/uR1ACZ+NZXp42eZnEhERNJSyM3bDO//P0a8+jF3Qu4SULY401b+Qrf+z2Nvb292PBER0w18vz+ePp6cPHqaWRPnmh1HRO5RUVskHQu9N4lbeFgEFWuU58W3e5kdSUQyoE692jNg2IsAfPvxeOZOXWByIhERSQu7t+6le+O+rF0ciL2DPS8N7s3kxT9SqFgBs6OJiKQb3n7evP5+fwAmfD6Jc6cvmJxIREBFbZF0Ky4ujv8NHEXQyXNky5mVUT+NVG8ZEUk1vV9/gd5vvADA2OHjWDxrmcmJREQktVhjrPw45hdeefZNrgZfI1+hvExeMp4X3+qFg6OD2fFERNKd1p1bULV2JaIio/n4zTHExsaaHUkk01NRWySd+uWLKWxctQUnZyfGTvpY42iLSKrr/05furz0LACfvD2WJX+sMDmRiIiktItnL/FS+4FM/XY6hmHQpktLpq38mRJli5sdTUQk3bJYLLz35Tu4ubuy/6+DzJmiOxtFzKaitkg6tGD6IiaNmwbAu2PfpmT5EiYnEpHMwGKxMGjkq3To0QbDMPho0GjmTfvT7FgiIpJC1i3dQPfGfTm05wgenh6M+mkk73/5Dm7ubmZHExFJ93LmycHAEQMA+OHTnzl78pzJiUQyNxW1RdKZ9cs38tmwrwHo/cYLtHy2mcmJRCQzsVgsDB39Fs/37QjAZ8O+4vcJs01OJSIiT8NqtfLtx+MZ1u8DwkLDKVelDL+vmUTjNg3MjiYiYlPad299bxiSKN5/5SOio6LNjiSSaamoLZKO7Ny0mxGvfExcXBxtu7ak/zt9zY4kIpmQxWLhrY8G0mtgNwC++fBHJn39K4ZhmJxMRESe1M3rtxjYZTDTx88CoPuAzoyfN46ceXKYnExExPbY2dkx8pvhePl4cfzQCX4Y/bPZkUQyLRW1JdOKjIxk5MiRFCtWDBcXF3LlykWfPn24cOHJZjIOCQlhxowZdO3alZIlS+Lu7k6WLFmoVq0a33zzDTExMfe9JiYmhlWrVvHaa69RqVIlfH19cXF2oV7DOpy8dozKdSswdMxbWCyWlNpdEZEnYrFYeOXdl+g/9EUAJnw+ma8++I64uLgHrh8bG8sff/zB4MGDqV27Nu7u7lgsFvr375+WsUVEbEpgYCAWi+WhP9WrV0/WduPi4vjll1+oWL4i2XNkZ8Lc7zh47S+yFHOkYYc6ODhoMkgRkeTKmsOfD74eCsDMn+ewdd32JM9PnTqVzp07U6JECXx9fXFyciJXrlx06tSJrVu3PvX737x5k2zZsmGxWAgICHjq7YnYKrVmJFOKjIykYcOGbN26lZw5c9K2bVuCgoKYMmUKS5YsYdu2bRQuXPixtvXFF18watQo7OzsqFChAq1bt+batWts2bKFnTt3MnfuXFauXImb2z9jFW7YsIGmTZsCULhwYcqVLs+B3Qe5E3mbK2EXWBA4mzdODaB4cU3YIyLm6vPGC7i5u/LVB98xe9I8bly9yf++HY6Ts1OS9e7evcvzzz9vUkoREdtWuHBhatWq9cDlTyo8PJzWrVuzbt067O0c8HD0xMPbA5+cXmzYHMjevXspVapUSsQWEcm0ajepybO92zNnygI+GDiKX5f/TO58OQH4/vvv2b9/P2XKlKFWrVq4uLhw/Phx5s2bx/z58/n555958cUXk/3eb731FtevX0+pXRGxWSpqS6b06aefsnXrVmrUqMGqVavw8PAA4KuvvuLtt9+mT58+bNiw4bG25eHhwfDhw3nllVfInTt34vITJ07QqFEjNm/ezCeffMKnn36a+JydnR1dunRhyJAhXD59jY/f+ozCXiWp2qYif984zOrVq+ndu3eKfIsrIvK0Or/YCR8/bz4cNJo1i9cTcus2Yyd9gkcW98R1HB0deeGFF6hSpQpVqlRh3759DBgwwMTUIiK2o1atWkydOjVFttWrVy/WrVuHv2t28nkVoVHL+oz4ehgeWdwJDg5+4F2EIiLy5F4fMYDDe49yZN8x3unzPpMW/YCLmws//PADJUuWJEuWLEnWX7RoER07duT111+nQ4cO+Pr6PvF7rl27ll9//ZWXXnqJn3/W0CeSuWn4Ecl0YmJi+O677wD44YcfEgvaEP+NZ9myZdm4cSO7d+9+rO0NGzaMUaNGJSloAxQtWpQxY8YAMHPmzCTPNWjQgN9//529Gw8xcuAorDFWGraux9e/juXXX38FYNu2bZw9ezbZ+ykikpKatm/E19PG4Obuyq7NexjQ8Q2uX72R+Ly7uzvTpk1j4MCBVK9eHRcXFxPTiohkTsuWLmPOnDm4O2ahgFcxXn67L2N++SjxS8icOXOSL18+k1OKiGQMzi7OfPbLx/j4eXPiyElGDfkcwzCoVq3afQVtgDZt2lCvXj0iIiLYvn37A7b4aBEREfTv35+SJUsyePDglNgFEZumorZkOps3byYkJITChQtToUKF+57v1KkTAIsXL37q9ypXrhwAly5dSrLcGmPl0yGf89NnEwHo3r8zo8aPxNHJkZw5c5I1a9YHvk5ExEzV6lZh/Lxv8PHz5vihE7zY5lXOn3myeQhERCR1XL5whQF9XgMgt1d+Ro0fyUuDe2uOFhGRVJQ9dzZG//wh9vb2rFywhsnf/PbI9e3t7QFwcnJ65HoP8uGHH3Lq1CnGjx+Po6NjsvKKZCQqakums3//fgAqVqz4wOcTlies9zROnz4NQI4c/8wuf+PaTQZ2HcyfM5ZiZ2fHkFGDeP2DAdjZxf9zDAkJ4datW/e9TkQkPShRtjgTF/1A7vy5uHQumBfbvMqhPUfMjiUiYtNOnDjBu+++y0svvcTw4cNZtmzZQyfmfZBDe47Qq2V/Ll2P/6Lx55k/kqtIdkaOHMnLL7/MyJEjk9UrUERE/lvFGuUZPOoNACaMncTSOSseuN7atWtZv349vr6+VK1a9Yne48CBA3z55Zf07t2bOnXqPHVmkYxAY2pLpnPu3DkA8uTJ88DnE5YnrPc0vvnmGwDatm0LwN4d+3mv/4dcv3IDVzdXPv5hBHWa1kzymh9++AGr1UqZMmUoWLDgU2cQEUlpeQvm4Zc/v+fN7kM5fugE/Tu+wYivhtK0fSOzo4mI2KStW7feN5dKmTJlmDdvHkWLFn3ka1ctXMtHb44hLDwUa1wM3l7ebNu1hffeey9JYfyjjz6ie/fuTJ48WT38RERSWMcebbl0LpjffpzJJ2+PJWt2fw6fOsiGDRuIjIzk1KlT7Nq1C09PT2bMmIGnp+djbzsuLo5+/frh7e3N2LFjU3EvRGyLempLphMaGgqAm5vbA593d3dPsl5y/fTTT6xZswZvb2+GDh3K9PGzeKXTm1y/coOCxQowdflP9xW09+7dyyeffALAZ5999lTvLyKSmvyz+fHT/G+p1agG0VHRjHj1YyaMnfREPQtFRDI7Ly8vhgwZwvbt27lx4wY3btxg7dq1VK9enYMHD9K4cWNu3779wNfGxcXx8xdTeP+Vj4iOiqZ8jTIAhIaF8u6779KtWzeOHz/OrVu3mDt3Lv7+/kyfPp0RI0ak5S6KiGQarw5/icZtGhBrjWVw7/f4c8Fifv31V2bPns2uXbvw8fFh8uTJNG3a9Im2+91337Fz504+//xz/Pz8Uim9iO1RUVsyHcMwAB46vmDC809jw4YNvPHGG1gsFr764mvGDP6abz8eT2xsLM06NGbqsp8oWLRAktdcvnyZDh06EBkZyaBBg2jevPlT5xARSU3uHm58PmUU3Qd0BmDSuGkM7/8/IsMjTU4mImIbKlSowNixY6lWrRq+vr74+vrSoEEDNm/eTO3atTl79iw//PDDfa+LDI/kvQEfMvGrqUD8/CxvfhQ/nrbVaqVGjRpMmzaNYsWK4e3tTceOHZk6NX7db7/9ljt37qTVLoqIZBp2dnaM/OZdatSvSmREJLeOhLN3+37u3r3Lrl27aNy4MZ06deKll1567G2eP3+e999/n7p169KrV6/UCy9igzT8iGQ6CbMQh4WFPfD58PBwADw8PJK1/QMHDtCuXTuio6Pp3/cVfvt8DqF3QnF2cWLQ/16jwwtt7iuo3759m+bNmxMUFMSzzz7Ll19+maz3FhFJa/b29rw+YgAFi+Zn9NAvWbdkA5fOXaZyszJmRxMRMd2DChDt2rWjXbt2j3ydvb09Q4cOZdOmTaxcuZLhw4cnPnc1+BqDe7/HsQPHcXB0YNiYt2jTpWWSofP69Olz3zZbtmxJ9uzZuXLlCjt37qRRIw0ZJSLypDZv3szEiRPvW/7FF1/g7++Pk7MTYyd9wuDe77Fjw18M6v4OYyd9QtU6lZk9ezaRkZH88ssvNG3alI4dO/7n+73yyitER0czfvz41NgdEZumorZkOvny5QPgwoULD3w+YXnCek/i1KlTNG3alJCQEGpWrMPuZYcAKFk+gP99M5wCRfPf95qIiAhat27Nvn37aNKkCdOnT0+cNFJExFa07tyCPAVzM7TvCI4dOM6+I7vNjiQiYrpff/31vmUFChT4z6I2kDiWdnBwcOKyI/uOMrj3e1y/cgNvXy/GTPyYitXLAZArVy6cnJyIjo4mf/7725wA+fPn58qVK1y9ejUZeyMiIidPnnzgZ/v//vc//P39AXB2cebzyaMY0ns4OzbuYtALQ/ng62E069CY7t27s2jRIv7888/HKmovWbIEb29vBgwYkGR5ZGT8nZHnzp2jXr16iesmt3OeiC1SUVsynXLl4hv+e/bseeDzCcvLli37RNu9dOkSjRs35vLly+TzK0R0MNg72PPiW73o+VpXHBzu/+dmtVp59tln2bRpE8888wzz58/HycnpCfdIRCR9qFCtHFOWTeDtnu+yc+82AC4EXTQ5lYiIeZ5mWLtbt24B/9w9uGrhWj5+awxRkdEUKl6QL38dTe58ORPXd3BwoHTp0uzZs4ebN28+cJs3btxIsk0REXkyvXr1eqxhQFxcnfny19F8NGg0q/5cxwevfcLFc8EUKJMbgGvXrj32e4aEhLBhw4YHPhcREZH4nNVqfextimQE6g4qmU7NmjXx8vLi1KlT7N27977n586dC0CrVq0ee5u3bt2icePGnDlzBn/X7GRzzE2h4gWZsuQn+g7q8cCCtmEY9OrVi6VLl1K+fHmWLl2aOEmliIityp0vJxMX/UCRkoUB2LlpN1998B0x0TEmJxMRsS3z5s0DoGLFivw0dhLvv/IRUZHR1GxUg4mLfkhS0E7Qpk0bANavX3/fc0FBQQQFBQHxY3mLiEjqcnJ24qMfRtD15ecAmDB2EsMHxU/WW7hw4cfahmEYD/w5c+YMAMWLF09c5u3tnSr7IZJeqagtmY6TkxOvvRY/kc5rr72WZGztr776igMHDlCrVi2qVKmS5HXff/89AQEBvPvuu0mWh4eHU7tmbY4cOYKPS1YKehfnhQFd+HX5BALKFntojjfeeIPff/+dgIAAVq1apT9AIpJheGRxp/OLnRL/e9bEubzc8XWuXNTt7iIi/zZhwoTE3tMJDMNgwoQJfP3111gsFiKCrUweNw2InxDyiymjqFylEgEBAVy8mPRumFdeeQVPT0+mTJnC6tWrE5eHhoYyYMAAYmNjadmyJXnz5k39nRMRyYSOHDnCL7/8QkREBBA/eeSgka/y/pfvcMd6i12HdgBQqUzSesOCBQsICAigR48eaZ5ZxFZp+BHJlN5//33WrFnD1q1bKVq0aOLs8jt27MDPz48pU6bc95rr169z/PjxJOMa3rh2k+YNW3L46GEA3N1dyVHBiz2nd/By/x1JXp8w4zzAn3/+yXfffQdA3rx5GTJkyANzDhs2jICAgKfdXRGRNPHKK68kDuGUcEul1SmS47cOcGTlXuYVncWKpSuoUb+amTFFRNKN0aNHM3DgQEqWLJk4DvbBgwc5c+YMdnZ2lMlfkRN7z+Dk7MSwMW/R6vnmABw/fhyAmJikd8FkzZqVqVOn8txzz9GsWTOqV69OtmzZ2L59O5cvX6ZgwYJMmDAhbXdSRCQTuXr1Ki+99BKDBw+mcuXK5MiRg5CQEI4cOULQtSDAQt4shRj/4WQun7rGwBED8Mjizu3btzl+/Dg5cuQwexdEbIaK2pIpubi4sH79ekaPHs2MGTNYuHAhPj4+9OzZk48//vg/e68YhsHiWcv49uPxnA46k7j8wo1zXFh27oGv+XdRO2GMRCBJL5r/r1evXipqi4jNOHLkCDt2JP1C71bIP593xMCg7kPp/cYL9Hu7F/b29mmcUEQkfXn77bdZtWoVhw8fZu3atcTExJAzZ04a1GnIjZN3cYpyIWeeHHw28eNH3gH4b+3bt2fr1q2MGjWKzZs3s2vXLvLmzcvbb7/Nu+++i5+fXyrvlYhI5lWqVCk++ugjAgMD+fvvv9myZQt2dnbkyZOHPn360LdPX7Yu/4s/Js9nwfTFbFi5hZeH9CY2Ntbs6CI2x2I8zewlIpnQudMXGD30C3ZviR+Pu3jporz3xTuPfaEhGYM1KoaZQ8YD0OXzATg4O5qcSCR9i4qMYtyHPzDv1z8BqFyrIv/7ZjjZcmY1OZmISPoRHRXNtx+P54/J8wGoXq8qH33/Pt6+XiYnE5H0RNcitm/31r18OuRzzp+JH0aqYNH89H7jBRq1qf/AOblE5H4aU1vkMVljrEz9bjpdG/Zm95a9OLs48/qIAUxZ9pMK2iIi/8HZxZmho9/io+/fx9XNlV2b99C1YW9W/7nO7GgiIulC0Imz9G39SmJBu++gHnz92xgVtEVEMqBKz1Rg1vpfefujgXj5eHHmxFk+eO0Tnq39ArMnzePu7btmRxRJ99RTW+QxHN57lFFDPufkkVMAVKtTmWGfvU3u/LlMTiZmUe8IkeQLOnGWDwaO4tiB+DFhm7RryDufvomndxaTk4mIpD3DMFgwfTFfj/yeqMgovHy8+GDcMGo3fsbsaCKSTulaJGMJvRPKnKkLmPnzHEJu3gbiO4Q0alOf9t1bU6ZSKSwWi8kpRdIfFbVFHiH0bhgTxk7ij8nzMQwDLx8v3vzwVZp3bKI/KpmcGpIiT8caY2XyuGlM+XY6sbGxZM3hz7Axb1G7SU2zo4mIpJmQm7cZNXgsG1ZsBqBq7UqM/GY4WXP4m5xMRNIzXYtkTBHhESyZvYL5v/3JqWP/zN1VOKAgbbu2okm7hvj6+5iYUCR9UVFb5AEMw2DVwrWM+/AHbly9CUDzTk14c+SrePt5mxtO0gU1JEVSxqE9Rxj5+ijOn74AxPfafvvj1/HRZ62IZHA7N+7iw0GjuXb5Og6ODrz67kt0eelZ7Ow0QqSIPJquRTI2wzA4uPswC6cvZvWi9URFRgFgb29P9XpVaNGpKbWb1MTF1dnkpCLmUlFb5P85cyKIscPHJU4EmbdQHt4ZNYhqdauYnEzSEzUkRVJOZEQUv3w5hd9/mk1cXBxePl68/fFAmrZvpLtiRCTDiYmOYfyYiUz/aRYABYrk4+MfRlC8jOZoEZHHo2uRzOPu7busXLCGZXNXcWjPkcTl7lncadiqHi06NaF8tbL6QlQyJRW1Re6JCI9g0tfT+H3CbGKtsTi7ONHr9Rd4YUBnnJydzI4n6YwakiIp78j+Y3zy9tjE+QtqNarB0DFvkT1XNpOTiYikjOMH/+ajNz/jxJGTALR/oQ1vjnwVFzcXk5OJiC3RtUjmdPbkOZbPX83yuasIvnA5cXnOPDlo1rExbbq0JHe+nCYmFElbKmpLphcXF8eqhWv54dOfuXLpKgC1Gz/DWx+/rj8I8lBqSIqkDmuMlV9/mMHkcdOIiY7B3cONgSMG0K5bK/VAERGbFR0VzeRvfuPX738n1hqLl48X730xhHrNa5sdTURskK5FMre4uDj27TzIsjkrWbskkLC7YQBYLBZqNarBc306ULVOZd3xKBmeitqSqe3asodvPxrPsYN/A5Azbw4Gf/y6JiqT/6SGpEjqOv13EJ+8/RmHdsffZlmmUimGjBpEQFndni8ituXIvqN89OZnnD4eP+lXw9b1GDJqkCb7EpFk07WIJIiMiGLTqi0smrWMHRv+SlxesGh+ug/oTPOOTXBwdDAxoUjqUVFbMqVTx8/w/agJbFmzDQB3Dzd6vNaVLi8+q9s/5bGoISmS+mJjY5k7ZQE/jplIRHgEFouF9i+0pv87L+Lt62V2PBGRR4oMj+SXr6Ymzhfg4+fNO6PfpGGremZHExEbp2sReZCzJ8/xx5T5LP1jBeFhEUD80CQvvNqF1s83x9lFE0tKxqKitmQqp46dZsq301mzaD1xcXHYO9jToXsb+r7VU71l5ImoISmSdq4GX+O7T35i5YI1AHj6eDJg6Iu069YKe3t7k9OJiNxv67rtfPbu1wSfjx/ztEnbBgz+5A28/bzNDSYiGYKuReRRQu+GsXD6Yqb/NJub124C4J/dj24vP0+HHm1wdXM1OaFIylBRWzKFI/uOMvmb6WxcuTlxWb3mtXl1+MvkL5zXxGRiq9SQFEl7e7bv54v3v0mcSLJwQEFeHf4yNRtW15iBIpIuXL9yg68++I41i9cDkD1XNoaMGkSdphraTkRSjq5F5HFERkSxeNYypv0wI3H+MN+svvQe2I123Vur57bYPBW1JcOKjY1l67od/DFpHjs27gLiJ06o37IOvQd2p3gZjcsqyaeGpIg5rFYr86ctYsLnk7h7OxSACtXL8dp7L1OmUimT04lIZhUXF8f83xbxw6c/E3Y3DDs7Ozr368RLg3vj5u5mdjwRyWB0LSJPIiY6huXzVjH5m9+4dC4YgGw5s9L3zR60fr6FxtwWm6WitmQ4Vy5dZdHMZfw5YwlXg68BYG9vT9MOjej5WlcKFi1gbkDJENSQFDHXnZC7TPthBrMnzSUqMhqA6vWq0vO1rlSsUV49t0UkzRzZd5Qv3v+WQ3viJ7YtWT6Adz97Wx0oRCTV6FpEksMaY2Xx7GVM+npaYq0kd/5c9Hu7F03bN9KwfmJzVNSWDOH2rTtsWLGJlQvWsmvLHhJOay8fL1o914xOvduTO19Ok1NKRqKGpEj6cOXSVX7+YgrL5qwkNjYWgNKVStLjla7UalwDBwf1PBGR1HHj2k1+HP0LS2YvxzAM3D3cGDCsHx17tlVhQERSla5F5GlERUaxYPpipn47nZvXbwFQoEg+XhrShwYt62JnZ2dyQpHHo6K22CTDMDh/5iKbVm9h06qt7N95MLGYAfG3orfv3pr6LeponChJFWpIiqQvF89eYvpPs1g8aznRUfE9t7Pm8Kd15xa06dKCXHn1xaaIpIzoqGjmTFnAxK9/JexuGADNOzbmtff6kzWHv8npRCQz0LWIpISI8Aj+mLyA336cwZ2QuwAULVmE/u/0oVbjZ3Tno6R7KmqLTYiOiubYwb85uOswB3Yd4uDuw1y/ciPJOkVKFKJx2wY0addIvbIl1akhKZI+3bh2k1m/zOXPGUsIuXkbiJ9PoWKNctRpWos6TWvpb4SIJEtcXByr/1zHj2N+Ifj8ZQACyhZn8MevU7ZKaZPTiUhmomsRSUmhd0KZ+ctcZvz8R+KXtaUqlKD/O32pWqeyituSbqmoLenStcvXObj7XgF712GOHfybmOiYJOvYO9hTsXp56jR5hlpNaqpIIWlKDUmR9C06KpoNKzfz5+9L2Llpd5LnCgcUpFrdKlSsXp7y1cri6Z3FpJQiYgsMw2Dnxl38MPoXjh04DsTfCfLykD60er65btMWkTSnaxFJDSE3b/P7T7OZPWkekRGRQPxd8P2H9qVCtXImpxO5n4raYjprjJUTR09x4K/4HtgHdx0m+MLl+9bz8fOmTOXSlK1cijKVS1GibAAurhpaRMyhhqSI7bh0PpgNKzazcdUW9m0/kGS4KovFQpEShalQvSzlqpShZIUS5MqbQz1SRATDMNgeuJOJX/3Kwd2HAXD3cOOFV7vSpV8nXN1cTU4oIpmVrkUkNd24dpNfv5/B/Gl/Jg7rV61uFbq9/DxV61TSl7mSbqioLWku5EZIfPF692EO7DrMkX3HEr8FTGBnZ0fhgEKUrVKKMpVKUbZyaXLnz6Uig6QbakiK2Kbbt+6wPXAne7btY8+2/Zw9de6+dXz8vClZoQSlygdQqkIJSpQLwNvXy4S0ImIGa4yVwBWbmD5+Fkf2HQPA2cWJ9t3b0Ov17vj6+5icUEQyO12LSFq4cukqU779jT9nLCXWGt8pJFe+nLTp0pLWzzfXPBJiOhW1JVVFhkdy/NAJDu87ypG9Rzm87xgXz166b70sXh6UqRRfwC5TuTSlKpTA3cPNhMS259q1a2ZHyJSs0TEs+eh3AFp90A0HJzUkJWPLmjWr2RFSxfWrN9i34wB7t+/n8N6j/H34JNYY633r5SmQm1IVSlCqQgnKVilN8dJFsbe3NyGxiKSWkBshLJyxhLlTF3I1OL595eziTMeebek+oDP+2fxMTpi21MYUSb90LZK6Mmq7N7kunr3EjJ//YPm81YTeCQXiOyKWq1qG+i3qULNhdfIUyK1OiJLmVNSWFBMbG0vQibMcvle8PrL3KCePnk5ym3eCAkXy3RtKpDRlq5Qif+F8uoUlmfSHwxz22NHYvyoAq6/vJJY4kxOJpK7M0lyIiozixJFTHN57lCP7jnJo71HOn75w33oenh5UqFaWSjUrUPmZChQpWVh/x0RsUFxcHAd3HWbRrGWsXLAm8TZrHz9v2r/Qhuf6dMi0PbPVxhRJv3QtkroyS7v3SUWGR7J2aSALf1/C/p0HkzyXLWdWKtYoT/EyRSlaojBFSxXBx8/bnKCSaaioLckSFRnFmb/PcuLISU4cOcXfh09y7MBxwsMi7lvXL5svpSqUpFSFAEqVL0GJcsXJ4qVJuVKKLjjMoYakZDaZublw+9Ydju4/zuF9Rzm05wj7dhxInBk+gZePF1VqVaRqnUpUrVOZXHk1ebFIemWNsbL/r4NsXr2NtUsCuXzxSuJzAWWK8fyLHWnUuj7OLpl77ha1MUXSL12LpK7M3O59XMEXLrNhxWYCl2/iwK5DD7zT0dPHE/9sfvhn88Uvmy8enh44Ozvj5OKE4727C+Ji4zDi4oiNi3+MibYSExNDTIwVa3T8Y0xMDDHRVqz3HmNiYrDGWImNjcXe3h47Ozvs7O2ws7PD0ckRF1dnXFxdEh/dPNzw9M6Cl7cnnt6eeHpnwdvXi6w5s2qEABunorY8UlxcHJcvXiHoxFlOHj3NiSOnOHHkFGdPnntgD2w3d1dKlCtOyfLxt2iXKl+CbLmyqlGcinRszaGGpGQ2ai78IzY2luOHTrB7y152b93Lvh0H7vtSN0+B3PEF7tqVqfRMBbx8PE1KKyIJd2Ac2XeMPdv2sWPDX4SFhic+7+buSt3mtenQvQ1lq5RW2+oeHQeR9EvXIqlL7d4nExkeyYFdhziw69C9utFJLgRdsonj6J7FnWw5s5Ithz9Zc/iTPVc2chfITd4CuclTMDe+/j76e5iOqagtAERHRXP+zAXOnDhL0ImzBJ08R9CJs5w9dZ6oyKgHvsbTx5OiJQtTtGQRipUsTIlyxSlQNL/GGE1j+oA1hxqSktmoufBw1hgrh/ceZeem3ezcuItDe44k+eLXYrFQolxxylcrS9nKpSlTqZQm1hFJQdYYKyG3bnP75m1u3Qgh+PxlLp4L5uLZS5w9eY6Tx07f14PMx8+bGg2qUbvxM9RsWAMX18zdK/tB1MYUSb90LZK61O59euFh4QSfv8yNqze5fvUGN67eJDw0nKioaKLv/QDxPawtdljsLPE9rR0dcXBywNHRESenf353vPfo4OiAo5Mjjo6OWOwsxMXGEWfExT/GxRETHUNUZBSREVFERkQSGRFF6J1Q7t4O5U7IHe6E3OV2yB1uXrt1352XD+Lm7kregnkoVLwAhYoXokiJQhQJKKTOm+mEitqZSEx0DMEXrnAh6ALnz1zk4tlLnA+6yLlT57h4Npi4uAf/IXRwdCBfobwULJafoiWLULRkYYqVKkK2nPpHnB5oEh9zaHIWyWw0Yc7jC70bxt5t++KL3Jt2c+bvoPvWyZE7O2UqlaJYqSIUKJqfgsUKkCtfDhwcHNI+sGRoC39fQuDyjRiGQVycgREXR5wR/2gY8XflGXFG/KPxz2PCsn+va8TFERdnEGfEwb3tJbzeMIzE18fFGfeej389956De4VSiwULlnv/Hb8ssU1psdy37N+P//7dMAzu3gl9rItSb18vSpYPoHTFkjzToBoBZYtrHPz/oDamSPqla5HUpXZv5hAWGs614GtcvXydq8HXuBp8jSsXr3Ah6BIXgi5y+eKVh37B4eHpQeHiBSlcoiBFAgpR+F6xW0Ptpi0VtTOYyPBILp67lPiP8HzQBS4GxRevL1+48tDCNcT/oyxQNB8FCuejQNH8FCiSnwJF8+siW+QBrFExzBwyHoAunw/AwVkNSRF5sKvB19i1ZQ8Hdh3i4K4jnDp2+oF/jx0cHciWM2v8rY85s5ItZzay5vTH0zsLWTyz4OHlgaeXR+Lvbu6u+nJZ/tO4D39gxoQ/zI6R6iwWC57ennj5eJIzT3ZyF8hF7ny5yFMgNwFli5Ejd3b9exGRDEPXIiKpLzoqmkvngjl76jynjp/h9LHTnDx2hrOnzhFrvX84XoDsubJRpGRhipYoROGAQhQpWZj8hfLi4KiaWmpQUduGxMXFcfP6La5eusqV4GtcvXiVK5euceXSVa4GXyP4wmWuBj+6R4WLqwt5CsQ38PMUyE3egrnJWzAPBYrmxy+rrxr7Io9JDUkRSa6w0HCO7DvGoT2HOX08KHHYr4cN9/UwFosFNw833D3ccM/ijnsWN9w93OP/O2HZvUc3Dzc8srjj7euFt583Pn7eePt6JU7SIxnX4b1HOfN3UOJtvQm9ne3s7B66LP53CxY7O+ws8Y+Wez2o7ezt45dZLImvT1jXwr9el7DMAnYWu/gu2fd6bBsYJFyBGP/qyR3/a+IT/yzD+H/L/1kvi6cHXr5eZPHy0BB4IpJp6FpExDwx0TGcPXWOk0dPc+rYGU4eO82po6eTTDz9b45OjhQokp9CxQuQt0Bu8hbKQ54CucmZJwc+/t5qvzwFm/iqYOp30wkPi8DB3h57h3s/9v88Ojo54uTshJOTI47Ojjg5xc+k6uTkiJOzI45O8c8lzLDq5PTPumadPIZhEBEewd3boYnj+9y9E8rtm7e5ef0Wt66HcPPGvcdrN7l1I4Sb12899Nugf/Pw9IgvWN8b2D5P/lzkKZibvAXy4JdNhWsREREzuXu4UaVWRarUqpi4LC4ujquX7t32GHw18RbI65dvcPdOfFvhTsjd+Mfbd7HGWDEMg7C7YfFDL/zHl9oP4+HpgY+fF16+Xvj4eicWvH38vPH280osficsd3VzTanD8ECGYRAVGU1keAQREZFEhEfG/x4ePyZi2cqldFvnEypVIX7ybhERERF5eo5OjhQpUZgiJQonWX739t34IvfRU5w8dpqTR05z6thpwkLDOXHkJCeOnLxvW3Z2dvj4e+OfzQ//HP54+Xji7u6W2FnFzcMNJ2cn7O3t4scft7NLrIVaLJb4od5i44iNjcUwDGJj44iLjU0cIi7hd8MwKFqyMBVrlE+jo5Q2bKKoPWfKAq5dvp4q2/6nKB5fGE8oescXxx3/KYI7x//u4OBwbxxB/hlz8N4Yg4ZhJPmJi40jKiqaqMgooqOiiYqM/z0qMoqw0PDHKlD/fxaLBf/sfmTPlS1+htZc2cieKyvZcmYlR+7s5C2YBy8fTxWuRUREbIidnR058mQnR57s/7muYRhERUQRFhZO2N1wwkLD7hW3wwkPC0/8PX55OKEJj3dCCbl5m5AbIYTcvE1cXByh9wrm589cfKyczi7O9wre3vj4eeHt64WLmyuOjg7xE/c4OuLgYE+cYWCNsWK1WrFGxz/GRMcQHRVNRHgkERGRRIZHEnmvcJ1QvI6MiHrkUGmTFv9ImUqlHvu4ioiIiIikhSxeWShfrSzlq5VNXGYYBsEXLnPyyGmCTp6NHyb4TPw8d9ev3CAuLo4bV29y4+pNjh86kar5nuvTQUVtM7Tr1pq7t+8Sa43FGhtLrDWW2HuP1hgr0dExxERHxz9Gxfzz31HRREfFxF9EJS6LSTLQe2xsLLERsURGRJqyb/YO9mTx9CCLlwcenh54envim9UHXz8ffPy98c3qi6+/Nz7+8cv8svlqLB4REZFMzGKx4OLmgoubC35ZfZO1jbi4uPjZ32/e5taNEG7dDCHkRgi3bty+9xjyz+PN24TcvH3vC/ooLl+88tDbK1OSk7MTLm4uuLq64Ormgoubq9pAIiIiImIzLBYLufLmJFfenNRpWjPJc7Gxsdy6HsL1Kze4fvUG16/c4O7tu4SFhhMeeq+jSmg40VHRxMXF3euFHd8rOzY2Fgzu9d62YGdn/8/v9vbY3xtSzt7ePn5oOSwUL13UpKOQejLdmNqGYRBrjSUqKpqYqHuF8OgYoqOjEwvi/xTD//V8VHyRPNYamzhOIJZ/jTlosWCx2P0zW/u9dZycnXB2ccY54dHFGWdXJ9w93Mni5YGLq4t6VYvYIMMwiI22AmDv5KB/xyKSoRmGQXhYRGKhO6HoHXLzNlGRUcTExPfEtlpjsUbHYLGzJN7hltCL28Ex/s44VzcXXFxdcHVzvVesjv/dxdU5/tHNBRdXZ01SLSIi8hC6FhERyYRFbRERERERERERERGxXXZmBxAREREREREREREReVwqaouIiIiIiIiIiIiIzVBRW0RERERERERERERshoraIiIiIiIiIiIiImIzVNQWEREREREREREREZuhoraIiIiIiIiIiIiI2AwVtUVERERERERERETEZqioLSIiIiIiIiIiIiI2Q0VtEREREREREREREbEZKmqLiIiIiIiIiIiIiM1QUVtEREREREREREREbIaK2iIiIiIiIiIiIiJiM1TUFhERERERERERERGboaK2iIiIiIiIiIiIiNgMFbVFRERERERERERExGaoqC0iIiIiIiIiIiIiNkNFbRERERERERERERGxGSpqi4iIiIiIiIiIiIjNUFFbRERERERERERERGyGw+OsZBgG0dHRqZ1FRERERCTdcnJywmKxPNFr1I4WEREREUleW/pRHquoHR0dzZgxY1LsTUVEREREbM2wYcNwdnZ+oteoHS0iIiIikry29KNYDMMw/msl9TB5sMuXLzN16lR69epFjhw5zI6TYei4pjwd09Sh45rydExTh45rytMxTR3p/biqp3bmkd7PRbE9OqckpemckpSk80lS2oPOKVN6alsslhStpGcUTk5OiY86PilHxzXl6ZimDh3XlKdjmjp0XFOejmnqyIjHVe1o25QRz0Uxl84pSWk6pyQl6XySlJYW55QmihQRERERERERERERm6Gi9lPw8PCgbt26eHh4mB0lQ9FxTXk6pqlDxzXl6ZimDh3XlKdjmjp0XCW90LkoKU3nlKQ0nVOSknQ+SUpLi3PqscbUFhERERERERERERFJD9RTW0RERERERERERERshoraIiIiIiIiIiIiImIzVNQWEREREREREREREZuhoraIiIiIiIiIiIiI2AwVtf+fy5cv8+KLL5IzZ05cXFwoVqwYH330EdHR0Y+9jRMnTvDpp59Sp04dcuXKhZOTE3nz5qVHjx4cO3bsga/p1asXFovlgT8BAQEptXup6q+//qJFixb4+Pjg7u5O1apVmTFjxhNtIy4uju+//56yZcvi6upK1qxZee655zhx4kSqvm969rT7t3nzZt5++20qVaqEn58fLi4uBAQEMHToUEJCQh74mgIFCjz0fOzfv38K7Zl5nvaYBgYGPvT4WCwWtm/fnirvm9497f7Vq1fvkcfVYrHw22+/JXlNRj5Xp0+fzssvv0zlypVxdnbGYrEwderUJ96OPleTSonjqs/VpFLimOpzVWzF/v376dq1K7lz58bZ2ZlcuXLRvHlz1q9fb3Y0sTEZ4fpP0q/t27djb2+PxWJhzJgxZscRGzRmzBiaNGlC3rx5cXV1xc/Pj8qVK/PVV18RHh5udjyxMWFhYUyfPp3nnnuOYsWK4erqire3N3Xr1mXmzJnJ3q5DCma0eZcvX6ZatWqcP3+edu3aUaxYMTZv3szIkSPZtm0bS5cuxc7uv78HGDFiBLNnz6Z06dK0bdsWT09PDh48yG+//cbcuXNZuXIltWvXfuBr33jjDby9vZMs8/f3T4ndS1WBgYE0bdoUJycnOnfujJeXF/Pnz6dbt24EBQUxfPjwx9pO//79+eWXXyhZsiQDBw7kypUrzJ49m1WrVrF161ZKliyZKu+bXqXE/nXq1Inr169Tq1YtevTogcViITAwkLFjxzJv3jy2bt1KtmzZ7nudl5cXgwYNum955cqVU2LXTJOS50zdunWpV6/efcvz5MmTqu+bHqXE/vXq1euBxzMmJobRo0djZ2dHw4YN73s+o56r77//PmfPnsXf35+cOXNy9uzZZG1Hn6tJpcRx1edqUil1roI+VyV9mzZtGn369MHLy4tWrVqRO3durl+/zq5du9i6dSv169c3O6LYIFu9/pP0KyIigl69euHq6kpYWJjZccRGTZgwAX9/fxo3bky2bNkIDQ0lMDCQt99+m2nTprF161bc3NzMjik2YtOmTbzwwgv4+fnRsGFDOnbsyNWrV5k/fz5du3Zl69atfPfdd0++YUMS9ejRwwCMH3/8MXFZXFyc0bNnTwMwJk+e/FjbmTJlirFv3777ls+cOdMAjJIlS973XMJ7nDlzJtn5zRITE2MULlzYcHZ2Nvbs2ZO4/M6dO0apUqUMBwcH4++///7P7axbt84AjNq1axuRkZGJy9esWWNYLBajTp06qfK+6VVK7d+YMWOMS5cuJVkWFxdnDBgwwACMV1555b7X5M+f38ifP/9T70N6k1LHdP369QZgjBw5Mk3fN71K7f2bO3euARitW7e+77mMeq4ahmGsXr3aCAoKMgzDMEaPHm0AxpQpU55oG/pcvV9KHFd9riaVEsdUn6uS3u3atctwcHAwatSoYdy8efO+52NiYkxIJbbMlq//JH178803DU9PT+Pjjz82AGP06NFmRxIbFBER8cDlL7zwggEY33//fRonElu2b98+4/fffzeio6OTLL98+bKRP39+AzB27tz5xNvV8CP33L17l9mzZ1OoUKEktwFbLJbEHoK//PLLY22rV69elCtX7r7lnTt3plixYhw5coTr16+nWHazrVu3jlOnTtG1a1cqVKiQuDxLliyMGDECq9XKlClT/nM7Ccf3k08+wdnZOXF5w4YNadq0KRs3buTvv/9O8fdNr1Jq/4YOHUrOnDmTLLNYLIwYMQKADRs2pGzwdMysc0bn6tPt38SJEwHo27fvU2e1JY0aNSJ//vxPtQ19rt4vJY6rPleTSolj+qQyw7kq6cv7779PbGws06ZNw8fH577nHRx0A6yImG/Lli188803fPHFFw+8y0nkcbm4uDxweadOnQA4efJkWsYRG1euXDm6du2Ko6NjkuXZs2fn5ZdfBpJ3DaXW1z3btm0jKiqKxo0bY7FYkjyXM2dOypQpw44dO4iMjHzoP+7HkfA/8GEN36VLl3L37l2cnZ0pW7Ys9erVw97ePtnvlxYCAwMBaNKkyX3PJSx7nJMzMDAQd3d3atased9zTZs2ZcWKFWzYsIFixYql6PumV6m9f/91LkZFRfHrr79y8eJFfHx8eOaZZx74ZY0tSeljeuLECb799lvCw8PJnz8/jRs3fuDtojpXk79/Fy5cYNWqVeTIkYOWLVs+cJ2MeK6mFH2upq3M+Lma0vS5KulRSEgIq1atokKFChQpUoQNGzawc+dOHBwcqFatGs8884zZEcWG2eL1n6RP4eHhicP59evXL1lzsYj8l6VLlwJQunRpk5NIRvFf11CPoqL2PQkTZhUtWvSBzxctWpT9+/dz+vTp+8YffVw7d+7k8OHDVKlS5b5x0xK89tprSf67WLFizJw5k4oVKybrPdPCo46dj48P/v7+j5yQDOIHjQ8ODqZ06dIPbMQlbPvf20mJ903PUnv/Jk+eDDy4IADxY8z36tUrybJmzZrx22+/2ew4fyl9TGfMmJFkQjJXV1c+/PBDhgwZkqrvm96k5v5NmTKFuLg4evXq9dA/chnxXE0J+lxNe5nxczWl6XNV0qM9e/YQFxdH3rx5adOmDYsXL07yfOPGjZkzZw5eXl4mJRRbZovXf5I+DRs2jODgYFatWmV2FMlAxo0bR0hICCEhIWzZsoVdu3bRpEkTevToYXY0yQAS7oKzWCw0atToiV+v4UfuuX37NsBDG6Oenp5J1kvO9nv27ImdnR1jx4697/m6desyb948zp8/T0REBEePHmXQoEGcOnWKJk2acOnSpWS9b1p4nGP3X8ctOcc/Jd43PUvN/du3bx8ffvgh2bJl45133rnv+T59+hAYGMi1a9e4c+cO27dvp3nz5qxYsYI2bdpgGEay3tdsKXVMs2bNyueff87Ro0cJCwvj4sWLTJ8+HV9fX9555x0mTJiQKu+bXqXW/hmGkTh8wMOGHsmo52pK0Odq2sqsn6spRZ+rkp5dvXoVgCVLlrBz504WLlzI7du3OXr0KG3atGH16tW89NJLJqcUW2PL13+S/mzYsIHvv/+eTz/9lIIFC5odRzKQcePG8eGHH/LNN9+wa9cuunfvzrx58+4bRkIkOUaMGMHBgwfp3bt3snr/Z7iitr+/PxaL5bF/Em5fTU2RkZF06NCBY8eO8fHHH1OvXr371unduzcdOnQgT548uLi4EBAQwNdff83QoUO5ceMGX3/9darnlMzhzJkztGrVitjYWGbNmvXA3oEffPABdevWxd/fnyxZslCtWjWWLFlCrVq12LZtG8uWLTMhefpRqlQpBg8eTEBAAG5ubuTKlYtu3bqxYsUKnJycGDlyJHFxcWbHtHnr1q3jzJkz1K1blyJFijxwHZ2rkh7oc/Xp6XNV0kJyrxMSzr3Y2Fh++ukn2rZti6enJwEBAfzxxx/ky5ePOXPmcP78eRP3TszwNNeeuv6T/y+551NYWBh9+vShRo0a9/X8l8wtJepjQUFBGIZBcHAwM2bMIDAwkGrVqnHhwoW03yExXUrWXH/++WdGjx5NhQoV+Oabb5KVJ8MNP9KlSxfu3r372OvnyJED+Kenz8N69dy5cyfJeo8rKiqK9u3bs27dOt59912GDx/+RK/v27cvn376KVu2bHmi16Wlxzl2/3XcknP8U+J907PU2L+zZ89Sv359rl27xrx586hfv/5jv9bOzo7evXuzefNmtmzZ8tDxjdOz1D5nSpcuTbVq1di0aRMnT55MHKdY52ry9i9hgsgXX3zxiV6XEc7VlKDP1bSR2T9XU1tm/VyV1PG01wn29vb3/Tt1dnamSZMmTJw4kd27d5M3b96UCyzpXnLPqUexhes/SR3JPZ/ee+89Ll26xLJly7Czy3D9FuUppORnVI4cOejSpQtFihShatWqvP3228yePTslYooNSalzasqUKfTv358yZcqwevVqPDw8kpUnwxW1v/vuu2S97kFji/7biRMnsLOzo1ChQo+9zcjISNq1a8fKlSt55513+PTTT584V0Jvr/Dw8Cd+bVr597GrVKlSkudu3brF9evX/3MCHXd3d3LmzMmZM2eIjY29b/zXB42dmRLvm56l9P4FBQVRv359Ll26xJw5c2jVqtUTZ7KF8/FR0uKcedAx0rn65Pt369YtFixYgLe3Nx07dnziTLZ+rqYEfa6mPn2upo3M+LkqqSO51wnFixcHwM3N7YG3WyfMlRMREZHsbGKbkntOPYr+LmReyT2f9u3bR2RkJAEBAQ98/t133+Xdd9/ljTfeYNy4cU+RUGxNanxGValSBR8fnzQZ9UDSn5Q4pyZPnky/fv0oWbIka9euxc/PL9nb0td491SvXh1nZ2dWr15937iWwcHBHDx4kGrVquHi4vJY2/t3QXvw4MF89tlnycq1Y8cOAAoUKJCs16eFunXrAjxwQoqEZQnr/Nd2wsLCHtgrYeXKlfdtJ6XeN71Kyf0LCgqiXr16XLx4kdmzZ9O2bdtkZbKF8/FRUvucsVqt7NmzB4vFQr58+dLsfc2WGvs3ffp0oqKi6NatG66urk+cydbP1ZSiz9XUo8/VtJFZP1clfSlcuDD58uXj7t27D7zd+siRI4D+HUvK0N8FeVItW7akb9++9/3UqVMHiC9C9u3blxo1apicVDKC0NBQbt++jYNDhusjK2lg8uTJvPjiiwQEBLBu3TqyZs36dBs0JFGPHj0MwPjxxx8Tl8XFxRk9e/Y0AGPy5MlJ1g8LCzOOHj1qnD17NsnyiIgIo0mTJgZgvPXWW//5vsHBwcbJkyfvW37hwgUjICDAAIxZs2Ylc69SX0xMjFGoUCHD2dnZ2Lt3b+LyO3fuGKVKlTIcHByM48ePJy6/du2acfToUePatWtJtrNu3ToDMGrXrm1ERUUlLl+zZo1hsViMOnXqPNX72pqUOq5nzpwx8ufPbzg4OBjz5s37z/c9fPiwcevWrfuWb9q0yXBxcTGcnZ3vO+dtRUod061btxpxcXH3bXvQoEEGYDRr1uyp3tfWpNRx/bdy5coZgLFnz56HrpORz9X/b/To0QZgTJky5YHP63M1eZJ7XPW5+nDJPab6XJX07tNPPzUA44UXXjBiY2MTlwcGBhoWi8UoUKCAERMTY2JCsSW2fv0ntmHKlCkGYIwePdrsKGJjgoKCjDNnzty3PDo62ujbt68BGH379k37YGLTJk6caFgsFqNEiRLG5cuXU2Sb+mrlX8aMGcP69et59dVXWbNmDcWKFWPTpk1s2bKFpk2b0rNnzyTr79y5k/r161O3bt0kt17079+fVatWkSNHDrJkycL//ve/+96rV69eid++Hzt2jAYNGlCrVi0CAgLw9fUlKCiIJUuWEBYWRs+ePXnuuedScc+fjoODAxMnTqRp06bUrl2bLl264Onpyfz58zlz5gyffPJJ4hiYAN9//z0ffvghI0eOTHJs6tevz4svvsjEiROpUKECLVu25MqVK8yePRtPT0/Gjx//VO9ra1LquNarV4+zZ89SvXp1Dhw4wIEDB+57r3+v/8cffzB27FgaNmxIgQIFcHZ25tChQ6xatQo7Ozt++umnJL3lbElKHdMuXbpgsVh45plnyJ07NyEhIWzcuJHjx4+TL18+fvrpp6d6X1uTUsc1we7du9m/fz8VK1akQoUKD33fjHyuQvyY4ps3bwbg4MGDicsS/t60a9eOdu3aAfpcfRIpcVz1uZpUShxTfa5KevfWW2+xZMkSfvvtN44cOUKdOnUIDg5m3rx5ODs7M3nyZPVak8dm69d/IpKx7d27l44dO1K7dm2KFi2Kv78/V65cYc2aNZw/f57ixYszatQos2OKDVm3bh39+vXDMAzq1Klz33UoQPny5ROvGR5bipTGM5BLly4Zffr0MbJnz244OTkZRYoUMT788EMjMjLyvnXXr19vAEbdunWTLK9bt64BPPJn/fr1ieufO3fOePHFF42yZcsaPj4+hoODg+Hn52c0btzYpr6h37Fjh9GsWTPDy8vLcHV1NSpXrmxMnz79vvVGjhxpAMbIkSPvey42Ntb49ttvjVKlShnOzs6Gn5+f0alTp0f2tnrc97VVT3tc/+tc/P8fA4GBgcZzzz1nFClSxMiSJYvh6Oho5MmTx+jcubOxY8eO1NzVNPO0x3TMmDFGvXr1jFy5chlOTk6Gm5ubUbZsWeO9994zbt68+dTva6tS4jPAMAxjwIAB99018yAZ/VxNuEvoYT//Pn76XH18KXFc9bmaVEocU32uii0ICwszRowYYRQpUsRwcnIyfH19jfbt2xv79u0zO5rYmIxy/Sfpm3pqS3KdPXvWePPNN41KlSoZfn5+hr29veHl5WVUr17d+Oyzz4zQ0FCzI4qNSfg8etRPz549n3i7FsP4fwNIi4iIiIiIiIiIiIikU5ooUkRERERERERERERshoraIiIiIiIiIiIiImIzVNQWEREREREREREREZuhoraIiIiIiIiIiIiI2AwVtUVERERERERERETEZqioLSIiIiIiIiIiIiI2Q0VtEREREREREREREbEZKmqLiIiIiIiIiIiIiM1QUVtEREREREREREREbIaK2iIiIiIiIiIiIiJiM1TUFhERERERERERERGboaK2iIiIiIiIiIiIiNgMFbVFRERERERERERExGb8H3OxDTMgvFKsAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABcsAAAIzCAYAAADf8kEsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD3nUlEQVR4nOzdd1hUZ97G8e/QBRRUVBAUC/ZesBfsGo09iSYb07PJprjpu5ts2rspm7Lp2U03vZqYxBYb9gIW7AVELNgVRHqZ8/4xzOgIKihwBrg/15Xrdc45c849I+t7nh/P+T0WwzAMRERERERERERERESqMTezA4iIiIiIiIiIiIiImE3FchERERERERERERGp9lQsFxEREREREREREZFqT8VyEREREREREREREan2VCwXERERERERERERkWpPxXIRERERERERERERqfZULBcRERERERERERGRak/FchERERERERERERGp9lQsFxEREREREREREZFqT8VyEREREREREZEK8uyzz2KxWHj22Wcr7JpNmjTBYrGQlJTktP3WW2/FYrEwY8YMp+0zZszAYrFw6623VlhGERFXoGK5iMhlJCUl8eyzzxa5gZTyN2vWLJ599lni4uLMjiIiIiIi4pIq8p45NTWVZ599ljfffLPcryUiYgYVy0VELiMpKYnnnntOxXITzJo1i+eee07FchERERGRiyjJPXPz5s1p1aoVnp6eJTpnQEAArVq1IiQkxGl7amoqzz33nIrlIlJleZgdQEREREREREREys/ixYtLdfyECROYMGFCOaUREXFdmlkuIiIiIiIiIiIiItWeiuUiUmEsFgsWiwWAX375hT59+uDv70+DBg245ZZbOHr0qOPYzz77jG7duuHn50f9+vW55557OHPmTJFzXm5xnKtdmCYqKopBgwYBsGzZMsdnsFgsNGnSpMjxMTExTJkyhdDQULy8vGjQoAHXXXcdmzZtKvb85fGdnP+Zz549y8MPP0yTJk3w8fGhWbNmPPnkk2RmZl70M58+fZonn3yS9u3b4+fnR82aNenVqxcfffQRVqu1yPHnLwq0b98+br31VkJDQ/Hw8HD8vRQUFPDrr79y++23065dOwICAvD19aVNmzY8/vjjnDx50umcSUlJWCwWPv/8cwBuu+02p+/efl77ccX9XRT3HV9s+8yZMxkwYACBgYFFFj4q7fchIiIiUp1Vxnv+Rx99FIvFwv3333/RY7Zt24bFYqF+/frk5+c77du+fTs333wzYWFhjjHApEmTWLt2balylNc9M1x8gc+LKe47vfXWW2natCkA+/fvd7qW/e98ypQpWCwWXn/99Yue+6effsJisRAZGVmiLCIiFUnFchGpcO+88w4TJ07k4MGDREREcObMGb744guGDBlCdnY206dP5/bbbyc1NZWmTZuSkpLCBx98wLhx4zAMo0KzdujQgfbt2wNQq1Yt+vbt6/jvwpu7N954g169evH999+TnZ1N+/btKSgo4KeffqJnz578/PPPF71OeXwnOTk5DBw4kDfffBN/f39atGhBUlISL774IkOGDCm2YL59+3Y6duzIiy++SHx8PE2aNKFBgwbExMRw9913c8MNN1z0ert376Zr16589913BAcH06JFC8dN85EjRxg/fjyff/45KSkpREREEB4eTlJSEq+++iqRkZEcO3bMcS4fHx/69u1L/fr1AWjRooXTd9+4ceNL/K2Vzr///W8mT57Mnj17aNmyJfXq1SuT70NERESkOqtM9/w33ngjAD/++CMFBQXFHvPNN98AcN111+Hhca6j7W+//Ua3bt346quvyMjIoFOnThiGwc8//0zfvn356KOPSpzDle+ZAVq2bEn37t0B8Pb2drpW3759Abj99tsBHAX84tj3XekvN0REypUhIlJBAAMw/Pz8jG+++cax/eDBg0ZERIQBGOPHjzcCAgKMRYsWOfZv2bLFqFOnjgEYc+fOdTrnM888YwDGM888U+w1P/vsMwMwbrnllivOHR0dbQDGwIEDL3rMvHnzDIvFYgQFBRkzZ8502vfxxx8bHh4eRs2aNY3Dhw877SuP78T+mT08PIzQ0FAjLi7OsW/r1q1Go0aNDMB49NFHnd6Xnp5uNG/e3ACMBx980Dhz5oxj3/bt24127doZgPHuu+86ve+WW24xAMPd3d0YO3ascerUKce+rKwswzAMIzU11ZgxY4bTPsMwjJSUFOP+++83AOPWW28t8r3az/3ZZ58V2WcYhrFv3z4DMMLDw4vdbxjnvuOLbffy8jI+/PBDw2q1GoZhGHl5eUZeXt4Vfx8iIiIi1Vllvedv3bq1ARh//PFHsfubNm1qAMbKlSsd25KTk41atWoZgDF9+nQjJyfHMAzDKCgoMF544QUDMDw9PY3NmzeX6POU1z2zYRhGeHi4ARj79u0r0Xsv9p1e7v67oKDAaNy4sQEYGzduLLL/2LFjhoeHh+Hl5VXkc4qIuALNLBeRCnfnnXcydepUx+uwsDAee+wxwLaS+7PPPsuQIUMc+zt06MDdd98NwPz58ys2bAk9+eSTGIbBJ598wsSJE5323XHHHUyfPp2zZ8/y8ccfF/v+8vhO8vPzeeedd+jUqZNjW/v27XnvvfcA+O9//8vZs2cd+z799FP27t3LhAkTeOutt6hVq5ZjX9u2bfnmm2+wWCz85z//KfZ69erV45tvvqFOnTqObT4+PgAEBARwyy23OO0DCAwM5J133qFRo0b88MMPRR5prQh//vOfueuuuxyz4D08PPDw8Ljq70NERESkOqts9/z2rN9++22RfWvXrmXfvn2Eh4fTp08fx/b333+ftLQ0OnfuzJtvvomXlxcAbm5u/OMf/+Caa64hLy+P1157rUQZXPmeuaTc3Ny45ZZbgOJnl3/99dfk5+czduzYIp9TRMQVqFguIhXujjvuKLKtc+fOjj/bH907X5cuXQBITEwst1xXav/+/WzcuJH69eszduzYYo+xb1+2bFmx+8vjOwkNDWXcuHFFto8ZM4bGjRuTkZHBqlWrHNvtbWLuvPPOYs/XsWNHmjRpQmJiIocOHSqyf9KkSfj5+RX7XrslS5bw0EMPMXr0aAYMGEC/fv3o168fZ86cITMzk/j4+Eu+vzxMmzat2O1X+32IiIiIVGeV7Z7f3orll19+IScnx2mfvYBu78dtt2DBAoCL9jqfPn2603El5Yr3zKVh753+zTffkJeX57RPLVhExNV5XP4QEZGy1bx58yLb7H2i69Wr5zSD98L96enp5RvuCmzduhWA7Oxs+vXrV+wx2dnZACQnJxe7vzy+k1atWuHmVvR3ohaLhVatWnHgwAH27NnDyJEjnT7H008/zYsvvljsOe2LCiUnJxMWFua0r02bNsW+ByA3N5cbbriBWbNmXfQYsC2mWdEulvtqvw8RERGR6qyy3fNHREQQGRlJbGwsc+fOZcKECQBYrVZ++OEHAKeZ8gB79uwBbE8dFqddu3YAHDt2jLS0tGI/8/lc+Z65NJo2bUpUVBTR0dHMmzfPMXFo8+bNbN68meDgYMcYRETE1ahYLiIVztfXt8g2+wyN4vadv99wwcUUz5w5A0BaWprTTO3iZGVlFbu9PL4T+0I/xWnQoAGAUxsW++fYsGHDRd9nV9znuNSs8pdffplZs2YRHBzMK6+8woABAwgODsbb2xuAfv36sWrVqiIzTyrCxXJf7fchIiIiUp1Vxnv+G2+8kdjYWL799ltHsTw6OpqjR4/Stm1bp/aGcK6of7H7bvs9N9juuy9XLHfle+bSuv3224mOjubzzz93FMvts8r/9Kc/4e7ubmY8EZGLUhsWEanULndDnZGRUe4Z/P39Aejbty+GYVzyv6SkpHLPY3fixImL7jt+/DgANWvWdGyzf474+PjLfo6oqKhSZfn6668BmDFjBjfffDPh4eGOm36AgwcPlup8duX591+e34eIiIiIlFxF3fPfcMMNuLm5MXv2bMekEnsLlgtnlcO5+0X7vfWFjh075vjz+ffdF1Ne98xmmDRpEgEBAcyePZtTp06Rn5/PN998A6gFi4i4NhXLRaRSs88KvlhhOCEh4aqvcX5fwuLYH7vcuXMnVqv1qq9XVnbv3l1sHsMw2L17NwAtW7Z0bLd/jm3btpV5FvsvCc5fEMnu1KlTF21Pc7nvvjz//svz+xARERGRkquIe36AkJAQoqKiyMrKYtasWeTm5jrWsSmuWG6/l96xY0ex59u+fTtgm2F+uVnlUH73zGWppNeqUaMGU6ZMITc3l2+//ZZ58+Zx7Ngxunfv7mhPIyLiilQsF5FKrVmzZgDExsYW2ZeRkcF333131deoUaMGcPFWGy1atKB9+/acPn2aL7744qqvV1YOHTrE77//XmT7nDlz2L9/P35+fvTt29exfeLEiQC8/fbbZf7oq/07PH92jd3rr79OQUHBJd93se++bt26BAQEkJWV5RiMnO/jjz++0sjl+n2IiIiISMlVxD2/nX2hT3uBNyUlhR49ehTbg33EiBEAvPvuu8We6+2333Y67nLK6565LJXmWvZFXD///HMt7CkilYaK5SJSqQ0aNAgfHx/Wr1/Phx9+6NiemprKrbfeyqlTp676Gk2bNgVsM0YuNpvl3//+NxaLhfvuu4+PP/6Y/Px8p/2JiYm88MILjpkpFcHDw4MHHnjAsVAl2D7D/fffD8A999zj9Djon//8Z5o1a0Z0dDQ33XQTR44ccTpfeno6P/zwAw8//HCps9gXPn3kkUccvR0Nw+CLL77gtddew8fHp9j32QdGy5cvL7ZgbbFYHIOPhx9+2GkxqM8//5xPP/201FntyvP7EBEREZGSq4h7frtJkybh7e3NwoULHUVwewH9Qvfeey+1atUiLi6Ohx56iNzcXMC2KOgrr7zCnDlz8PT05JFHHinRtcvrnrks1atXj5o1a3L8+HF27tx5yWN79OhB+/btWb9+Pb/++iteXl7FztAXEXElKpaLSKVWu3ZtnnzyScBW3AwLC6N79+40bNiQFStWOPZdjXr16jF48GDS09Np3rw5vXr1IioqiilTpjiOueaaa3jnnXfIycnhrrvuok6dOnTv3p3IyEiCg4Np3rw5Tz311EX7GZaHyZMnExQURKdOnejQoQMdO3akffv27N+/n8jISJ577jmn4/39/ZkzZw5Nmzbl22+/JSwsjLZt29KrVy9atWpFYGAgN9xwA6tXry51lueeew5vb29+++03QkND6d69O2FhYdxyyy1MmTKFnj17Fvu+CRMm4OXlxXfffUfTpk0ZMGAAUVFRzJgxw+nc/v7+LFiwgODgYLp160bDhg259dZbef3110ud1a48vw8RERERKbmKuOe3CwwMZNSoUeTn57No0SLc3Ny4/vrriz22YcOGfPnll3h5efHmm28SHBxMjx49CAkJ4YknnsDNzY13332Xjh07luja5XnPXFYsFgvXXXcdAF27diUyMpKoqKiLruFz2223AZCfn8/YsWOpU6dOmWcSESlLKpaLSKX31FNP8d5779G2bVtOnDjBwYMHmTx5MuvXryc8PLxMrvHNN99w6623UqtWLTZs2MCyZctYu3at0zH33XcfcXFx3HnnndSrV4/t27cTHx9PUFAQU6dO5ccff2TatGllkqckvL29WbZsGdOnTyctLY3du3fTuHFj/va3vxEdHe3o/Xi+1q1bs3nzZl5++WUiIyNJTk4mLi6O3NxcBg4cyGuvvXZFj7l269aN5cuXM2zYMKxWK7t27aJ+/fq8/fbbjkcyi9O8eXN+//13Bg4cSEpKCitXrmTZsmVOC6W2bt2a5cuXM3LkSNzc3Ni9ezdNmzbl999/55577il11vOV1/chIiIiIqVTEff8dufPJB80aBAhISEXPXbs2LFs2LCBm266CR8fH+Li4jAMgwkTJrBy5UruvvvuEl+3PO+Zy9Jbb73F9OnTCQ4OZvPmzSxbtoxly5YVe+zNN9+Mu7s7oBYsIlI5WAw1YhURqVJmzJjBbbfdxi233FIus0lERERERERKYteuXbRp04bg4GAOHTrkKJyLiLgqzSwXEREREREREZEy98knnwDOM8xFRFyZiuUiIiIiIiIiIlKm9u3bxwcffIC7uzt//vOfzY4jIlIiHmYHEBGpSC+++CJz584t0bEhISH8+OOP5ZxIRERERETKku75zfXXv/6VmJgYNm/eTGZmJnfffTfNmzc3O5aISImoWC4i1cqePXtYtWpViY4t64WCRERERESk/Ome31xxcXGsWbOGBg0acOedd/Lyyy+bHUlEpMS0wKeIiIiIiIiIiIiIVHvqWS4iIiIiIiIiIiIi1Z6K5SIiIiIiIiIiIiJS7alYLiIiIiIiIiIiIiLVnorlIiIiIiIiIiIiIlLtqVguIiIiIiIiIiIiItWeiuUiIiIiIiIiIiIiUu2pWC4iIiIiIiIiIiIi1Z6K5SIiIiIiIiIiIiJS7alYLiIiIiIiIiIiIiLVnorlIiIiIiIiIiIiIlLtqVguIiIiIiIiIiIiItWeiuUiIiIiIiIiIiIiUu2pWC4iIiIiIiIiIiIi1Z6K5SIiIiIiIiIiIiJS7alYLiIiIiIiIiIiIiLVnorlIiIiIiIiIiIiIlLtqVguIiIiIiIiIiIiItWeiuUiIiIiIiIiIiIiUu2pWC4iIiIiIiIiIiIi1Z6K5SIiIiIiIiIiIiJS7alYLiIiIiIiIiIiIiLVnorlIiIiIiIiIiIiIlLtqVguIlIFnTx+ihNHT5Kfl292FBERERERqYKyM7M5lnycrMwss6OIiJQZD7MDiIhI2UhPS+f7T2by27dzOXLoKAAenh60at+C8TddyzWTh+Pp5WlyShERERERqaysVisLZi3m249+ZNeWPRiGAUDH7u0Zff0IRk0cjo+vj8kpRUSunMWw/8smIiKV1spFa3jh0Vc4dfw0AG5utgeHrFar45imLcL5+yuP0rlnR1MyioiIiIhI5ZWels6z019i+R8rHdvc3d0pKChwvK5bvw7Tn/4LIyYMxWKxmBFTROSqqFguIlKJGYbBl+9/y7svfABA42aNuOuRW+k/vA81fGtw5NBRlsxexpfvf0vKqVTc3d154J/3MPWu63TzKiIiIiIiJZKXm8cDUx9l45o4PL08uX36zYydOpqgBnU5fuQEi36L5ofPfubIQdsTrkOvHcQ/XnsM/5p+JicXESkdFctFRCqxz9/5mvde+hCA626dwAP/vBefGt5Fjjt75iyvPvkW839eCMC0+27kvn/crYK5iIiIiIhc1it/f4OfPp+Fn78v737/H9p1aVPkmNycXL58/1s+fuNzCvILaNkugre+eZW69eqYkFhE5MqoWC4iUkkt/G0JT97zHAD3/ePP3HL/jZc83jAMvv7f97z9f/8F4MF/3suf7p1S7jlFRERERKTy2rB6E/dO/isAr3/+Ev2H9bnk8VvWb+Px25/i9MkUwpqE8s63rxEa3rACkoqIXD03swOIiEjp7YtP4l8PvwLAlLuuu2yhHMBisfCne6fw0HP3A/DuCx8Qs3x9ueYUEREREZHKKy83j5ef+A8AE6eNvWyhHGyLfX44611CGgVzKCmZu8bfz+GDR8o7qohImVCxXESkksnLzePJe54jKzOL7v26Mv3pe0v1/il3TubaG0ZhtVr5x73PkXxAN64iIiIiIlLUvJkL2L/3AHWCanPf3+8u8fsaNwvj41/fo1mrppw8doq/3vQ4Z1LSyjGpiEjZULFcRKSS+ep/35GwM5HAOgH833v/xN3dvVTvt1gsPP7SQ7Tt3Jq0lDT+fvcz5Ofll1NaERERERGpjAoKCvjivW8BuPkvU6kZULNU768XHMTb37xK/ZB6JCUc4LHbnyQnO6c8ooqIlBkVy0VEKpHkA0f45I0vAHjoufuveLEcbx9v/v3x/1ErsCa7tuzm8/e+KcuYIiIiIiJSyS3/YxUHEg9SK7AmE26+9orOUT+kHm9+9W/8avoRt24L//7bf8o4pYhI2VKxXESkEvnglU/Izcmle7+ujJw47KrO1aBhfR7913QAPnnjc+J37C2LiCIiIiIiUgX88tXvAEycNg5fP98rPk9Em+b8++P/w83Njdk/zGfBrMVlFVFEpMypWC4iUkns3rqH+T8vBODBp+7FYrFc9TlHTBjKgBH9yM/L5/m/vqR2LCIiIiIiwtFDx1i3LBaAcVNHX/X5evTvxm0P/gmAl//2H44cOnrV5xQRKQ8qlouIVBLvvfQRAMPHD6F1x5Zlck6LxcLf/v0wtQJrsntbPN99/FOZnFdERERERCqv2T/MwzAMuvXtQmh4wzI55x0P30KHbu1IT0vn6fv+RUFBQZmcV0SkLKlYLiJSCcSs2MDapTF4eHpw7xN3lum5g+rX5cF/3gvAJ29+wemTKWV6fhERERERqVzsrVLGXD+yzM7p4eHB8+/9E7+afmyO3covX/5WZucWESkrKpaLiLg4wzD44JVPAJh489gym9lxvjE3jKJ1x1ZknM3gf//+uMzPLyIiIiIilUPiniSSEg7g4enBwBH9yvTcoY1DuO/vdwHw/ssfc+rE6TI9v4jI1VKxXETExW1at4WtG7bj5e3FrYV9/sqam5sbDz93PwC/fjOHPdviy+U6IiIiIiLi2qLnLAOg58BI/Gv5l/n5J9w8ltYdWpKels6nb3xR5ucXEbkaKpaLiLi4L979GoAxN4wkqH7dcrtO554dGTZ2MIZh8Maz72IYRrldS0REREREXNOSOcsBGHzNgHI5v7u7O9Of+QsAv3z9O4cPHimX64iIXAkVy0VEXNie7QmsXrIONzc3/nTPlHK/3gNP3YOXtxcbVscRu3JjuV9PRERERERcx/EjJ4jfkYDFYqH/8L7ldp1ufboQ2a8b+Xn5fKLZ5SLiQlQsFxFxYV+89w0AQ8ZEEdYktNyvFxzWgAl/uhaAD1/9VLPLRURERESqkZjl6wFo27k1gXUCyvVa9zxxBwBzf/yD/XsPluu1RERKSsVyEREXlXzgCIt+iwZg2n1TK+y6t9x/E94+XmxZv421S2Mq7LoiIiIiImKutctiAVu/8vLWoVs7+g3tTUFBAR+9/lm5X09EpCRULBcRcVE/f/ErVquVHv270apDywq7blCDuky6ZTwAH2h2uYiIiIhItWC1Wh0zy3sO7F4h1/zzY7cDsPDXJSTvP1wh1xQRuRQVy0VEXFBuTi6/fzcXgMm3Tqjw60+770Z8aviwI24XKxeurvDri4iIiIhIxYrfnkDq6TP4+tWgQ9d2FXLNVh1a0iuqB4Zh8P0nMyvkmiIil6JiuYiIC1oyZxmpp89QP6Qe/Yb1rvDr1wmqzfW3TwQ0u1xEREREpDrYtG4LAJ17dsTD06PCrjv17usA+O3bOaSnpVfYdUVEiqNiuYiIC/ppxiwAJvzpWjw8Ku5G9Xx/uncKvn412LM9gaXzV5iSQUREREREKkbcecXyitRrYCRNW4STmZHFgl+XVOi1RUQupGK5iIiLid+xly3rt+Hu4c64G8eYliOwTgBT7rLN8vj0jS80u1xEREREpIoyDONcsbxHxRbLLRYLY6eOBmD2D/Mq9NoiIhdSsVxExMXM/GIWAANH9iOoQV1Ts0y5czI+NXzYvS2e2JUbTc0iIiIiIiLl40DiIU6fTMHL24u2nVtX+PVHThqGu7s72zbsYF98UoVfX0TETsVyEREXkp2ZzR8/LwJg0rTx5obBNrt87NRrAPjy/W9NTiMiIiIiIuXBPqu8befWeHl7Vfj169arQ5/BPQGY88MfFX59ERE7FctFRFxI9LzlZKRn0rBxCN36dDY7DgBT774eNzc31i2LZc/2BLPjiIiIiIhIGdu+aQcAnSI7mJZhzA2jAJg3cwEFBQWm5RCR6k3FchERF/Lbd3MBuPaGUbi5ucY/0aGNQxh6bRQAX/33O3PDiIiIiIhImdu+aRcAbbtUfAsWu35DexNQO4ATR08Ss3y9aTlEpHpzjUqMiIiQvP8wG1ZtwmKxMPq6kWbHcfKne6cCsPDXJRw5dNTkNCIiIiIiUlayM7NJ3L0PgHad25iWw9PLk5EThwIw+/v5puUQkepNxXIRERcx+3vbyu89BnQnOKyByWmcte7Yksh+3SgoKODbj34yO46IiIiIiJSR3dviKSgooF5wEPVD6pmaZdSkYQCsXLSG7KwcU7OISPWkYrmIiAsoKChg9g+22RNjp1xjcpri/ekvUwD49evZpKWeNTmNiIiIiIiUhe1xOwFo08m8Fix2bTq1pkHD+mRlZqkVi4iYQsVyEREXsH7lRo4dPk6twJoMGNHX7DjF6jUwkoi2zcnKzGLmF7PMjiMiIiIiImVgxyZbsbydif3K7SwWC4OuGQBA9LzlJqcRkepIxXIRERcw7+eFAAwbNxhvH2+T0xTPYrFw87222eXff/IzOdl6LFJEREREpLLbvS0BgNYdW5mcxCaqsFi+YsEq8vPyTU4jItWNiuUiIibLysxi6VzbrIlRE4ebnObSho0dTIOG9Tl94jTzZi4wO46IiIiIiFyF7MxsDu47BECLts1NTmPTKbI9tesGkpZ6lo1r4syOIyLVjIrlIiImW/7HKjIzsmjYOIQO3duZHeeSPDw9mHr3dQB8++GPGIZhciIREREREblSe3fvw2q1UqdeHYLq1zU7DgDu7u4MHNkPUCsWEal4KpaLiJhs/i+LABg1cRgWi8XkNJc3dupofP1qsC9+P7ErN5odR0RERERErtCe7fGA68wqt7P3LV86bwVWq9XkNCJSnahYLiJiopRTqayNjgFg5MRhJqcpGf+afoy+biQAP372s8lpRERERETkSsVv3wu4XrG8e9+u+NX049Tx02zbsMPsOCJSjahYLiJiooW/LqGgoIA2nVoRHtHY7DglNvm28QCsWLCaI4eOmhtGRERERESuSPwOW7G8ZbsIk5M48/TypM+gngCsjl5nchoRqU5ULBcRMdH8XxYClWdWuV3TFk3o0b8bVquVmZ//anYcEREREREpJavVSsJO15xZDtB7sK1YvkbFchGpQCqWi4iY5OC+Q2zbsAM3NzeGjRtsdpxSu+62iQD8+s0csrNyTE4jIiIiIiKlceTgUTLSM/H08iS8ues95dprYCQAOzfv5vTJFJPTiEh1oWK5iIhJ/ihc2DOyfzeXWXm+NPoN601IWDBnUs6w8NfFZscREREREZFS2LMjAYBmLZvg4elhcpqighrUdbSHWbcs1uQ0IlJdqFguImICwzCY97OtBcuoSZWrBYudu7s7k24ZB8APn/6MYRgmJxIRERERkZJy1cU9z9ensBXL6iVqxSIiFUPFchERE+yI28XBxEN4+3gzcGR/s+NcsbFTR+Pt48XubfFs3bDd7DgiIiIiIlJCe7bbZpa3cLHFPc/Xq3CRz7VLYykoKDA5jYhUByqWi4iYYH7hrPKBI/vh5+9rcporF1gngOHjhgC22eUiIiIiIlI5xBe2YXHlmeUdu7XDr6YfZ1LOsHvrHrPjiEg1oGK5iEgFy8/LZ8EsW4/vUZOGm5zm6tkX+lw8eyknj50yOY2IiIiIiFxOelo6Rw4eBaBFW9edWe7h6UGP/t0AtWIRkYqhYrmISAWLWbGelFOpBNYJoOeA7mbHuWqtO7akY/f2FOQX8MtXv5sdR0RERERELiNhZyIADRrWJ6B2LZPTXFrvwlYsa6JjTE4iItWBiuUiIhVswa9LABh67SCXXHX+Slx/u212+c9f/kpebp7JaURERERE5FIS9yQB0KxVE1NzlETPgbYJRjvidpGZkWlyGhGp6lQsFxGpQDnZOSybvxKA4eOHmJym7Ay6ZgB169fh1PHTLJ23wuw4IiIiIiJyCUnx+wFo0iLc5CSXFxIWTEijYAoKCtgcs9XsOCJSxalYLiJSgdZEx5BxNoP6IfXoGNne7DhlxtPLkwl/GgtooU8REREREVe3r7BY3rQSFMsBuvfpAsD6VZtMTiIiVZ2K5SIiFWihvQXL2EG4uVWtf4In3jwWdw93NsduJX7HXrPjiIiIiIjIRThmlkdUjmJ5t762YvnGNXHmBhGRKq9qVWpERFxYVmYWKxauBmD4uMEmpyl7QQ3qMnBkPwBmaaFPERERERGXlJmRybHDx4HK0YYFoFtvW7F815Y9pJ/NMDmNiFRlKpaLiFSQlQvXkJ2VTWh4Q9p0am12nHIxsbAVy9yZC8jKzDI5jYiIiIiIXCgp4QAAtesGElgnwOQ0JdMgtD5hTUIpKCggbt0Ws+OISBWmYrmISAVZ8OtiAIaNHYTFYjE5Tfno3q8rYU1CyTibwaLfos2OIyIiIiIiF6hMi3uer1ufzgBsUN9yESlHKpaLiFSA9LR01kTHADBs3BCT05QfNzc3xt04BoBf1IpFRERERMTl2GeWV75iua0Vywb1LReRcqRiuYhIBVj2x0pyc3Jp2iKciDbNzI5Trq6dMgoPTw+2bdzBnu0JZscREREREZHzHEg8CEB480YmJykde7F8z7Z4zp45a3IaEamqVCwXEakAC39dAsDQsYOrbAsWuzpBtbXQp4iIiIiIizqQeAiAxs0qV7G8XnAQjZs1wmq1smmt+paLSPlQsVxEpJylnj7DuuXrAVu/8upgQuFCn/N+XqiFPkVEREREXITVauVgYbG8UdMwk9OUXre+ttnl61erb7mIlA8Vy0VEytnSecspyC+gZbuIStcX0G727NkMHDiQgIAAatWqxcCBA5k9e/ZFj+/et4tjoU/7rPrz5eTk8Nprr9G9e3dq1aqFv78/rVq14o477iA5Odnp2IyMDL788kseeOABevTogbe3NxaLhZdffrnMP6eIiIiISFV24uhJcrJzcHd3J7RxiNlxSq17YSuWjRcUy+Pj46lRowYWi4WRI0eW+rwWi+WS/2VnZ5dJfhFxfR5mBxARqeoWFBaLK+vCnm+//TbTp0/Hw8ODoUOH4u3tzYIFC7j22mt56623ePDBB4u8x83NjfE3jeHdFz7gl69+Z+zU0Y59x48fZ+jQoWzdupXg4GCGDh0KQEJCAp9++im33XYboaGhjuPj4+OZNm1a+X9QEREREZEqzt6CpWF4CB6ela8k1KV3JwDid+zlTEoaAbVrAfDnP/+ZnJycqzq3n58fkydPLnafu7v7VZ1bRCqPyvcvo4hIJXLy+Ck2ro4DYGglbMGyZ88eHnnkEby9vYmOjqZ3796O7X369OGRRx5h1KhRtGjRosh7x9wwiv+98gnbN+1kz7Z4WrZvgdVqZdy4cWzdupUnn3ySZ599Fg+Pc/+vKDExkVq1ajmdp2bNmtxxxx306NGDyMhIZs6cyQsvvFC+H1xEREREpAqyL+5Z2fqV2wXVr0vTFuHsi9/PxrVxDBo1gE8++YTo6GjuvvtuPvzwwys/d1AQM2bMKLuwIlIpqQ2LiEg5WjJ7GVarlfZd21bKxxzfeust8vPzueeeexyFcoCWLVvy5JNPkp+fz9tvv13se+sE1SZqZH8AfvnattDnjBkzWLt2LZMmTeJf//qXU6EcoFmzZgQFBTlta968OR9//DF33303Xbp0KfIeEREREREpmYP7Km+/crtujlYscRw/fpzHHnuMoUOHMnXqVJOTiUhVoGK5iFQrSUlJWCwWoqKiyMjI4OGHH6ZRo0bUqFGDrl278vvvvzuO/fHHH+nRowd+fn40aNCABx98kKysootVpqen8/zzz9OhQwd8fX0dPb1nzZrFwt/sLVgGO46fM2cOt99+O23atKFWrVr4+fnRqVMnXnzxxWIfHZwxYwYWi4Vnn32WAwcOcOONN1KvXj1q1KhB9+7dnTKXNXtf8uIeR7zuuusALnn9CTfbFvqcP9O20OcHH3wAwCOPPFLWUUVEREREXFZFj0OKM2fOHD7+8gO2Ho/lqVced+lxyKXYF/ncsHqT47v573//a0oWEal6ND1PRKql3NxchgwZwt69e+nVqxfp6eksX76cCRMmMH/+fLZu3crjjz9OZGQkw4cPZ8WKFbzzzjucOnWKr7/+2nGeY8eOMXjwYHbs2EFoaCjDhg0jMzOTNWvWMGHCBMJqNqFhzXCGjIlyvOeOO+4gIyODdu3a0aFDB9LS0oiJieHJJ59k8eLFLFiwoNieeElJSURGRuLj40O/fv04duwYa9asYfz48cybN4/hw4eX6XeUmprKgQMHAOjSpUuR/WFhYQQFBbF//37OnDlDQEBAkWO69elMo6ahHNyXzO8/zmP9+vXUrFmTnj17smbNGn777TdOnz5N48aNGTduHO3bty/TzyAiIiIi4koqahzy0ksv8be//c3p2nfccQenTpzC270GvXr3xMPL3SXHIZfTtXdnANZvWk98yjaef/55IiIiOHTo0FWdNyMjgxdeeIEDBw7g6+tLly5dmDhxIv7+/mWQWkQqDUNEpBrZt2+fARiAERUVZZw+fdqx77PPPjMAIyIiwqhTp46xfPlyx77k5GSjfv36BmDs3bvXsX3UqFEGYDz++ONGbm6uY/vevXuN+vUaGIAxafBUpwy//PKLkZ6e7rQtLS3NGDNmjAEYn3/+udM+ey7AeOCBB4y8vDzHvjfffNMAjP79+xf5rOHh4Y73lfS/ffv2Od6/efNmAzBq16590e+zc+fOBmBs2bLlosd89vaXRmTIAGP8wOsMwOjSpYtx3333Fbm2xWIxHnvssYuex+6ZZ54xAOOll1667LEiIiIiIq6gIschzZs3N9zd3Y3Nmzc7Zfjpp5+MyNABRmTIAOPIwaOGYbjmOKQkJg+40fBy9zYahTYycnJyDMMwjOjoaAMwRowYUapzGYZx0Vx169Y1Zs+eXerziUjlpZnlIlItubu789FHH1G7dm3HtmnTpvH444+TkJDA008/Tf/+/R37GjZsyE033cQbb7zB8uXLadasGXFxccybN48+ffrw8ssvY7FYHMc3a9aMdo06cfzEAjLd0pyuPX78+CJ5atasyRtvvMHs2bP59ddfmTZtWpFjmjVrxuuvv+7Us/u+++7jueeeY+3ateTm5uLl5eXYN3nyZE6ePFmq7+X8WRPp6ekA+Pr6XvR4Pz8/p2OLc83kEfzv35+wY8tOALZu3cqmTZt49NFHue+++/D392fWrFlMnz6dV199lWbNmnHPPfeUKreIiIiISGVQEeOQ119/nfHjx/Pxxx87rS/Uo2tPsIK3jxf1G9YDXHMcUhLHspPJLchh1MBrna59paZNm8aNN95Ihw4dCAgIID4+nv/85z98+eWXTJw4kRUrVtCjR4+rvo6IuD4Vy0WkWmrSpAkRERFO29zc3AgPD+fEiRMMGzasyHuaN28OwJEjRwBYuHAhAOPGjXO6QQU4lJRMavJZAE6kHityrvj4eObOnUtCQgIZGRlYrVYMw3DsK05UVBSenp5O2zw8PGjWrBkbNmzg1KlThIScW0T0tddeu/gXUAL2PBd+tuKOuZT6IfXoFRXJ3LlzAcjPz2fq1Km8+uqrjmPuvPNOcnJyuP/++3nhhRdULBcRERGRKqm8xyEA/fr1AyA2NtZp+4HEQ2TnZ1Hgkc306dNddhxyOevXr2fV+pXUrVGf1OSLT9opjc8//9zpdefOnfniiy8ICwvjpZde4qmnnmLBggVlci0RcW0qlotItRQaGlrsdvtM6eL22/fZF79JSkoC4IknnuCJJ5646LVSU1MdfzYMg0cffZQ33njjooXms2fPFrs9LKz4FevtszCKW5TnatSsWROw9e67mMzMTKcMF3PtlGv4Y94fjte33357kWNuu+02HnjgAQ4dOkRCQkKRQYSIiIiISGVXkeOQ82d3G4bBi/9+ga0nYuEEbIyPKXK8q4xDPv74Y1auXOm0LSgoiNdee438/HzuuusuAgJq0cizGfv2JHH6ZAp1gmpf5GxX54knnuCVV15h6dKlRWbQi0jVpGK5iFRLl5otXZL9AAUFBQD079+fZs2aOe1bvmAVaaln6RTZni6RnR3bv//+e/7zn/8QFhbGm2++Se/evalXrx6enp7k5ubi7e190SJ6STKd79FHHy3144+vvfYaQUFBADRu3BiAlJQUMjIyHDfp57MvomM/9mL6D+tDUN16cNr2Ojw8vMgxvr6+1KtXj+PHj3P8+HEVy0VERESkyinvccj57Pf1YBuHzF04G083L6bdcBvPv/a0y45DVq5cWWSmd3h4OK+99hqHDh0iLi6O4OBgDmcnkZWZxaBBg6hdN9AxSSkmJoaoqCj8/f2ZPXt2qXJcKCAggPr163PkyBFOnjxJw4YNr+p8IuL6VCwXEblC9hkWkydP5sEHH3RsT9yTxJQFtxBcz4Nffv2FWoE1Hft++eUXAP773/8yZswYp/MlJiaWab6ffvqJ/fv3l+o9zz77rOMmNTAwkMaNG3PgwAE2bdrkeJzT7tChQ5w8eZLGjRsTEBBwyfN6eXsxYco41v5rGflGPqdPny5yjNVqddzgasV5EREREZHiXWwccin2cUiTgBaMGzvWqejrauOQGTNmMGPGjEsef/ToUceft2zb7LQvJSWFZcuWXXaMUhJWq5W0NNsaVBqjiFQPbmYHEBGprIYOHQrArFmznLYv+nUJAL0GRjoVysF24wbQqFGjIuf74YcfyjRfUlIShmGU6r8mTZo4nWP06NGA7Yb3Qj/++CNAkaL/xYy5YRSBPnUBmDtnbpH9q1evJjc3lxo1atC6devSfFQRERERkWrjYuOQS7GPQ7zcvWnczHks4orjkItp0qSJ4z1L5iwjMmQAN0TdgmEYREdHAzBixAgMw3Bqh3ml5s+fT0ZGBhEREdSqVeuqzycirk/FchGRK9SrVy+GDBlCdHQ0Dz30EOnp6RiGwcLfbDdpQ8cOYsGCBU799lq2bAnAhx9+6PSY44oVK5wWvHQV06dPx93dnf/973+sXbvWsT0+Pp4XXngBd3f3IrNZkpOTad26dZGCd8t2EfTu2h+A//znP2zatMmx7/jx40yfPh2w9TNXL0ARERERkeIVNw45n9VqLTIOadbMtkjoicwjhDU91xfdVcchJdGlZ0cAEnfv4/TJlMse//e//53WrVvz7rvvOm3/6aef2LNnT5Hjly1bxl133QXAX/7ylzJILCKVgYrlIiJX4euvv6Zjx468+eabhIeH06d3H5as/4Pdp7dwy71/YsSIEaxfv95x/IMPPoifnx/vv/8+7du3Z+rUqQwYMICBAwdyzz33mPhJiteqVSteffVVcnJy6N+/P9dccw3jx4+nU6dOnDp1ildffZVWrVo5vScvL4/du3eze/fuIuebdueNNK7VnPSMdHr37s2gQYO49tprad26NRs3bqRr16689NJLRd43YcIEevXqRa9evfj4448BeP/99x3bJkyYUD5fgIiIiIiIC7pwHDJkyBCmTJlC//79CQ4OLjIOuW7idbhZ3DieeYQBUf1dfhxSEoF1A4loY+vZvmnt5sscDUeOHGH37t1F+qnPnj2bVq1a0bJlS0aMGMH1119Ply5diIqK4vDhw0yZMsUxsUdEqj71LBcRuQoNGjRg7dq1/O9//+P7778nLi6OnJwcavnXomvXrowbN47rr7/ecXzLli2JjY3liSeeYN26dfz222+0atWKDz74gLvuuovXXnvNxE9TvIceeoiIiAheffVVVqxYAUC3bt147LHHGDt2bKnONXz8UBo91xQfjxoEtazFpk2byM7Opnnz5vz1r3/l0UcfxdfXt8j7Nm3aVKTv4cGDBzl48CBQ/IKhIiIiIiJV1YXjkNjYWHJzcwkJCaFLly5FxiHebjVoW7crKRzj5MmTlWIcUhJde3cmYWciG1fHETm88xWd44YbbiA/P58NGzYQExNDeno6derUYdSoUdx+++1Mnjy5bEOLiEuzGBdb7lhERErFMAyu638zBxIP8n/v/ZMRE4aaHcklPfWX51kwazGTbhnHEy89bHYcEREREZEq74dPf+a1p95i4Mh+vPrpC2bHKTPRc5fzxJ3/pFmrpnwXPcPsOCJSBagNi4hIGdm7K5EDiQfx8vai37A+ZsdxWWOnXAPAH78sJjsrx+Q0IiIiIiJVX/KBwwA0bBxicpKydX7f8pRTqeaGEZEqQcVyEZEysmT2MgB6RfXAz79oKxGx6d6vK8GhDUhPS2fpvOVmxxERERERqfIOHzgCQGjjhiYnKVuBdQNp3ropULK+5SIil6NiuYhIGVk8x1YsHzJmoMlJXJubmxtjbhgFwO/fzTM5jYiIiIhI1ZdsL5aHV61iOdj6lgNsWL3J3CAiUiWoWC4iUgYS9ySxb08SHp4e9FcLlssac8NIAGJXbuDwwSMmpxERERERqboMw+BIYbG8YeNgk9OUvW59ugCwcU2cuUFEpEpQsVxEpAxEF84q7zkwEv9a/iancX0NG4UQ2a8bAHN++MPkNCIiIiIiVdeZ02fISM8EICSsavUsB+jSqxMAe3ftI1V9y0XkKqlYLiJSBhbPXgrAkNFqwVJS9tnlc3/6A8MwTE4jIiIiIlI12Z/kDGpQF58a3ianKXu1z+9bvm6LyWlEpLJTsVxE5CrtTzhAws5E3D3c6T+8r9lxKo2oUf2p4VuD5P2H2RK7zew4IiIiIiJVUvL+qrm45/m69uoMqG+5iFw9FctFRK7Skrm2FiyR/boRULuWyWkqjxq+NRhcuBjq3JkLTE4jIiIiIlI1Ha7C/crtuvbpDKhvuYhcPRXLRUSu0pLZtmL5kDFR5gaphK6ZPAKARb8tISc7x+Q0IiIiIiJVT/KBw0DVnllu71uesDNRfctF5KqoWC4ichWSDxxh97Z43N3dGThCLVhKq1ufzjRoWJ+zZ9JZuWiN2XFERERERKqcczPLq97innZ1gmrTrJX6lovI1VOxXETkKiybvwKAzr06Elg30NwwlZCbmxsjJw4DYO6Pf5icRkRERESk6km2F8vDq+7McoBuvTsD6lsuIldHxXIRkauwbP5KAKJG9DM5SeU1avJwAFZHr+P0yRST04iIiIiIVB35+fkcTT4GQGgVnlkO0KW3rRXLxrWbTU4iIpWZiuUiIlco5VQqm2O2AjBgpIrlV6pZyya06dSKgvwCFs5abHYcEREREZEq4/iRExTkF+Dp5Um94CCz45SrroUzyxN27CX19Blzw4hIpaViuYjIFVqxYBVWq5XWHVoSElZ1V5avCPaFPuf8tMDkJCIiIiIiVYe9X3lIWDBublW7BFQnqDZNWzYBYNM6zS4XkStTtf+lFBEpR0vn2fqVD9Ss8qs2fPwQ3D3c2bVlN4l7ksyOIyIiIiJSJSTvr/qLe57P3rd84+o4U3OISOWlYrmIyBXIzMgkZsUGAKJG9Tc5TeVXu24gfQf3AmCeZpeLiIiIiJSJ5AOHAQgNrx7F8q59OgOwYU2cqTlEpPJSsVxE5AqsXRpLbk4uYU1CadaqqdlxqoRrrrO1Ypk3cwEFBQUmpxERERERqfzsbVgaNqoexfIuvWyLfKpvuYhcKRXLRUSugKMFy4h+WCwWk9NUDf2G9qZmgD/Hj5xggx6bFBERERG5avZieWh4Q5OTVIy69erQtEU4ABs1u1xEroCK5SIipZSfl8/KRWsAtWApS17eXgwdOxiwzS4XEREREZGrU91mlgNE9u8GQOzKDSYnEZHKSMVyEZFS2rgmjvS0dOoE1aZ9t7Zmx6lSRk0cBsDSucvJzsoxOY2IiIiISOWVmZHJ6ZMpQPXpWQ7Qo393AMcaUyIipaFiuYhIKdlbsAwY0Rd3d3eT01QtHSPbExIWTEZ6JisWrjI7joiIiIhIpXXk4FEAagXWpGZATZPTVJyuvTvh7u7OwcRDHDl01Ow4IlLJqFguIlIKVquV5QtsRdyBI9WCpay5ubkxYsIQAP74eZHJaUREREREKq/k/dWvBQuAfy1/2nRuBUCsZpeLSCmpWC4iUgq7tuzm+JET+PrVoHvfLmbHqZJGFLZiWR29jjMpaSanERERERGpnA4fLCyWV6MWLHb2ViyxKzeanEREKhsVy0VESsHegqXP4F54+3ibnKZqat6qKRFtm5Ofl8+SOUvNjiMiIiIiUikl7z8MVL+Z5QA97It8rtiAYRgmpxGRykTFchGRUlg2fyUAA0f2MzlJ1TZywlAA5qsVi4iIiIjIFTl8wDazPDS8oclJKl77rm3xqeHD6ZMp7N2VaHYcEalEVCwXESmh/XsPkhS/H09PD/oM7ml2nCptxPihWCwWNq3dzNFDx8yOIyIiIiJS6SQXFssbNq5+M8u9vL3o3LMjULJWLIZhkJ+TR35Onmaii1RzKpaLiJTQygWraOEeSLe6janh42N2nCqtQWh9uvTqBMAfsxabnEZEREREpHIxDOPczPLG1W9mOZxrxRJTgkU+C3Lz+fax//LtY/+lIDe/vKOJiAtTsVxEpITWRscAUC+4rslJqoeRE22tWP74ZaHJSUREREREKpfTJ1PIzsrGYrEQHFrf7DimsBfLN62JIz9PBXARKRkVy0VESiAzI5NNMVsAqNcgyOQ01cPg0VF4enmSsDORhJ17zY4jIiIiIlJp2GeV1w+ph5e3l8lpzBHRtjmBdQLIzMhi+6adZscRkUpCxXIRkRKIWb6BvNw8fP1r4FvT1+w41UKtwJqO3vB//KJWLCIiIiIiJZW8/zBQPRf3tHNzcyOyX8lbsYiIgIrlIiIlsnrJWgCCGtTFYnKW6mTkxGEA/PHLIqxWq8lpREREREQqB8fino2CTU5irsj+XQGIWbHe5CQiUlmoWC4ichmGYbB6yToA6gWrBUtF6jukN37+vhxNPsbm2K1mxxERERERqRQci3tW45nlAJH9uwOwbeMOMtIzTU4jIpWBiuUiIpcRvz2B40dO4OPjQ+26tc2OU6341PBm0DUDAJj/8yKT04iIiIiIVA6HD9jasDRsHGJyEnOFNg4hNLwhBfkFbFwTZ3YcEakEVCwXEbmMlYttLVi69e2Cu7v+2axo9lYsi2cvJS83z+Q0IiIiIiKu7/CBowCENq7eM8sBegywzS6PWa5WLCJyear6iIhcxurCYrl9sUmpWN36diGoQV3SUtJYEx1jdhwREREREZeWn5fPscPHAc0sB+hpL5ZrkU8RKQEVy0VELiH19Bm2bdwBQO+oHianqZ7c3d0ZNm4wAPN/XmhyGhERERER13Y0+RhWqxVvHy/q1q9jdhzTdevTBYvFwr49SRw/csLsOCLi4lQsFxG5hLVLY7BarUS0aUaDhvXNjlNt2VuxrFi4SgvziIiIiIhcQvL+wn7ljUKwWCwmpzFfQO1atOnUCtDschG5PBXLRUQuYeWiNQD0HdLb5CTVW+sOLQlv3pic7FyWzltudhwREREREZd1+OARABqGq1+5nfqWi0hJqVguInIRBQUFrF1q65Hdd0gvk9NUbxaLhZEThwIw/+dFJqcREREREXFdyfsLi+WNgk1O4jrO71tuGIbJaUTElalYLiJyEds27CAt9Sy1AmvSvltbs+NUe8PHDwEgdsUGTh4/ZXIaERERERHXdPiArVgeqpnlDh26tcOnhg+nT5xm765Es+OIiAtTsVxE5CJWLba1YOk1MBIPDw+T00ijpmG079oWq9XKot+izY4jIiIiIuKSkg/YepaHNlax3M7L24suvToCsE6tWETkElQsFxG5iJWL1wLQd6j6lbuKERPsrVgWmpxERERERMQ1HT5wFICGjUNMTuJa1LdcREpCxXIRkWIcP3KChB17sVgs9IrqYXYcKTRs3GDc3d3ZEbeLA4mHzI4jIiIiIuJS0s9mcCblDKBi+YV69LcVyzet3UJuTq7JaUTEValYLiJSjHXLYgFo06kVtesGmhtGHOoE1abHgG4ALJilhT5FRERERM5n71ceWCcAP39fk9O4log2zahTrw7ZWdls3bDd7Dgi4qJULBcRKYa9j13PgZEmJ5EL2Rf6XDBrsVayFxERERE5j6NfuRb3LMJisdCjv23ijfqWi8jFqFguInIBq9Xq6GOnYrnrGTiiH17eXiQlHCBhp1ayFxERERGxs88sb9hILViKo77lInI5KpaLiFwgfnsCqafPUMO3Bh26tjU7jlzAv5Y/fQb3BGDhr4tNTiMiIiIi4joO77cVy0PDVSwvjn1m+c7Nu0lLPWtyGhFxRSqWi4hcYO0y2yyDbn064+nlaXIaKc6wcYMBWPDrErViEREREREpZG/DosU9i1c/pB5NW4RjGAbrV200O46IuCAVy0VELqAWLK6v/9A+1PCtweEDR9gRt8vsOCIiIiIiLsHRhqWxepZfjL0Vi/qWi0hxVCwXETlPdmY2cTFbAOhZeBMlrsfH14cBI/oCsECtWEREREREsFqtHD54FNACn5dib8WivuUiUhwVy0VEzrMpZgt5uXk0aFif8IjGZseRSxhe2Ipl0W/RFBQUmJxGRERERMRcp46fJjcnF3d3dxo0rGd2HJfVtU8X3D3cSd5/mOT9h82OIyIuRsVyEZHzrFsWC9gezbNYLCankUvpOTCSmgH+nDh6ks0xW82OIyIiIiJiKnvht0FofTw8PExO47r8/H1p37UtADErNLtcRJypWC4ich77o3i91K/c5Xl5exE1agCgViwiIiIiIocP2vuVa3HPy+mpvuUichEqlouIFDp57BQJOxOxWCxE9utqdhwpAXsrliWzl5Gfl29yGhERERER8yTvtxXLQ1Usv6we/W3F8vUrN6qlo4g4UbFcRKSQ/RG8Vh1aElg30NwwUiLd+nahdt1AUk+fIXbVRrPjiIiIiIiYRjPLS65tl9b41fQjLfUsu7fFmx1HRFyIiuUiIoXs/crtj+SJ6/Pw8GDImCgAFs5SKxYRERERqb7sPctDGzc0OYnr8/DwoFufLsC5VpwiIqBiuYgIAIZhsG75BgB6DlSxvDIZPn4IANHzVpCbk2tyGhERERERcxw+oJnlpdGjfzdAfctFxJmK5SIiQMLORE6fOI1PDR86dm9vdhwphY6R7akfUo+MsxmsXrLO7DgiIiIiIhUuNyeXE0dPAhAarpnlJWF/onhL7Days7JNTiMirkLFchERzj1617V3J7y8vUxOI6Xh5ubGsLG2hT4X/rrE5DQiIiIiIhXvyKFjGIaBr18NAusEmB2nUmjcvBENGtYnLzePuNitZscRERehYrmICLC2sF95D/Urr5SGjbcVy1csXE1WZpbJaUREREREKtbhA7Z+5Q0bh2CxWExOUzlYLBbH+G/9io0mpxERV6FiuYhUeznZOcSt2wxAz4GRJqeRK9GmYyvCmoSSnZXNigWrzY4jIiIiIlKhkh39ytWCpTQi+3UFYFPheFBERMVyEan2NsdsJSc7l3rBQTRr2cTsOHIFLBYLw8bZZpcvUCsWEREREalmDu/X4p5XokuvTgDs2Z5AXl6+yWlExBWoWC4i1Z599fMeA7rrkcVKbHhhsXxN9DrOnjlrchoRERERkYqTXNiGJVTF8lJp0LA+YU1CsVqtpJ4+Y3YcEXEBKpaLSLVnX9yzp/qVV2rNWzejWaum5OXmsWz+SrPjiIiIiIhUmMMHNLP8Stlnl58+mWJyEhFxBSqWi0i1dvpkCru3xQMQ2b+byWnkag0fPwRQKxYRERERqT4MwzivZ7mK5aXVrU9nAFJULBcRVCwXkWoudsUGAFq0jaBuvTomp5GrNWzsIMD295pyKtXcMCIiIiIiFeBMShrpaekAhGqBz1Lr2qszAGkpZ8nPLzA3jIiYTsVyEanW1i2LBaDnQLVgqQoaNQ2jTadWFBQUsHj2UrPjiIiIiIiUu+T9tn7l9YKD8KnhbXKayic4rAHBYcEYhkHq6VSz44iIyVQsF5FqyzAMYgpnlqtfedUxfJytFctCtWIRERERkWrgUFIyAKHhmlV+pbr27AjA6ZOp5gYREdOpWC4i1da++P0cP3ICbx8vOvXoaHYcKSNDr7W1Yolbt4Vjh4+bnEZEREREpHwdKpxZHqZi+RWzL/KZckJ9y0WqOxXLRaTailm+HoDOPTrqccUqpEFofTr16IBhGGrFIiIiIiJVXrJ9ZnmTUJOTVF6dC4vlZ1LTyMrKMjmNiJhJxXIRqbbO9SuPNDmJlDW1YhERERGR6kIzy69ew7BgfHy9MawGO+J2mR1HREykYrmIVEu5OblsWB0HQA/1K69yBo8ZiJubG9s37XQseCQiIiIiUhXZ73fDNLP8qgTWCQRgy/rt5gYREVOpWC4i1dLWDdvJzsqmTr06RLRpZnYcKWN169Uhsl9XABb8utjkNCIiIiIi5SM7K4cTR08CWuDzagXWDQRg2wYVy0WqMxXLRaRaWlfYr7xH/264uemfwqpo2LjBgFqxiIiIiEjVlXzANqvcv5Y/AbVrmZymcqtdJwCAbRt3YrVaTU4jImZRhUhEqqVz/crVgqWqiho1AA9PDxJ2JrJ39z6z44iIiIiIlLnkpHP9yi0Wi8lpKjf/AH/cPdxJP5tOosYPItWWiuUiUu2knj7Dri17AOjRX8XyqqpWYE16R/UAYJFml4uIiIhIFWSfWR7aRC1YrpabxUJAbdvs8s2x20xOIyJm8TA7gIi4npyMbPas3ErC2h0c2JzAmWMppJ88g8XNjcCGdWnRpz0Dbx9FvaYhxb4/I+UsK2bMZ+fSOE4mHSU7Ixt3D3cCguvQpGsL+tw0lKbdWpU61/N97ycl+eQlj/GrXZN/bfrIaVv86m388dZMDm5NxCiw4tsgkDp4E9g6hHrBQU7H5ufm88rIxziReISpr91Lj8kDS52zLFmtVmJ+WMr6n1dwZM9B8rJyqFm/Nq36dWDQn6+lXpPgUp8z5selfPvY/y573MTnbqX/LSOvJPYVe6jJlBIfO2L6JEY+dJ3j9bGEZLYv3si+9btJ2riH9FNpAPT1CmH9jEXc/djtVzTbJmHNdt6b+n+XPS7qrtGMe/Jmx+uC/AIW//dXYmcuJyX5BD7+vrTs257RT0ylbqP6F72Ob6A//1j6Jn6B/qXOKiIiIlKVfPPI+8TOXF6iY2uHBvH0qnedthmGwabfVrPup6Ukb0siOz0T/zq1aNq9FQPvGE2Tri1KnclqtbLs4znsj0vgyO6DZJw+S1ZaBp4+XgSG1KVJ1xb0njqE8C5Fz33huCSkdWMG3zOWTqN6Fjm2pOOSQ0nJAIQ2dq1i+f9ufpHdK7Y4bXsj6bsKz5GRcpbdK2xj2+Tt+0g7nsLZU2l4eHpQt3EDWg/oyIDbR+EXWBOA2nUD4Chsid3KpGnjADi4NZFln8xl77odnD2VRo2avoS1a0rPKYPofE2vUmcqybjWLnLSAG58/S+O13Fz1hL94e8c2XUAi7sbjTs2Z8T0SUT0blfsZ39x0ENkpqZz37f/LPYYESlKxXIRKWLnsjg+/8ubxe47vvcwx/ceJuaHaG568/4iN3bHEw/z7g3Pc/ZEqtN2a34BJ5OOcjLpKOt/XsHYJ//EoLvGlNMnOGf3yq18MO1FDKuBt58PHj5enDlwgtaetanTsFGR45d+NJsTiUcI79KCyEkDyj3fpeRm5fDxHa8Qv9p5gZnTB4+z5tvFxM5czrR3p9NhuGbHA6z+ehHLP5tX7L6MsxnE79hLy3YRFZbnu8c/YP3PtsFdzXqBZKScZdPsNSSs28lj8/5NzaAAx7EF+QXMfOYzAK559AYVykVERESuUkFePp/f9xZbF8Q6bT9zLIW4OWvZPHcd1/79RgbdfW3pzpubz28vfl1ke05GNscSkjmWkEzMj8sY99TNDLzjGsf+4sYlBzbvZca9b3Dj638pMvYo6bgkeX9hGxYXmlkeO3N5kUK5WWJ+XFrs31dBbj6Hd+7n8M79rPl2Cbf972Hg3CKf9pnlK79cwM/PfIZhNRzvTT+Vxq7lm9m1fDPbxvfjxtf/gpt7+TduWPfDUr573DbpyTfAj4L8AhLW7iAxdhf3fPkkLfo4F8PnvPIdmanpdBnTW4VykVJQsVxELsmvdk1C2zehICef/XEJ5OfmAZCXk8c3D79PeJcWBAbXcRz/67++dCqU+9WuSePOEZw5corDuw44ts9++Rs6X9OL2qHOM7tLqnmPNvjVrVlku4+/r9PrP976CcNqEBTegId/fwkPLw8eaH8zNfItZO886nRs6pFTLHzvFyxuFiY9f5vpPf9+euoTp0J5gxZh1AkNImHtDvKyc8nPzeOL+9/isXn/pn7zK7s59qtTk+Y92xS7Lyi89LPWr1bHUT0uui8xdjfpJ884Xod1aHbRY30D/Mg8k+G0bfHspVddLPeq4U3rqE7F7mvYOtzx5xNJRx2FcvuM8+TtSfxn7D84eyKVlV8sYNTD52bFr5gxn6N7DhHWvim9bxxyVRlFREREqorGnZqTk5ld7L7Uw6c4sHmv43WjC+4N57z6nVOhvFb92jRs3ZhD2/eRfioNwzD47cWvCW4RRptBXUqdzdPbk6CmIQQG1yEvO5cDm/eSm5UD2Ga0//bS13Qa3csxVrpwXOLp7cl7N/4fSRv2MO8/PzgVxEszLjlU2LM8NDy01J+hPKSfSuPXf31pdoxiBTSoTUjrxmSfzWR/XIKjAJ6VlsFX09+haWQrAmoH4ObmxuEDR9gwdw0/P/0ZhmE7rkYtP5p2b8nR+GROHzwOwIZZKwlqEszIv04ucY62g7pw9tSZYvcd2pbkODc4j3nmv/kjAE26teS+b/5JXnYu/xn7D07uP8Yfb/7kVCw/uDWRtd8vwcvXm7FP/qnE2URExXIRuYiGrRsz4q+TaT+su+O35Mf3Hubtyc+QkXIWsM18jpu9hqg7Rzvet3fdTseffQP9+dvi1/GvY1uV/fzHKK0FVvbHJVxxsXzkQ5NL9NvxQ1ttC7O0G9qNGrV82b/3IEey02jmEUDmqbOkn0rDv64t36//+pLczBx63zi0yM12eSnIL2DX8s3s3xTPNY/c4Nh+eNcBp0dOO43uxS3vTsdisXBo2z7eGP8U1vwC8nPzmPPad9z234ev6PrBLcKu+L2XcywhmfU/L6fnDYNKXHi/WJbss5k82+vc44d1GtWn7WDnQU3Lfu1p3Kk54V1b4Gax8H/9H3Tav+j3aO55/I6r+iWIX52aJfq+Dm07tyBQ5ETbwCe0XRNCWjcmeXsSB7cmOvafPZHKH2/9hMViYdJzt+HmpuVERERERAD6TRtBv2kjit339cPvORXL+99y7rjs9CxWzPjD8TqoSTCP/P4iPjV9ST+dxr+HP+aYhPHbS1+Xqlju7unBLe/9lTZRnfH283FsTz+VxjvXPcvxRFvx2ppfQNLGPY42HReOSwC6jOlN0oY9pCSfvKJxSUFBAYcPHgGufmb5xcYlpfXL85+TkXIWNw93atatxZljKVeV63zpp9LY+Nsq6oTVo/2wkj9d26xHa0ZMn0SLPu0dY4F9G3bz/tR/OSaDpZ1IJe14KrUb1qVZq6bE79zL7y997VQof2z+v6ndMIj83Hzem/o8SRts62Atfv9X+k0b7hj3Xs7kf91R7Har1coLA6Y7Xnv716BH4S9Rzp48Q+rhU4Dt58bD2xMPb0/aDe3Gsk/mOo0vDMNg5tO22fDD7p9IYEjdEn9XIqJiuYgUI6JXWzoMj8Tdw91pe/3mDel78zAWvP2zY9uJfUecjnH3PPfPSp1G9Z1uGBp1bOZUAPbxr1HW0S9r3bLYYrfHr95O3Jy1+Ab6M/qxK785LKnkHfuJnbmMjb+u4uzJMzRsE+50U7r+lxVOxw+6c7Tjxi6sfVNa9mnPruWbAdi+eCNZZzKoEeBX7rkvJyM1nU2/ryb2p2WOwUvn0b2v+rwxPy0jJ+PcrKJ+04YXKSq3G9LN8efzZ2MAuLu7cTDxEPHbE2jZvvS9KcuMUXTTby99TfbZLCInDaBJt5YVn0lERESkkkk/lUbc7LWO1yGtGjlNpNm/Kd5RBAVbcdGnpq1A7V+nFh2GdWfNt4sBOLrnEIe27SOsfdMSXdvN3Y3Oo4v2qfavW4s2gzo7iuUAnj5elzyXvRB7vtKMS44fOUF+Xj4enh7UD6lXovwXuty4pDR2Lo1j46+rAIi64xr2xyVcdbE8Pzef7Ys3sH7mcnYsjcOaX8D4f04r8fu7T+hfbKudpt1a0XlML9b/fG7clZORBUDHbu04tHM/Zw6e6yve5dre1G5om+jl4eVB/1tGOorl+bl5xM1ZS7+bh1/RZ7TbsXgjpw+dcLyOnDTA8XN7McX9DMX8uJT9m+Kp1zTYaWKbiJSMiuUiUsSlfiNes16g0+sLC94t+7Ynbo7txvXwzv3EzVlL2yFdSU0+ydrvos+dJyiAppGlX+TTLnbmctb9uAzDaqVmvQCadW9N2yFdixT4G3VsRmLMLrYv2sCI6ZNZtzSWIDdb5tqhQfjXreXcL/qR6/GrXbS9S1k4eyKVDb+uIvanZU4taQC8fL2dXttvvAAsFguh7Zxv3sM6NHUUywty8zm4LZGWfTuUOtOZo6f5+dkZpJ9Kw8vXm+AWYbQf1q1ULVgK8vLZuTSO2JnL2b5kIwW5+Y59bh7ueHh7ljrX+QzDYNWXCx2vvWp40/P6qFKdo35IPXbvT2HR7KVXVSzPycjmtxe/4szR03h4exHUpAHtBnelYZtwp+MadTj39xX783JbG5Yd+zmy+0DhftsMoX0bdrPhl5X41KzBtX+78YpziYiIiFQna75b7FQM73eL8+zz9NNpTq8vnFRy4ev9m+JLXCy/mPTTaexcGud47e3nQ5PzFvm8cFzi6ePlGDdd6bjE3oKlYaMQ3N3dL3ns+UozLimpnMxsfnzyY8A2k3/EQ9fx4S0vXdG5wPZ3EvvzCjb9vprM1PQrznjh+PVS+9w9bCWy9t3asvKbhU77Lpzhf/79PkDSxj1XXSxf8cW5pyEsFgv9z3uqomZQAIEN65J6+BRxc9bS56Zh5GXnsmPxRqd8WWmZzH7FtpDqhKdvwcNLZT+R0tL/akSkVHYv2+z0unmvtk6vxz11M0f2HOJY/CGs+QV8ft+bRc4R1CSYae88iLevT5F9JRXz0zKn10s/mkPdxvWZ9u50Gnds7tg+/MFJfDDtRU7uP8Zzvf9CbkYmtdxsMzxGPXI9YOsXfSz+EKHtmtD7pqFXnKk4edm5bFu0wbbIzfLNWAusjn1evt60H9adruP60nqAcx/sE0nn+qn71vYvcpNz4Y3dicQjV1QsP7n/GCtmzHfa9tuLX9Fv2gjG/3PaJReqObg1kdiZy9n42yoyTp912hfepQVdx/Wly5jeTgtZXondK7Y4zdDpNr4fvgGlWwAzJCwY9u9h8e/R3PvEnVfciiUzNZ3oD2c7bZv76vd0ubYPN/z7bsfPdFB4MN0nDmD9z8tZ+tEcNsxaRWbqWawFVmrWC6TftOFYrVbb45GGwYjpky95Iy8iIiIiNtYCK6u/XuR4XaOWH90n9Hc65sLZuCeTnNcqOrn/gtcHjpU6R3Z6Ft8+9l8wIOP0WQ5s2Utedi5gu8+/8fW/OBW7LxyXuHu4O9bYudJxSfL+ZKBkLViudFxSUnNf/Z6UZNtM7OtfvAuvy8yqL07K4ZOs/2UF62eucLr/BwgKb0CXsX3oNq4fDSKuvj+7YRjsWbHVaZu9DU7rjq3xsVww/qof6Py6mPHY1TieeJj4ldscr1v261BkXaqRf72O7x7/H/vW7+aZyD9TkF9ATkY2bu5ujCjsmT7vPz+QfvIM7Yd2u6Je/CKiYrmIlELcnLVsW7TB8TqsfVNaD3S+mQoMqcv0n57js7+8QfyqbReeAr/aNRn50OSrnrlRnFMHjvPBzS/yyOyXqNOoPgCt+nXg3q+e5I+3ZrI/LgGLYSHTvYB733mEzqN7kXb8vH7Rz9v6RW9buJ5Ns9eQdjyVWvUC6Dy6Nx1GRJYqy74Nu4n9aTlxc9aSlXZuoUl3T3da9e9I13F96TA8Eq8axc+KOP89xT2+6VXDeVvW2axS5bsUw2qwYsZ8LG4WJjx9i9O+M8dOs2HWKmJnLuPonkNO+xq0CKPr2D50HdeXoMYNyizPyi8WOL2+cOZQSdRvWB9vHy8O7ksul1Ysm35fTX5OHrd/+Ihj25RX/ky9psHEzlxOSvIJvP1q0KpfB0Y/MZWaQQGs/HIByduTCG4ZRv9bR5J9NpOVXy4kMXYXBXn5tu23jDBloVURERERV7Vt4XpH72aAnjdEFbmnbtK1Je5eHo4nHjfMWkmHEZE07d6KPSu2sv28MQ3YCt+llZ+bx5Z5MUW216jlx9RX7ykyfjh/XHJwayJ52bk07tScwfeMpdOonlc0LjmQaLsfD2ty8eLx1Y5LSmJ/XAIrPrdNwOk1ZbDTQpOXk5OZzZZ5McT+vJyENdsdi24C+AcF0GVMb7qO7UuTrmV7/x794WySdyQ5Xrcb2g3vwhnrjZo0pIaXFxScO/7C4v+F31f2VY7HVn6xwKmlSv9bi455el4fhbefD9Ef/s6RXQewuLvRvGcbRv7Vtp7X4Z37WfXlAjy9PRn/zC1YrVY2zFrJ9kUbyEhJp05oEJGTBpRo7S+R6kzFchEpka1/xPLVQ+86XvsHBXDrfx8q0jf6yJ6DfHjry44b2Bq1/GjcqTnpp9NI3p5ERspZvpr+Llv/iGXau9NLtZhhWPum9LlpGK36d6BOo/pYLJAYu5tZz3/OqQO2HtWZZzJY+P4sbnjpbsf7WvRpT4s+7fnglU/45M0vGH7NYEefwd9e+orss1l0nziApt1a8dtLXxP9we9O193422qi7hrN6EenlChnwtodvDflecdri8VCk+4t6Ta2L53H9C59m5di+tAV1/u6pHxq+tJ9Yn86juxJSOtGBNSvTerR06yYMd9plvnKz/8g6o7RTouwvj3pGac+eoEhdehybR+6ju1bLr8AOX3wODuWbHS8jujdjoatG5f6PB4e7vQd0pslc5ax6PfoUhXLPby96DiyB52u6UVY+yYENgwi41QasTOXMf/Nnxw39FsXxLJvw26adrO1F3L3cGf4AxMZ/sDEIudMP53GvNe+B2Dis7eSnZ7F25Oe5vjeczNo9qzcyrrvo7nni3+ol7mIiIhIoRWfn9eqws1S7AKgfoH+DLh1pOOJwJyMbD6YdvGWIB5eV9c28HxZaRl8+ufX6XvzcCb/3+1O++zjkuKUZlwy7smbgXPF8sbNGhV7zrIYl/z01CecPXWmyPbOo3vTZUxvCvLy+f5vH2JYDWrVr83Yv9902XOe7+enP3N6atjbvwYdhnen27h+tOzX4ZJPul6plV/8weyXv3G8rt+sIde/cCe/vvAlAG5ubgTWDYTjmY5jLuwNXlyv8CuVk5FN7Mxz30FQeIOLzgrvPLpXsT3zAX5+ZgbWAitD75tAnbB6fHH/W45WP3YxPy1jwrO3MuDWkWWWX6SqUbFcRC5rw6yVfPPof7Hm23617l+3Fvd++Q/qFs7ePt/XD73nKJQHNKjNI3NedrThWPTeLOa8auuftnnuOjb9tppu4/uVOMftHzxSZFv7od2oE1aPV0c+7ti2e/mWYt+/tnBxz54DbbMxEtc794s+sGWv44a075+Gcc1jNzDnle9Y/fUiln40h47De5Qs6AU3Tl3H92XIveMIaVn8TWxxatT0Jf2UrddiXnZekf25hY94nju+5IuldhzZg44jnT9LvSbBTHz2Vs4cPc2W+bYZMtYCK3tWbXPqD37+TWFQk2DGPfkn2kR1dlrYtSyt/Gqh0+yS/lcwq9xuyJiowmL5Uu79210lbsXSpGsLbvvfw07bvEKDGP7gJLLSMln68RzH9l3LtjiK5Zcy55XvyDyTQafRvWjRpz0zn/mM43sP4+buxj2F/9t6d8rzpCSf5Pu/f8gTC14r1WcVERERqYqOxh8iYc12x+t2g7sWOyYBGP34VNJPpRE7c3mRfTXrBXL2RKrj9ZWsWeRfpxZvJH2HtcBK+qk04ldv49cXvnKcd9WXC2jVr0OJnlAt7biky5g+NO7UnIP7Ll0sL4txyY7oTY72Kuezn2Ptd0s4Utj3fNLztxXpB385548vvP1rMPqxG+g+vn+pz1NSi97/lTmvfOt4HdQkmHu/fhLfQOc2j0EhQaQcP9fPPe+C8deFr31KMR67UOzPy51mpve9eXipJpWBbcy+N2YntUODGPKXcWyZH+MolF/z2A30uWkY3z76X7Yv2sBvL35Fp1E9CGhQ54ozi1RlZf8rOhGpUlZ/vYivH37PUSgPbFiX+79/psiChmDr9Ze8PcnxuuOonk79qnvfOMTp+PMXwLkaDVs3drq5STvvxtfuTEoaO+J2AbZiubXAys9P2xbPGTF9MrXqBzo9jjn4nrH4Bvgz5J6xjm07ojeVKE9ASF0adTy3AMyGX1byyvDHeHXk4yz+76/F3mxeqF7TEMefM1PTyc9xLpinXbCqfL1mIZSFC3vQn73gu2w9sDOehQt2nkw6yid3vcbTkffww98/ImHtjjKdYZGXnUvMD0sdr2uHBtF+WPcrPl/fob3w9vHmUFIye7bFl0HCy39fxTmwZS/rfojGq4Y34578E2B7nBigWWRrWvRpT51G9ekxeSAAR/ccuqI+miIiIiJVzcrzZpUD9LvE7Fh3D3dufP0v/HXWvxj6l3F0HdeX/reOZMor9zDllT87HRvatskVZ3Jzd6NW/UC6je/H9S/d5bRv64LYy77/SsYl2xdvoKCggENJtp7ljZuHFXvushiXXM7Zk+dmnf/w9494qstdjv/2bdjjdKx9e8rhc9dt2r2Vo1d4TnoWPz8zg6cj7+HTu19n0+w1RSYJXY25r33vVCgPad2YB354lsCQukWODW/f3On1mQvGX2U5Hju/7aSXrzc9r4sq1ftzMrL5/aWvARj/z2l4+Xg5xhceXp4MunMMfoH+RN1xDQAFufnsumAtMhE5RzPLReSioj+azW8vfOV4Xb9ZQ+758h9ObTnOl36i6ON5Ti6YyXvhopCXUpBfgLtH8Su8Z5/NdOq/5+Nf9Lf6MSvWYxgGzVo1pX5IPVZ+8QfJO5Jo0MLWLxog7Xiq4/iABrVt/zf43G/bz55MpSTqNQnm4d9e5Gj8IWJ/WsaGWSs5cyyFw7sOcHjXAea88p3j8cdOo3vhX6dWkXM06dqCfet3A7bZFoe2Jzn16Tu4LdHxZ3dPdxq1b1bkHBdzqe8yJfmE0+sLZ0hc/+KdXPu3G4mbs4bYmcvZt343manprPl2MWu+XVymbVk2/raKjJRzPyN9/zTsqh7D9PXzpe/QXiyZbZtd3qpDyVqbXM33dSHDMJj5z08xrAZD7x9P7Ya2/y3Zf/ZqFf7cwQU/eydSy7QPvIiIiEhlk302k/W/rHC8bhARSqt+l1/gPrxzBOGdI5y2fffEB44/e/p4EdGzTZlkrHXBIpDnF5IvZvXXC0s9Lkk7kcrR5OPk5ebh5e1Fg4bFz64vi3HJ06veLebMxTv/3v1S+43zFhftPXUIPa6LYmf0JmJnLmf7ko3k5+axdUEsWxfEOtqydB3bl5b9Olz0vvxSDMPgl+c+d2o52aRbS+769HF8A/yLfU/k6D7EfR3teH1oW5LT/vPHY2Drk38l4ldv41j8ubWguk8o/az6P976iTPHUmjZv4PjCWL7z5BfbX88Cic7XfgzJCLF08xyESnW/Dd+dCqUh3VoxgM/PnvRQjk4/z9fgC3zYxytRADWnLdqPUDtsHpOr5/vez8PNZnCQ02m8O4NzzntW/zfX/n2sf85zVwH22/Rf/j7R06tOpoWc6OydqltVkevqEhbv+jXfwBg4rO3OG64atTydRyfkZIOQPp5N3w+Nc/tL4ngFmFc+/ebeHr1e/z587/TdWwfPH28MAyDfbG7+emfn/JMj3v58NaXHa1P7LqN7+/0Ovqj3x2ztg9u20fCmh2OfW0Hd3W6oYr5canje3yoyRSnR1UBXh76CGu/W0JOZrbT9oS1O1j9lfPfUXE3fTVq+dJ76hAe/Ok5/rH0TYY/OJE6hX+XqUdOE/3hbF4f83deGvIwC96eeUULJoHzDAtPHy96TRl8Rec535AxUQAs+j3a8X0mrNnu9H3F/LjU6T3vXPcsSz+eQ0ZqutP2I7sPsvCdX5y2Xe4med330RzYvJegJsEMunOMY7v9Zy8z5dw1zv9lUo1a5fMYqoiIiEhlEfPTMnIyzt2/Xq493/HEwyTv2O+0zWq1suzTuaz7/lwRtMfkgUWKk5cal0R/NJvtSzZSkJfvtD07PYuFb//stO1iLWLsrnRcUqOWHwcSDwK2xT3d3S9dQL6acUlFcPdwp/2w7tz2v4d5LuZ/THr+Nhp3ss3szknPYv3PK/jw1pd5ttdfmPn0p5xIOlric1utVr5/4gOnQnnrgZ2496snL1ooB2jbpwPZ7ufGmHGz1zhmxOfn5LFixrmnHNy9POh8jXMf8fPHF9888v5Fr7Pigqcl+peyl/ixhGSWfzYPd093Jj5zq2O7/WcoKy0Tq9X2ywmNL0RKRjPLRaSILfNj+OOtmU7b/AL9+fGpj4sc26J3O8eiOrVDgwjvHMH+uAQAzhw9zYuDHiK8cwTpp9M4tG2f03u7Xtu7xJms+QXE/LiUmB+XUjs0iAYRoRTkF5C8PYnM84qYFjcLg+8d6/RewzBYV9ivvNfAHsz+97e2ftHX9KRl33OzUZr3autYBCjmx6UMvW88sT+d63HYvEcb4uasKXFmOzd3N1oP7ETrgZ3IPptJ3Jy1xMxcxr7Y3VjzC9i5NI4zx1Kc+oiHtg2n24R+bPhlJQBb5sXw7+GPUSc0iIS1Oxxtcdy9PBj9WMkWHrU7mXSU7//2ITOf/ozQdk3wr1uLlOSTHN7pPJhoPbDTZWeH12sSzKiHr2fkQ9exd+0OYmcuZ/O8deRkZHN872Hm/edH2g3pRmi7JqXKuG/Dbqefl67j+l62l+Ta75aw9rslAOTnOg9edkRv4s3xT2G1WunkVY8d+4+ye2s8rTtefgZI2vEUfv3Xl/z+8jc0bBNOQIPanD2RyqFt+7CeNysmpFUj2g3tdtHzZJ3JcPTsH//0NMcMD4CIXm3ZPHcde2N2cvLAMQLq12bTbNvPWs2gAOo3b3jZnCIiIiJVlWEYrPpyoeO1bcH6AZd8z4HNe/n6ofeoHRpEUHgDLG5uHN1ziLTj59pn1A4NKvW9dGLMLn574Su8/WvQsHVj/GrXJOtMBoe273Mq5lvcLPQ4b+2f4lzxuKRnG7bttd0rN25WfAuW4lzJuORyRj50HSMfuq7Yfe/e8Bx71+10vH4j6bvLns8v0J9+00bQb9oIjiUkEztzORtmrSD1yGnST55h5RcLCAoPZmBhS5HLWf7pPNad19rR4mbBw9ODrx9+z+k4w2qQfvKM0+Qw3w4NscYdAWwLt7468gmadm/J0fhkTh887jhuyD1jHa1kSiPl8Emnljst+rYnuEXJ/z4Bfn52BgV5BQy6ewwNIkId2+3ji9ysHOJ+X0PXcX2Jmen8MyQixVOxXESKyD6bWWTb7hXFL5rp7evj9Hrqa/fy3tT/c/RuzkrLYNfyov3Qhtw7joje7Uoe6rwWLinJJ4vtr+fp7cnkF+4sssBi4p4kjh85gbePF3V9/fnhh6WF/aJvdjquTVRnInq3I2HNdua8+h3LP5vneHQyonc7Wg/sdEXF8vP51PSl15TB9JoymJP7jxI7c4XT46Tnu+6FO0k9fMpxg3ks/pDTI3oeXp7c/PYDTjdFpZGfm8f+TcX37m7SrSU3v/1Aic9lsViI6N2OiN7tmPj8bWyZH0PszOVFZrWX1IX9KPtPu/zCnqlHTjl+UXOhjNNnHTMp/PHADQuLfo8uUbHcvhCoNb+AQ1sTObS16DH1mzfkzo8fu+RjoXNf/570U2m0HdKVdoO7Ou0bMX0yO5fGkZuZw7+HPoqnj5ejtdCYJ6aWeoEfERERkapk94otHE887Hjd47qBePv5XOId51xs7FC/WUPumvHEFS8kmZOe5WibeCEPL08m/+t2GndsXux+sBXzY65wXNJ2UBfmLrYVPi+6uOdllGZcYpYGEaGMeWIq1zx2A/GrthE7czlb/7h8H/jzXTi2NawG284rUJ8vuGUYtc973WFIN35Z/zXNPGzrcGWlZbBjifM6Vl2u7cOI6ZNLlclu9VcLnSbf9L+ldLPK4+auZc/KrdSqX5vhD05y2tfjuihWfrGAYwnJfPXXd/nl/74gvfBnKHLSgFIt8ipS3ahYLiJlqkFEKH9b9BqrvlzIjuhNHN97mOyzmbh7ehDQoDbhXVrQa8pgIi5YGPFyBt8zlgYRoexaGsfh3Qc5ezyF9NNpeHh7UbdRfVr0aUe/acMJCg8u8l77rPIuPTsx+4WvMAyDofeNL9JSxs3NjTs/eYz5b/xI3Ow1pJ04Q2BIHTqP7s2oR653FE3LSlB4MKMevo6RD03m6HlFcDtvXx/+8s0/Wfv9Etb/soKjuw+Rm51DQP3atOzXgUF3j6F+s9LPOP7botfZPHcte2N3kZp8irQTKeRl5+JXuxZh7ZvQdWxfulzb54r7g3v7+hA5cQCREweQcvgkPv6la19z9kQqm897/LNZj9alnpleEotnL+W+f9x92ePu++5pNs9dS8LaHZw6eIKzx1PIzsjGN8CPkNaN6TSyBz2ui8LTx+ui50jesZ/VXy/Cw8uTCU9PK7I/pFUjHvzxOea89j2JsbvIy84lrEMzhtw7tsgjnSIiIiLVzfnt+SwWi+PJ1ksJ79KCfreMIHHdTs4cTyH7bCY+NX0JbhFG59G96DVlCB5epS+JDL7nWuo1CyFpwx5SDp8k4/RZrAUF1KjlR72mIUT0bkvvKUMu2b7SMAxmPv3pVY1LDiTaxg+lmVl+MZcbl5jNzc2NVv070qp/R7LTs5yeLC5PbTu34X1rJt51A7i2bx/2xuwi/dQZfPx9CW3fhF43DKbLmJI/LX2+/Jw81p7XDqhOWD3aDe16iXc4y83KcbRNHfuPm4qs2+VVw5v7v3+GOa9+x7ZFG8g6k05QeAMiJw9k6F/GX1FmkerCYtibtoqIVFEP3vgYa5fGMP2Zv3DTn2+44vPk5+Tx7WP/BWDqq/c6tdGQyiMrM4sRHcaTnZXN5/M/pE3HVpd/k4iIiIiICxnX8waOHDzKh7+8Q+eeHc2OU+kVN9Y7e+YsQ9rY1hn6Y+uv1K4baGJCEakoeq5bRKq07KwcNq2NA6BXVMl770nVVcO3Bn2H2mZrL/ot+jJHi4iIiIi4lpzsHI4eOgZAozKYWS7FqxlQ09HmZtfWPSanEZGKomK5iFRpceu2kJOdS/2QejRr2cTsOOIihl47CLC1YtEDViIiIiJSmRzafxjDMPCr6UedoNqXf4NcsdYdWgCwW8VykWpDxXIRqdLWLrP1vu45MLLMe45L5dV3cC98avhw+MARdm4pfmEmERERERFXdCDxIGDrV64xTvlq1aEloJnlItWJiuUiUqXZF/fsFRVpchJxJT6+PvQbaluMR61YRERERKQyObDXvrhnI5OTVH32YvnurfEmJxGRiqJiuYhUWcePnGDvrn1YLBYi+3UzO464mKFj1YpFRERERCqfg/tULK8orQuL5cn7D5OWetbkNCJSEVQsF5Eqa+1SWwuWtp1bE1gnwOQ04mr6DOqJTw0fjhw8ys7Nu8yOIyIiIiJSIue3YZHyVSuwJg0bhwCwZ7tml4tUByqWi0iVtXrJOgD6DO5lchJxRT6+PvQf1geARb8vNTWLiIiIiEhJHUgsnFneXDPLK0JrtWIRqVZULBeRKik/L9/Rr7zvkJ4mpxFX5WjF8rtasYiIiIiI6zuTksbpE6cBtWGpKK06tAC0yKdIdaFiuYhUSZtjt5KRnkntuoG07tjK7DjionoP6kkN3xocOXSUHXFqxSIiIiIirm3fniQAgkMb4Ofva26YauLczHIVy0WqAxXLRaRKWrV4LQC9B/fEzU3/1EnxfGp4039Yb8A2u1xERERExJUlFhbLm7YMNzdINdKyvW1m+f69B8nMyDQ5jYiUN1WQRKRKsvcr76t+5XIZQwpbsSz6PVqtWERERETEpSXu3gdAs5ZNTU5SfdStV4f6IfUwDIP47XvNjiMi5UzFchGpco4cOkri7n24ubnRc2Ck2XHExfWO6omvXw2OJh9j+6adZscREREREbmofXv2A9CsVRNzg1Qzrdqrb7lIdaFiuYhUOfYWLB26t6NWYE2T04ir86nhTb9hfQC1YhERERER15a4xzazvGnLJuYGqWZaFfYtV7FcpOpTsVxEqpzVhcXyfkN6m5xEKosh10YBsHj2UrViERERERGXdCYljVPHTwMqllc0+8zy+O0JJicRkfKmYrmIVCk52TnErtwIQJ8h6lcuJaNWLCIiIiLi6vYVLu4ZHNoAP39fc8NUMxFtmwOwL34/+Xn5JqcRkfKkYrmIVCkb124mJzuH+iH1iGjTzOw4Ukn41PCm//C+gG2hTxERERERV5NYWCxXv/KK17BRMH41/cjLzSMpYb/ZcUSkHKlYLiJVir0FS5/BPbFYLCankcpkyJgowNa33Gq1mppFRERERORCibsL+5W3aGJukGrIYrE4JmMl7Ew0OY2IlCcVy0WkSlm9xF4sVwsWKZ3eg3rg61eDY4ePqxWLiIiIiLicfXtsM5o1s9wcLdrYWrHsUd9ykSpNxXIRqTL27z3IwX3JeHh6ENm/m9lxpJLx9vFmwIh+gFqxiIiIiIjrSdxjm1nerFVTk5NUTy3a2YrlmlkuUrWpWC4iVcaKBasA6Na7sxa8kSuiViwiIiIi4orOpKRx6vhpAJq0CDc5TfXUom0EAPE7NLNcpCpTsVxEqowVC1cDOBZqFCmtXlGR+Pn7cvzICbZt3GF2HBERERERAPYVLu4ZHNpAE4NM0rx1UywWC6eOn+b0yRSz44hIOVGxXESqhNTTZ9gcsxWA/sP7mJxGKitbKxbbL1sW/b7U1CwiIiIiInaJhcVy9Ss3Tw3fGoQ1DQUgYcdek9OISHlRsVxEqoTVS9ZitVqJaNuckLBgs+NIJTZkzCAAlsxWKxYRERERcQ324myzlupXbib7Ip/xKpaLVFkqlotIleBowTJMs8rl6vQc2B2/mn62Viwb1IpFRERERMy3e1s8AC3bR5icpHpr0bawWL5TxXKRqkrFchGp9PJy81gbHQPAAPUrl6vk7ePNgMJWPot+jzY5jYiIiIhUdwUFBSTsTASgVYcWJqep3hyLfG5XsVykqlKxXEQqvY1r4shIz6Ru/Tq06dTK7DhSBdhbsUTPXY5hGCanEREREZHq7NC+ZLIys/D28aZxs0Zmx6nWIto2A2BffBL5efkmpxGR8qBiuYhUessXrAKg39DeuLnpnzW5ej0HdsfXrwbHDh9nR9wus+OIiIiISDVmb8HSom1z3N3dTU5TvYWEBeNX04/8vHySEvabHUdEyoGqSiJSqRmGwcqFawDoP0wtWKRsePt403dIbwCWzFlmchoRERERqc7Ur9x1WCwWItrYZpdrkU+RqknFchGp1BJ2JnLk0FG8fbzo0b+b2XGkChk0egCgViwiIiIiYq49hcXyVu3Vr9wVtLT3LVexXKRKUrFcRCq1FQtXAxDZrxs+vj4mp5GqpM/gnnj7eHEoKVk3wiIiIiJiCsMw2LllNwCtOrQ0OY0AtGjXHFCxXKSqUrFcRCq1FYX9yvsP72NyEqlqfP186RXVA4BotWIRERERERMcSkomLfUsXt5etGjT3Ow4AkQU/j0k7FSxXKQqUrFcRCqtY4ePs33TTgD6DVWxXMreoGtsrViWzF1uchIRERERqY7s452W7SLw9PI0OY0ANG/dFIvFwqnjpzl9MsXsOCJSxlQsF5FKa9n8lQB07N6eesFBJqeRqqj/sD54eHqwb08SSfFa7V5EREREKtaOuF0AtO3c2uQkYlfDtwZhTUMBSFArFpEqR8VyEam0oufZZvvaZ/+KlLWaATWJ7NcVOPfzJiIiIiJSUezF8nZd2picRM7Xoq36lotUVSqWi0illHIqlU1rNgMQpWK5lKNB1wwEIHqOiuUiIiIiUnHy8/LZvW0PAG07aWa5K2nRNgKAePUtF6lyVCwXkUpp+R+rsFqttGrfgtDGIWbHkSps4Mh+uLm5sWvrHpIPHDE7joiIiIhUE7u3xZOTnUutwJo0ahZmdhw5j32xVbVhEal6VCwXkUppaWFLDM0ql/JWu24gXXp3AmCpFvoUERERkQoSF7MFgE6RHXBzU/nGlUS0bQbAvvj95Oflm5xGRMqS/rUVkUonPS2dmBUbAPUrl4oxaJTt52zJnGUmJxERERGR6iJuXWGxvEcHk5PIhULCgvHz9yUvN4/9iQfNjiMiZUjFchGpdFYuWkNebh7hzRvTtEW42XGkGoga1R+ArRu2c/zICZPTiIiIiEhVZxgGm2O2AtC5R0eT08iFLBYLzVvbZperFYtI1aJiuYhUOkvnrQBg0OgBWCwWk9NIdVA/pB4durUDzv38iYiIiIiUlwN7D5J6+gxe3l607tjS7DhSDHsrloSdiSYnEZGypGK5iFQq2ZnZrF6yDlALFqlYg0cPBCB6rlqxiIiIiEj52rAmDoB2Xdrg5e1lbhgpVoR9kc+dmlkuUpWoWC4ilcraZbFkZ2UTEhZM6w6aYSEVx76Y7Ka1W0g5lWpuGBERERGp0mJWrAegR/9uJieRi2nhKJZrZrlIVaJiuYhUKvZZvVHX9FcLFqlQoY1DaN2hJVarlWXzV5odR0RERESqKKvVyvpVmwCI7Kdiuatq3ropAMcOHyct9azJaUSkrKhYLiKVRk52Dsv/WAXA4GsGmpxGqqNBo22zy9WKRURERETKy55tCaSlpOHn70vbzq3NjiMX4V/Ln5BGwQAk7NLscpGqQsVyEak01kTHkJGeaVtssXs7s+NINTRolK1YHrtyI2fPaPaIiIiIiJS9dcttLVi69u6Mh6eHyWnkUhytWHaob7lIVaFiuYhUGot+WwLAkGujcHPTP19S8Zq0CKdpyybk5+WzYuFqs+OIiIiISBW0JnodAD0GdDc5iVxORFst8ilS1ajaJCKVQnZmNisWrgFg2NjBJqeR6mxw4UKfS+YsNzmJiIiIiFQ1Z8+cZXPMVgD6De1tchq5nIg2zQAt8ilSlahYLiKVwqola8nKzCIkLJh2XdqYHUeqsUGjbf3y1y2LITMj0+Q0IiIiIlKVrF0WS0FBAU1bhBMa3tDsOHIZjjYsOxOxWq0mpxGRsqBiuYhUCgvPa8FisVhMTiPVWYu2zQlrEkpOdi6rFq81O46IiIiIVCErF9mepu2rWeWVQljTULx9vMjOyiZ5/2Gz44hIGVCxXERcXmZGJqsW2YqSw8apBYuYy2KxEDWqPwDL5q0wOY2IiIiIVBW5ObmsLFwXp9+wPiankZJwd3enWaumgFqxiFQVKpaLiMtbuXANOdk5hDUJpXWHlmbHEWFQYd/yVYvXkpuTa3IaEREREakKVi9Zx9kz6dQPqUenyPZmx5ESiihsxRK/Q4t8ilQFKpaLiMuzt2AZqhYs4iLadWlDveAgMtIziV250ew4IiIiIlIFzP9lIQDDxg7G3d3d5DRSUi3a2vuWq1guUhWoWC4iLi39bAZromMAGDpWLVjENbi5uRE10taKJXrucpPTiIiIiEhll5Z6lpULbf3KR04canIaKY2INs0AtWERqSpULBcRl7ZiwSpyc3IJb97Y8Rt7EVcwsLBv+fI/VpKfn29yGhERERGpzOb8OJ/cnFwi2jSjZfsWZseRUohobSuWH0pKJjMj0+Q0InK1VCwXEZf2xy+LABg2dpBasIhL6dqrE7Vq1yL19Bk2x2w1O46IiIiIVFJWq5WfPp8FwKRbxmvcU8kE1g2kXnAQAHt37TM5jYhcLRXLRcRlnT6Zwrpl6wEYMXGYyWlEnHl4ejBgWB9ArVhERERE5MqtW76eg4mH8PP3ZaTGPZXSuVYs6lsuUtmpWC4iLmvhr0soKCigTadWhDdvZHYckSIGXTMAgKXzVmAYhslpRERERKSyMQyDT9/4AoBrp1yDn7+vyYnkSjQvbMWSsEN9y0UqOxXLRcRl2VuwjJo03OQkIsXrMaA7NXxrcPzICXZu3mV2HBERERGpZNav2sTm2K14eXtx81+mmh1HrpB9fa14zSwXqfRULBcRl3Rw3yG2bdyBm5sbQ8cOMjuOSLG8fbzpO6QXANFzV5icRkREREQqE6vVyjv/+h8A424c7eh7LZVPRBtbsTxhZ6KeOBWp5FQsFxGXNP9n26zyyP7dCKpf1+Q0IhcXNao/AEvmLtONsYiIiIiU2O/fzWPXlt341fTj9r9OMzuOXIUmEY1x93AnPS2dY8nHzY4jIldBxXIRcTmGYTD/l4UAjJqkBW7EtfUZ0gtPL08OJh4icU+S2XFEREREpBI4efwU777wAQB3PnwLdevVMTmRXA1PL0+atggH1IpFpLJTsVxEXM7Ozbs4mHgIbx9vBo7sb3YckUvyr+lHjwHdAVg6d7nJaURERETE1RmGwQuPvMKZlDO0bBfB9bdNNDuSlIFzrVhULBepzFQsFxGXM2+mbVb5wBF9tRq8VAqDCluxRKtYLiIiIiKX8elbX7Jq8Vq8vL147t2n8PTyNDuSlIGINs0ASNiRaHISEbkaKpaLiEvJz89n4a9LABgxUS1YpHIYMLwvbm5u7NmeQPKBI2bHEREREREXNefH+XzwyicAPPqv6TRv1dTkRFJWWrTVzHKRqkDFchFxKbErN3L6ZAoBtQPoHdXD7DgiJRJYN5AuvToCsHSeZpeLiIiISFE/zfiF56a/BMANd0xi/E1jTE4kZcnehmX/3oPkZOeYnEZErpSK5SLiUub/bGvBMmzsIDw8PUxOI1JyUaMGALB07gqTk4iIiIiIq/n8na955R9vArZC+UPP3W9uIClzQQ3qElA7AKvVyr49+82OIyJXSMVyEXEZWZlZjkLjSLVgkUomqnAx2i3rt3Hy2CmT04iIiIiIKzAMg/df+pD3XvoQgNv/Oo2Hn38ANzeVY6oai8VCRNvCvuVqxSJSaelfZxFxGcv/WEVWZhYNG4fQoXs7s+OIlEqD0Pq069IGwzBY9sdKs+OIiIiIiMmsViuvPfUWM975GoD7n/wz9zx+BxaLxeRkUl5aFLZiSdilRT5FKisVy0XEZcz/ZRFgm1WuG0ipjM61YlHfchEREZHq7s3n3ufHz37BYrHw+EsPMe2+G82OJOUsok3hzPIdmlkuUlmpWC4iLiHlVCpro2MAGDlhqMlpRK5M1ChbK5b1qzeRlnrW5DQiIiIiYpZvPvyB7z76EYB/vvE3Jt8y3txAUiEi2hbOLN+pmeUilZWK5SLiEhb9Fk1BQQGtO7aiSYtws+OIXJHw5o1o1qopBfkFrFy02uw4IiIiImKCRb9H8+az7wHwwFP3MOb6kSYnkorSrEUT3NzcOH0yhVMnTpsdR0SugIrlIuIS5v28AICREzWrXCq3QYWzy6PVikVERESk2tm7K5Hnpr8IwHW3TuBP904xOZFUJB9fHxo1DQPUikWkslKxXERMty8+iW0bduDu7s7wcUPMjiNyVQZdY+tbvnZpDFmZWSanEREREZGKkp2ZzT/+/Cw52bn0iurBw//3gNZiqoYi2hb2LVcrFpFKScVyETHd7O/nA9BncE+CGtQ1OY3I1WnRLoKGjUPIyc5lTWEffhERERGp+j76zwz2xe8nqEFdnn37H7i7u5sdSUwQ0cbWtzx+p2aWi1RGKpaLiKny8/OZ+9MfAIyZMsrkNCJXz2KxMGiUbXa5WrGIiIiIVA97tifwzQc/APD3fz9CnaDaJicSs7QoLJarDYtI5aRiuYiYak10DKeOn6Z23UD6DeltdhyRMhFV2Ld85aI15OXmmZxGRERERMqTYRi89tRbFBQUMHjMQPoP72t2JDFR8za2Niz74veTn5dvchoRKS0Vy0XEVL9/NxeAkZOG4enlaXIakbLRoXs76tavQ8bZDNav2mh2HBEREREpR9FzlxO3bgvePt489Mz9ZscRk4WENcDP35e83Dz2Jx40O46IlJKK5SJimpRTqaxYuBqAsVOuMTmNSNlxc3Nj4Mh+gFqxiIiIiFRlBQUFvP/SRwDcfO8UGoTWNzmRmM3NzY3mrQsX+VQrFpFKR8VyETHNvJkLKMgvoE2nVo6bCZGqwt63fNn8lRQUFJicRkRERETKw9J5KziQeJBagTW56d4pZscRFxHRtrBYvjPR5CQiUloqlouIKQzDYPb38wC4VrPKpQrq1qcLNQP8STmVyuaYrWbHEREREZEyZhgGn7/zNQDX3zYRP39fkxOJq4iwL/K5UzPLRSobFctFxBQ7t+wmYWciXt5eDB83xOw4ImXOw9PDsbjTkjnLTE4jIiIiImVt3bL17Nq6B58aPlx/xySz44gLaVFYLI9XGxaRSkfFchExxezvbLPKo0b1p1ZgTZPTiJSPIaMHAra+5Var1eQ0IiIiIlKWPn/3KwDG/+laAusEmJxGXEnz1k0BOH7kBGdS0kxOIyKloWK5iFS4nOwc/pi1CNDCnlK19RwYiV9NP04cPcmW2G1mxxERERGRMrJ90042rI7Dw9ODm+6+/v/bu+/oKMq3jePfTW8QQgKE3iFU6b1K7yAIAkoTFAs2sKAiVkBsKBZUBER+KCCC0nvoRUroHUINnUB62cz7R0heMPSU2d1cn3NyArO7s9fuZDMzd565H7PjiI3xyelD/sKBgFqxiNgbFctFJMutXryOiGuRBBbMR40G1cyOI5Jp3NzdaNSyHgAr5gebG0ZEREREMsysKXMAaNm5GfkK5jU5jdii0uVLAXBo7xGTk4jIg1CxXESy3LwbE3u2794aJyf9GhLH1qx9UyC5b7lasYiIiIjYv2tXr7P8n1UAdOvb2dwwYrOCKpUG4MCugyYnEZEHoSqViGSpMyfOsmXNVgDa9WhjchqRzFe7cQ28fby4eO4Su7fuNTuOiIiIiKTTglmLiY+Lp0yFUlSoWs7sOGKjgiqXBeDArkMmJxGRB6FiuYhkqbn/m49hGNRpUouCRfKbHUck07l7uNOwZX1ArVhEREREHMH8mYuB5Ik9LRaLyWnEVgVVLgNA6JGTREdFm5xGRO6XiuUikmUS4hP45/cFADz2VEeT04hknWbtmwBqxSIiIiJi7w7tPcKRfUdxdXOlZadmZscRGxaQ1588gQEYhsGhPepbLmIvVCwXkSwTvGgtVy+HkycwgAYt6podRyTL1GlSE28fLy6EXWTP9n1mxxERERGRh7TwzyUANGxZj5y5cpicRmxdUKXk0eUHd6sVi4i9ULFcRLLMX7/9DUCnnu1wcXExOY1I1nH3cKdBi3qAWrGIiIiI2KvExEQW/7UcgLZdW5mcRuxBSt/y/SqWi9gNFctFJEuEHj7Btg0hODk50alXe7PjiGS51FYs89WKRURERMQebVmzlSsXr5Arty91m9YyO47YgZS+5ZrkU8R+qFguIlli1pQ5ANRvVod8BfOanEYk69VpUgsvb0/On73A3h37zY4jIiIiIg9o4azkFiwtOzfD1c3V5DRiD8rdGFkeevgEMdExJqcRkfuhYrmIZLrI65EsuDFjfPcBj5mcRsQcHp5qxSIiIiJiryIjoli9ZB0AbR9XCxa5PwH5/AnI509SUhKH9x41O46I3AcVy0Uk082bsYjoqBiKlylGrUY1zI4jYpqbW7EYhmFuGBERERG5b+uWbSAuNp4iJQqnjhYWuR8pk3zu33XQ5CQicj9ULBeRTGW1Wpk56S8AejzdFYvFYnIiEfPUbVobTy9Pzp05r1YsIiIiInZk+bxgAJp3bKpzGnkgKcXyA5rkU8QuqFguIplqw4pNnDlxlpy5ctCmawuz44iYysPTnQbN6wKwYl6wqVlERERE5P5ERkSxKXgL8P9XCorcr6AbVyLs36mR5SL2QMVyEclUf0ycDUDHnu3w9PI0OY2I+Zp1aALAygVqxSIiIiJiD9Yt20B8XHILllLlSpgdR+xM+apBABw/FEpUZLTJaUTkXlQsF5FMc/TAMf5dtw0nJyce79/F7DgiNqFe09p4eHoQdvoc+0IOmB1HRERERO4hZXL2Zh2aqAWLPLCAvP7kLxSIYRhqxShiB1QsF5FMk9KrvEmbhuQvFGhyGhHb4OHl8f+tWG6ceImIiIiIbYqKjGbjKrVgkfSpVL08AHu27zM5iYjci4rlIpIprl29zsI/lwLQ/emuJqcRsS0prVhWzA9WKxYRERERG5bSgqVwiUKULl/S7DhipypWrwDA7m17TU4iIveiYrmIZIq5/5tPXGwcZSqUomrtymbHEbEp9R+tk9yK5dQ59u/SRD8iIiIitmrVojVA8qhytWCRh1XpRrF8z7Z9GiwjYuNULBeRDJeYmMifU+YA8MTAbjqoFPkPDy8P6jevA8CKecGmZhERERGR24uPi2fTjRYsTVo3MDmN2LMyFUrh5u7GtavXOHX8jNlxROQuVCwXkQwXvGgt589ewM8/Fy06PWp2HBGblNLzUq1YRERERGzTto0hREfFEJDPn6DKZc2OI3bM1c2VoEplANizXa1YRGyZiuUikqEMw2Dqt9MBeOypjrh7uJucSMQ21W9WB3cPd86eDOPA7kNmxxERERGR/1i3dAMADZrXxclJ5RNJn4o3JvlU33IR26bf9iKSoTYFb+HA7kN4eHrQQxN7ityRp5enWrGIiIiI2CjDMFi7LLlY3rBlfZPTiCO4uW+5iNguFctFJENN+vo3AB7r05Fc/rnMDSNi49SKRURERMQ2Hd53lHNnzuPu4U7NBtXNjiMOIKVYfmT/MWKiY0xOIyJ3omK5iGSY7Zt2snPLblzdXOn9bA+z44jYvAbN6+Lu4c6ZE2fVikVERETEhqSMKq/VsDoenmotKemXN38e8ubPg9VqZf/Og2bHEZE7ULFcRDLM5Bujytv3aEOewACT04jYvptbsSz7e6XJaUREREQkxTq1YJFMUKlG8ujykC27TU4iIneiYrmIZIh9Ow+wefW/ODs70+eFXmbHEbEbrTo3B5KL5UlJSSanEREREZFL5y+zd8d+IPlKQJGMUrX2IwDs2LTT5CQicicqlotIhpjyzTQAWnZpRsEi+U1OI2I/6j1aG28fL86fvcCuf/eYHUdEREQk21u3fCMA5asEEZDP3+Q04kiq1kkulu/6dw+JiYkmpxGR21GxXETS7eiBYwQvWovFYqHfkN5mxxGxK+4e7jRu0xCApXNXmJxGRERERNYuXQ+oBYtkvJJBxcmZKwcx0TEc3H3Y7DgichsqlotIuv3w6S8ANG3XiOKli5kbRsQOtercDIAV84M1wkRERETERLExcWxZuw2Ahi3qmZxGHI2TkxNValUG1IpFxFapWC4i6bJ7217WLFmHk5MTg19/2uw4InapZoPq5Mrty9XL4Wxdt8PsOCIiIiLZ1r/rthEXG0e+AnkpXb6k2XHEAaW0Ytm+McTcICJyWyqWi8hDMwyD70f/BEC77q0pVrqoyYlE7JOLqwvNOjQBYOnc5eaGEREREcnGUlqwNGpZH4vFYnIacURV6yYXy0O27MZqtZqcRkT+S8VyEXlom1dvZduGEFzdXBn0Wj+z44jYtRadkluxrFq0lrjYOJPTiIiIiGQ/SUlJqZN7NmipFiySOcpUKIW3jxeR1yM5euC42XFE5D9ULBeRh2IYBt+P+RmArn07E1gon8mJROxblVqVyJs/D1ERUWxYtdnsOCIiIiLZzoFdB7l0/jJe3p5Ur1vF7DjioFxcXKhcsyIAO9SKRcTmqFguIg9l5YLVHNh1EC9vT/q/9KTZcUTsnpOTEy06PgrA0rkrTE4jIiIikv2sXboBgDpNauHm7mZyGnFkKX3Ld2zeZXISEfkvFctF5IElJiQy4dNfAOj1bA/8/HOZG0jEQbTsktyKZd2yjURFRpucRkRERCR7WbssuVjeoIVasEjmqlanCpA8yWdSUpK5YUTkFiqWi8gDm/3rXE4cPUmu3L70era72XFEHEZQpTIULl6QuNi41MmlRERERCTznTt9nkN7j2CxWKjfrI7ZccTBlXukLF7enoRfucbhvUfMjiMiN1GxXEQeyNXL4fz4+WQAnntrID45vE1OJOI4LBYLLW9M9LlErVhEREREssy65cmjyivXqKgrZyXTubq5UqN+NQA2Bf9rchoRuZmK5SLyQCZ8OpHI65GUrViajj3bmR1HxOGktGLZFLyF8CvXTE4jIiIikj2oBYtktdqNawKwaY2K5SK2RMVyEblvB3cfYu7/5gPw2kdDcHZ2NjmRiOMpXroYpcuXwppoZcX8YLPjiIiIiDi8qMhotq7fAUDDliqWS9ZIKZbv3LKbmOgYk9OISAoVy0XkvhiGwecjvsEwDFp2epSqtR8xO5KIw2rTtQUAi/5canISEREREce3Zc1WEuITKFSsIMVLFzU7jmQThYsXpECR/CQmJLJtQ4jZcUTkBhXLReS+LPt7JTu37Mbdw50h7z5ndhybt2nTJjp16kRAQAAeHh6UKVOGd999l+jo6PteR/PmzbFYLFgsFs6dO5fm9tjYWF544QUCAgLw9vamY8eOnDhx4rbrunbtGoGBgfTs2fOBX0toaCgWi4VixYrd9X79+vXDYrEwZcqU2y5P+XJycsLX15dixYrRoUMHxo4dy/nz5x94vY6sVZfmODk5sWvrHk6HnjE7joiIiIhDW3NjYvUGLephsVhMTnN3Os9Iu9xezzMsFkvq6PLNq9WKRcRWqFguIvd0PTyCrz/8HoB+Q3qTr2BekxPZtv/97380aNCAf/75h2LFitG2bVtiY2P55JNPqFevHhEREfdcx5QpU1ixYsVdD9Zffvllvv/+e4oWLUrDhg2ZP38+bdu2xWq1prnve++9R1RUFJ9//nm6Xlt61K9fn759+9KnTx9atmxJoUKFWLFiBW+++SZFihTh008/xTAM0/LZkjyBAdRskDzhz6LZy0xOIyIiIuK4rFYr65dvBKCRjbdg0XnG7dnzeUYdFctFbI6K5SJyT1+9/y0Xz12iSInC9B78hNlxbNrp06cZOHAgVquVSZMmsXXrVv766y8OHz7M448/zs6dO3njjTfuuo6LFy8ybNgwWrZsSZEiRW57n7CwMCZNmkSbNm3YunUrixcv5qOPPmLfvn3MmTPnlvvu2bOH77//nhEjRlCwYMEMe60PauDAgUyZMoUpU6Ywa9Ys1q1bx+XLl/nmm29wcXHhrbfe4p133jEtn61p060lAItmL7XZg3sRERERe7d3+37Cr1zDJ6cPVWpVNjvOHek8487s+TyjRv2qODs7E3rkJOdO33kUvIhkHRXLReSu1i3fyIKZi7FYLLz31Vt4eLqbHcmmTZkyhdjYWFq0aEH//v1Tl7u7u/Pdd9/h5eXFL7/8wuXLl++4jldeeYWoqCi+//77O95nz549JCYm0qdPn9RRIQMGDAAgJCTklvu++OKLlCxZkldffTUdryxzeHp6MmTIEBYsWICzszOjR49m586dZseyCU3aNMTTy5PToWfYvW2v2XFEREREHFJKC5Z6TWvh4upicpo703nGg7GX84wcvjmoULUcAJtWbzE5jYiAiuUichfXwyMY/Uby5XS9nulO5ZoVTU5k+7Zt2wZAkyZN0tyWJ08eypcvT0JCAgsXLrzt45csWcL06dN55513KFmy5B2f5+rVqwD4+fmlLkv595UrV1KXTZ8+ndWrVzN+/HhcXV0f+PVklSZNmqT2ORw/frzJaWyDl7cXTdo2BGDhn0tMTiMiIiLimNbeKJY3atXA5CR3p/OMh2MP5xl1m9YCYN3yTSYnERFQsVxE7mLcTe1Xnn3jabPj2IWoqCjg1oPLm+XOnRvgtqMaoqOjGTx4MEFBQfe8hDLlssnDhw+nLjt06BAARYsWBSAyMpLXX3+drl270qJFiwd8JVnviSeSW/ysWrXK5CS2o23X5FYsy/9ZRXxcvMlpRERERBzLyWOnOX74BM4uzqkFS1ul84yHZ+vnGQ1bJPfK37z6X2Jj4kxOIyIqlovIba1bvpH5ar/ywPLkyQNwx9niU5aHhoamuW3EiBGEhobyww8/4ObmdtfnqVKlCvnz5+fLL79kz549nD9/njfeeAOLxUKbNm0A+PDDDwkPD+fLL79MxyvKOlWqVAHg2LFjxMerMAxQo0E18gQGcD08gvUrNdJEREREJCOtXZY8qrxanSrk8M1hcpq703nGw7P184zSFUqRr0Be4mLj2Lp+u9lxRLI9FctFJI2b26/0fOZxtV95AI0bNwbg999/T3MgtmnTJg4ePAiQZqb67du38/XXX9O3b9/bXlr5Xx4eHnz22WeEhoZSqVIlAgMDWbJkCYMHD6Zy5cocPHiQcePG8fbbb98yeU9MTMxDTxZ54sQJLBbLHb9+/fXXh1pvioCAgNR/p1z+md05OzvTqnNzABb9udTkNCIiIiKOZe3SDQA0alnP5CT3pvOMh2fr5xkWi4UGLeoCsHbZBpPTiIjtzl4hIqa5uf3K4DcGmh3HrvTu3ZtPPvmEkydP0qlTJz7//HOKFCnC+vXrGTRoEC4uLiQmJuLk9P9/q7RarQwaNIhcuXLx+eefP9BzlShRglmzZhEbG8ujjz5K165dARgyZAhFihRh2LBhAPzxxx+89dZbnDhxAl9fX1588UU+/PDDW3Lci7e3N926dbvj7evWrePo0aP3vb7/uvngOmUyIYG2j7dk2oQ/WLd8I9euXsfXL6fZkURERETsXviVa+zcshuABi3rm5zm3nSe4djnGQ1b1GP2r3+zbtkGjDGv2WxOkexAxXIRucXN7VdGfPmm2q88IG9vb+bPn0/79u1ZvHgxixcvTr2tSJEivPbaa4wdO/aWXoPjxo1j+/bt/PLLL7eMergfdevWpW7durcsmz17NsuWLWP+/Pm4u7uzbds2evXqRatWrfj6669ZvXo1n3zyCXnz5uWll1667+cKCAhgypQpd7y9X79+6TqIvXTpUuq/79SLMTsqVa4kpcuX4vC+Iyyft4qufTqZHUlERETE7m1ctRmr1UrJoOIULJLf7Dj3pPMMxz7PqF6vKp5enlw8d4kDuw9RrnJZsyOJZFsqlotIqohrt7ZfeaRWJZMT2adKlSpx4MABZs2axdatW0lMTOSRRx6hV69efPzxxwBUqFAh9f7z5s1Lvbxw6tSpt6zr3LlzADz22GO4ubnx8ccf06BBgzs+d0xMDEOHDqVDhw60a9cOgC+++AIfHx9mzpxJjhw56NSpE9u3b+ezzz57oIPYzBYSEgJA6dKlcXV1NTeMjWnbrSVff3iEhbOWqFguIiIikgHWLE3uV97QDkaVp9B5xsOxh/MMdw93ajeuQfCitaxdukHFchETqVguIqm+GpncfqVwiUIMfv1ps+PYNU9PT/r06UOfPn1uWb58+XKANP0CDcNgzZo1d1zfxo0bgVtHRdzOqFGjOH/+POPGjUtdduDAAYKCgsiR4/8nLapVqxarV6/m+vXr5MxpG209/vjjDwCaNm1qchLb06pLc8Z/PIHd2/Zy6vhpChcvZHYkEREREbsVHxfPplVbAGhkR8Vy0HnGw7CX84yGLeoRvGgt65Zt4Jlh/c2OI5JtaYJPEQFg/YpNqe1X3vvyLTy8PMyO5HBWr17N9u3bqVChAvXr//9BeXBwMIZh3ParaNGiAISFhWEYBp07d77j+o8ePcpnn33GG2+8QYkSJW65LTo6+pb/R0VFAbbTsy84OJg//vgDi8XCkCFDzI5jcwLy+VOzYXUAFs1eZnIaEREREfu2feNOoiKjyZ0nN+WrBJkdJ910nnFn9nSeUb95XSwWCwd2HyLs9Dmz44hkWyqWiwgR1yIY9fpnADwxqJvar6RTSEgIiYmJtyzbvn07vXr1wmKxMH78+Ex53pdffpn8+fPz1ltv3bK8QoUK7Nu3jx07dgAQERHBvHnzKFKkyC2jQMwQGxvLt99+S7t27bBarYwYMYKKFSuamslWte3WEoDFfy27ZZIiEREREXkwa1NasLSo+0ATUZpN5xn3zx7PM3IH+FG1ziMArJy/2uQ0ItmX2rCICOPe/y61/cpzbww0O47de+WVV9i3bx9VqlQhICCA0NBQNm/ejJOTEz/++GOmXP63YMECFixYwJw5c/D09Lzlttdff53p06fTtGlTHn30UXbs2MGpU6eYMGFChue4m4kTJxIcHAwkj0A5d+4c27ZtIzo6Gnd3d8aOHcuwYcOyNJM9adKmIZ5enpwOPcPurXupXNO2D/ZFREREbJFhGKn9yu2tBYvOM27Pkc4zHm3XmO0bQ1ixIJjeg3uYHUckW1KxXCSbW79iE/NmLFL7lQz05JNPMm3aNEJCQggPDydPnjw88cQTvP7661SpUiXDny8uLo6XX36ZVq1a3fbyycqVKzN37lzeffdd5s+fT2BgIGPGjOHZZ5/N8Cx3s379etavX4/FYsHHx4fcuXPTtGlTGjduTN++fcmbN2+W5rE3nl6eNG3XiIWzlrDgzyUqlouIiIg8hIO7D3P+7AXcPdyp2aC62XEeiM4zbs+RzjMebdeYL0Z8w55t+zh/5gL5CtpPdhFHYTF0LbdIthVxLYKej/bnQthFej7zOK++/6LZkWxaYlwCv7/+AwA9P3sOF3fbnEldHNe/67bzQvdX8cnpw8Idf+Hh6W52JBERERG7MmHsL0waN5UmbRoy9pePzY4jNsKWzvWe6TKEkM27ePWDF+k56HHTcohkV/bTnEtEMty497/jQthFtV8RsRPV61Uhf6FAIq9HErxojdlxREREROzOqoXJx1BN2zYyOYnI7TVr1xiAFfOCTc0hkl2pWC6STW1Y+f/tV0Z88abar4jYAScnJ9o93gqABTMXm5xGRERExL6cOHKS44dCcXZxpkHzumbHEbmtpjeK5bu27uFC2EWT04hkPyqWi2RDEdciGPX65wD0GNiNKrUrm5xIRO5Xux5tANiydhvnTp83OY2IiIiI/QhetBaAGvWrkcM3h8lpRG4vb/48VK6RPD/RqgWrTU4jkv2oWC6SDY374Pvk9ivFC/L8m2q/ImJPChbJT/V6VTAMgwV/LjE7joiIiIjdCF6cXCxXCxaxdc06NAFghYrlIllOxXKRbGbjqs3M+2NhcvuVL99S+xURO9T+xujyBTMXo3m6RURERO7t/NkL7N2xH4vFQqNW9c2OI3JXj7ZNbsWyc8tuLp2/bHIakexFxXKRbCQqMlrtV0QcwKPtGuPt48Xp0DPs2LzL7DgiIiIiNm/14nUAVK5RkYC8/ianEbm7fAXzUrF6eQzDSJ2UVkSyhorlItnIj2N/4fzZCxQokp/n3nza7Dgi8pA8vTxp1qEpAPP/WGhyGhERERHbl9KCpUmbhiYnEbk/zdo3AWD5vFXmBhHJZlQsF8km9u7Yz4xfZgPw5pjX8PTyNDmRiKRHhxutWFbMX010VLTJaURERERsV/iVa+zYuBNQsVzsR/P2TbFYLOzYtJNzp8+bHUck21CxXCQbSExIZNTrn2MYBq0fa0HdJrXMjiQi6VS5ZkWKlChMTHQMy//RaBMRERGRO1m3bANWq5XS5UtRsGgBs+OI3Jd8BfNSrV4VABbPWWZuGJFsRMVykWxg+k8zObzvCDn9cvLK+y+YHUdEMoDFYqHDE20BmDt9vslpRERERGxXSs/npm01qlzsS5vHWgCw6M+lGIZhchqR7EHFchEHd+bEWX7+YgoAr7z3PLkD/MwNJCIZpn2P1ji7OLNn2z6O7D9qdhwRERERmxNxLYJNq/8FoGnbRianEXkwj7ZrjLuHG8cPn+DQnsNmxxHJFlQsF3FghmEw5q0viYuNo3r9qrTr3trsSCKSgfzz5KZxqwYAzP2fRpeLiIiI/NfqJetJiE+gRNnilAwqYXYckQfik9OHhi3qA7Bw9lKT04hkDyqWiziwJXOWs3n1v7i5uzH802FYLBazI4lIBuvcuwMAi2YvJTY61uQ0IiIiIrZl2d8rAGjR6VGTk4g8nDZdk1uxLJ27gsTERJPTiDg+FctFHFRkRBTj3v8OgKdf7UOREoVMTiQimaFWo+rkLxxIxLVIViwINjuOiIiIiM0IvxzOljXbAGjRUcVysU91mtTC18+XyxeusHXdDrPjiDg8FctFHNSUb6Zx5dJVipQozJODnzA7johkEicnJzr3bg+oFYuIiIjIzVYuXIPVaiWoUhkNHhK75ermSssbV0Ysmr3E5DQijk/FchEHdDr0DL//PAuAl0c+j6ubq8mJRCQzdejRFmdnZ3Zu2c2xQ6FmxxERERGxCcv+WQmoBYvYv9Y3WrGsWriW6Khok9OIODYVy0Uc0PiPJ5AQn0DtRjVo0Lyu2XFEJJMF5POnQYvkz7pGl4uIiIjApfOX2b4hBIDmHZuaG0YknSpWK0/h4gWJjYllzZL1ZscRcWgqlos4mG0bdrBq4RqcnJx45YMXNamnSDbR5cnkiT4XzlpMXGycyWlEREREzLVi3ioMw6BS9QrkLxRodhyRdLFYLLR+rCUAC/9canIaEcemYrmIA7FarXz53rcAPPZUR0qWLW5yIhHJKrUb1ySwYD6uh0ewauEas+OIiIiImGrp38ktWFqqBYs4iNaPNQdgy5qtXLpw2eQ0Io5LxXIRBzLvj4Uc3neEHL4+PDOsv9lxRCQLOTs706lXO0CtWERERCR7Czt9jt3b9mKxWGjWQS1YxDEULl6IitXLk5SUxNK5K8yOI+KwVCwXcRCR1yP5YcxEAAa+1o9c/rnMDSQiWa7DE21xcnJi+8YQThw5aXYcEREREVMs/2cVANXqPkJAPn+T04hknLZdk1uxLFIrFpFMo2K5iIOY/M00rl4Op0iJwnTr29nsOCJigrz581C/WR0AZk/92+Q0IiIiIlnPMAwW/rkEgBadmpmcRiRjNe/4KC6uLhzcc5hDe4+YHUfEIalYLuIAwk6f44+JfwLw8sjncXVzNTmRiJilW/8uAMybsYioyGiT04iIiIhkrYO7D3P0wHHc3N1o0VEtWMSx5MrtS6NW9QGYP2ORyWlEHJOK5SIO4MfPJpEQn0D1+lVp0Lyu2XFExES1G9WgaMkiREVEsXDWErPjiIiIiGSp+TOTC4iNWzUgh28Ok9OIZLwOPdoCsPivZSTEJ5icRsTxqFguYueO7D+a2q9syDvPYrFYTE4kImZycnKi+4DHAJg56S+SkpJMTiQiIiKSNRLiE1gyJ3niw/Y9WpucRiRz1G5cg4B8/oRfuca65RvNjiPicFQsF7Fz343+GcMwaNahCeWrlDM7jojYgLaPt8I7hzcnjp5k85qtZscRERERyRLrVmzk2tVr5AkMoFajGmbHEckULi4utO3WCoB5fyw0OY2I41GxXMSObd8YwvrlG3F2dua5NweZHUdEbIS3jxcdnki+PHPmL7NNTiMiIiKSNRbMWAxAm64tcXZ2NjmNSObp0KMNABtXbeHShcsmpxFxLCqWi9gpwzD49pMfAej8ZHuKlChkciIRsSWP9+uMxWJh/YpNnDx22uw4IiIiIpnq8sUrrF+xCYB23VuZnEYkcxUtVYRK1StgtVpT27KKSMZQsVzETgUvWsue7fvw9PLk6Vf7mh1HRGxM4eKFqN+sDgCzJv9lchoRERGRzLVkznKsVisVqpajeOliZscRyXQdnkgeXT5/xiIMwzA5jYjjULFcxA5ZrVYmjP0FgF7PPE5AXn+TE4mILerxdFcg+QA6MiLK5DQiIiIimWfBzCUAtOuuiT0le2je8VHcPdw5fvgEe3fsNzuOiMNQsVzEDq2cv5rjh0LJ4etD78E9zI4jIjaqVqMaFC9dlKjIaBbMXGx2HBEREZFMcWjPYQ7vO4KrmystOzUzO45IlvDJ4c2j7RsDMG/GIpPTiDgOFctF7IzVamXiV78C0OuZ7vjk9DE5kYjYKovFwuP9uwAwc/JfJCUlmZxIREREJOPN/d98ABq3akDOXDlMTiOSdVIm+lw6dwWx0bEmpxFxDCqWi9iZm0eVp7RYEBG5k7aPt8I7hzenjp1m46otZscRERERyVDRUdEsmp08wWGXpzqanEYka1WrW4X8hQOJiogiePFas+OIOAQVy0XsiEaVi8iD8vL2omPPtgD878cZJqcRERERyVhL5iwnKjKaIiUKU6N+VbPjiGQpJycn2ndPHl0+7w+1YhHJCCqWi9gRjSoXkYfRc+DjOLs4s3XddvbtPGB2HBEREZEMYRgGf039B4AuT3XAYrGYnEgk67Xv0RqLxcK/67ZxOvSM2XFE7J6K5SJ2IikpKXVUec9Bj2tUuYjct8BC+WjZOXmyq6nfTTc5jYiIiEjG2LtjPwf3HMbN3Y12j7c2O46IKfIXCqROk5rA//fvF5GHp2K5iJ1YMT9Yo8pF5KH1eb4nAKsWrOHksdMmpxERERFJv7+m/g1A845NyZXb1+Q0Iubp8mRyv/75MxaREJ9gchoR+6ZiuYgdSEpKYuKX/z+qPIevZngXkQdTMqgE9ZvXxTAM/jfhD7PjiIiIiKRL+OVwlv2zEoDHNLGnZHMNmtclIJ8/Vy5dZfWSdWbHEbFrKpaL2AGNKheRjNDnheTR5QtmLeHShcsmpxERERF5eHP+N4+42HiCKpelUvUKZscRMZWLqwsde7YDYM5v80xOI2LfVCwXsXEaVS4iGaVKrcpUql6B+Lh4ZkycbXYcERERkYeSEJ/ArMlzAOg5qJsm9hQBOvVqlzrR56njarso8rBULBexcRpVLiIZxWKx0OeFXgD8+etcIq9HmpxIRERE5MGtmB/MpfOXCcjnT/MOTc2OI2IT8hcKpN6jtQGYM02jy0UelorlIjZMo8pFJKM1bFmP4qWLEhURxZ+/zjU7joiIiMgDMQyD33+eBUC3fl1wdXM1OZGI7ejcuwOQPNFnfFy8yWlE7JOK5SI2TKPKRSSjOTk50e+lJwGYNmEGUZHRJicSERERuX+7/t3D/p0Hcfdwo8uTHcyOI2JT6jevQ978eQi/co3gRWvNjiNil1QsF7FRGlUuIpmlRadHKVKiMNevXufPG/0+RUREROzBbz/8AUCrLi3w889lbhgRG+Pi4kLHJ9oCMHvq3yanEbFPKpaL2CiNKheRzOLi4sKAV54CkkeXR0dpdLmIiIjYvmOHQlmzZB0Wi4UnB/cwO46ITerUuz3Ozs7s2LSTw/uOmh1HxO6oWC5ig24eVf7EQI0qF5GM17JzMwqXKMS1q9eYNXmu2XFERERE7um3738HoEmbhhQrXdTkNCK2KV+BvDRp2xCAmZNmm5xGxP6oWC5ig1JGlfvk9OGJgRpVLiIZz8XFhQEvJ48u/+2H34m8HmlyIhEREZE7O3f6PIv/WgZAnxd6mZxGxLZ1H/AYAIv/Wk74lWsmpxGxLyqWi9iYpKQkfvlqKqBe5SKSuVp1aU7x0kW5fvU6U2+M1BIRERGxRdN/mok10UqNBtWoULWc2XFEbFqVWpUpXb4UcbFx/PP7ArPjiNgVFctFbMzKBas5dvC4RpWLSKZzcXHh+eHPAPD7T7O4eO6SyYlERERE0rp6OZy5/5sPQF+NKhe5J4vFQo+nk0eXz/71b6xWq8mJROyHiuUiNuTmXuUaVS4iWaFRq/pUrlGRuNg4Jn45xew4IiIiImlM++EPYmNiKfdIWWo1qmF2HBG70LJzc3z9fAk7fY7gRWvNjiNiN1QsF7EhGlUuIlnNYrHw4jvPAvDP7wsJPXzC5EQiIiIi/+/q5XBmTZ4DwKCh/bFYLCYnErEPHp7udO3bCUieHNcwDJMTidgHFctFbIRGlYuIWarUrkyjlvWxWq388OlEs+OIiIiIpLp5VHn9ZnXMjiNiV7oPeAx3Dzf2hRxg+8YQs+OI2AUVy0VshEaVi4iZnhs+CCcnJ1YtXMPubXvNjiMiIiKiUeUi6ZQ7wI/2PdoAyaPLReTeVCwXsQEaVS4iZitZtjjturcGYNz735GUlGRyIhEREcnuNKpcJP16P9sDJycnNqzczOF9R82OI2LzVCwXsQEaVS4itmDwG0/j6eXJ7m17WTR7qdlxREREJBvTqHKRjFGoWEEebdcY0OhykfuhYrmIyW4eVf7EwG4aVS4ipskTGMCAV/oAMP7jH4m8HmlyIhEREcmuNKpcJOP0eaEXAEvnruDU8dMmpxGxbSqWi5hsxbzg1FHlPQd1MzuOiGRzPQd1o0iJwly5eIWJX/1qdhwRERHJhi5duMzMSX8BGlUukhGCKpehfvO6JCUlMeWbaWbHEbFpKpaLmMhqtaYWo3o9o17lImI+N3c3hn40BIAZv8zm+OFQcwOJiIhItjP569+Ii42jUvUKGlUukkGevnEF6cI/l3LmxFmT04jYLhXLRUy0Yl4wxw+FksPXhycGalS5iNiGuk1r06hlfayJVr549xsMwzA7koiIiGQTZ0+FMWfaPACeHz5Io8pFMkjFauWp06QWVquVKeM1ulzkTlQsFzGJ1Wpl4pdTAOj1THd8cvqYG0hE5CavfvAibu5ubFm7jZULVpsdR0RERLKJiV9MITEhkdqNalC9XlWz44g4lIGv9gVg/szFnD0VZnIaEdukYrmISZb/s4rQIyfJ4etDj6e7mh1HROQWBYsWoM/zPQH4YsQ3muxTREREMt3xw6Es/HMpAM+9NdDkNCKOp3LNitRqWB1ropUfP5tkdhwRm6RiuYgJrFYrv6T0Kn+2h0aVi4hN6jukN0VKFObS+ct8P/pns+OIiIiIg/tx7CSSkpJo0qYh5auUMzuOiEN6/u1nAFg8exmH9h4xOY2I7VGxXMQEy/5eSeiRk+TMlUOjykXEZrl7uPPWp68BMHvq3+zausfkRCIiIuKo9u08wMoFq7FYLDz7xtNmxxFxWOUfCaJFx0cxDINvP/nR7DgiNkfFcpEsltyr/KZR5Tm8TU4kInJnNepXo1331hiGwajXPyc+Lt7sSCIiIuKAJnz6CwCtu7agZNniJqcRcWzPvTUQF1cXNgVvYcvabWbHEbEpKpaLZLElc5Zz8tgpcvrlpPuAx8yOIyJyTy+PeA4//1wcO3icnz6fbHYcERERcTDbN4awKXgLzi7OPDO0v9lxRBxeoWIFeeypjgB88+H3WK1WkxOJ2A4Vy0WyUEJ8Qmqh6cnBGlUuIvYhl38uho8dBsBv3/9OyOZdJicSERERR2EYBj+MmQhA597tKVi0gMmJRLKHp1/tSw5fHw7tPcLsX/82O46IzVCxXCQL/f37As6eDCN3ntzqVS4idqVJm4ap7Vg+eGU00VHRZkcSERERB7Bh5WZ2/rsbdw83Brzcx+w4ItmGn38unntrEAATxv7C5YtXTE4kYhtULBfJIrHRsUwaNxWAAS8/haeXp8mJREQezNAPh5CvQF7OnDjLNx/9YHYcERERsXNJSUn8MOZnAB7v/xh5AgNMTiSSvXR5sgNBlcsSeT2S8R9PMDuOiE1QsVwki8yc/BeXzl8mf+FAujzZwew4IiIPzCenD++NGw7AX1P/YcPKTSYnEhEREXu2dO4KDu09grePF31e6GV2HJFsx9nZmTdHv4rFYmHhrCVs3xhidiQR06lYLpIFIq9HMvW76QAMGtofVzdXkxOJiDycmg2qpbaR+njoWK5dvW5yIhEREbFHcbFxfD86eVR5nxd7kSu3r8mJRLKnClXL0fnGgL6Ph44lJjrG5EQi5lKxXCQL/G/CDK6HR1C8dFHadG1hdhwRkXR5YfgzFC1ZhEvnLzN2+FcYhmF2JBEREbEzsybP4dyZ8+TNn4eeAx83O45ItjbknWfJmz8Pp0PPpE64K5JdqVguksmuXLrK9J9mATD4zYE4OzubnEhEJH08vDz4YPzbODs7s+yflSyYtcTsSCIiImJHrl29zuRvfgNg8BtP4+HlYXIikezNJ6cP73z+OgAzfplNyOZdJicSMY+K5SKZbMr4/xETHUO5R8rSpE1Ds+OIiGSI8lXKMWhYfwDGDv+KE0dOmpxIRERE7MWkr6cScS2SUuVL0qZbS7PjiAhQt2ltOjzRFsMw+PDVMURGRJkdScQUKpaLZKLzZy4w+9e5ADz/1iAsFou5gUREMlDfF3tRo0E1YmNieXvwB8TFxpkdSURERGzcmRNnmTV5DgAvvfucrrwVsSGvjHye/IUCOR16hlHDPlO7RcmWVCwXyUQ/jJ1IQnwC1etVoVajGmbHERHJUM7OznzwzTv4+efi8L4jfPPRD2ZHEhERERv3/eifSUxIpHbjmtRpUtPsOCJykxy+Ofj4h/dwdnFm+bxV/PXbP2ZHEslyKpaLZJIDuw6x8EYf3yHvDtaochFxSHkCAxj59XAgeaKu4EVrTU4kIiIitmrvjv0s+2clFouFIe8ONjuOiNxGpeoVePHtZwH4auS3HNpz2OREIllLxXKRTGAYBl9/+B0Arbo0p3yVciYnEhHJPPUercOTg58A4MNXx3A69IzJiURERMTWJJ8jfQ9A28dbUaZCKZMTicid9Hq2Ow1b1CM+Lp7hg99X/3LJVlQsF8kEa5duYNuGENzc3Xh++CCz44iIZLrn3hpIpeoViLweyZsD3yM2OtbsSCIiImJDVswPJmTzLtw93Bj8xtNmxxGRu7BYLLw3bjj5CuTl1LHTfPzap+pfLtmGiuUiGSwxITG1b2/PQY+Tv1CgyYlERDKfq5sro3/6gNwBfhzed4Qxw7/UAbWIiIgAEB0Vzbj3k6+8fer5XuQrkNfkRCJyL75+OflkwkhcXF1YuWA1k8ZNNTuSSJZQsVwkg/312z+cPHaKXLl96ftiL7PjiIhkmbz58/DxD+/h5OTEwllLNCGQiIiIAPDLV1O5EHaRgkUL0OcFnSOJ2IvKNSry5ujXAPjxs0msWrTG5EQimU/FcpEMFHEtgp+/mALAM8P645PTx9xAIiJZrEb9aqntp758bzx7d+w3OZGIiIiY6fjhUKb/NBOAoR+9hIenu8mJRORBdOrVju4DHgPg/SGjOLL/qMmJRDKXiuUiGejHzyZx7eo1ipUqQucnO5gdR0TEFE8935MmbRqSEJ/AW4Pe4+rlcLMjiYiIiAkMw2Ds2+OwJlpp1LI+DZrXNTuSiDyEV0a+QI0G1YiJjmFY/3cI1/G9ODAVy0UyyKE9h/lzylwAhn38Mi4uLuYGEhExScqEQEVKFOb82QuMeP5DrFar2bFEREQkiy37eyXb1u/A3cONVz8cYnYcEXlILq4ujJrwPgWLFuDsyTCGD36fxIREs2OJZAoVy0UyQFJSEp8O/4qkpCSad2hKrUY1zI4kImIqnxzefPrLR3h4erBl7TZ+/GyS2ZFEREQkC10Pj2DcB8mTevZ76SkKFslvciIRSY9cuX35fMoovLw92bZ+B1+9/63ZkUQyhYrlIhlgwczF7N62F08vT155/wWz44iI2ISSZYvzzuevAzDlm2msXLDa5EQiIiKSVb547xsunb9M0ZJFeHJwD7PjiEgGKFm2OB+MfxeAWZPnMPd/801OJJLxVCwXSafr4RGM/3gCAIOG9iNv/jwmJxIRsR2tujTniUGPA/D+S6M4vE8TAomIiDi6tUvXs+jPpTg5OfHeuLdw99CkniKOonHrBjz7xtMAjH37K3Zu2W1yIpGMpWK5SDpN+HQi4VeuUbxMMZ4Y2M3sOCIiNuelEYOp1bA6sTGxDOv/tiYEEhERcWDXrl5n1BufA9B7cA8qVa9gciIRyWgDXn6KZh2akJiQyJsDR3D+zAWzI4lkGBXLRdJh1797mD31bwDeGPUKLq6a1FNE5L9cXFz4ZML7FCpWkLBT5xj+7EhNCCQiIuKAkpKS+ODlUVy+cIXipYvyzLD+ZkcSkUxgsVh476u3KFOhFFcuXeX1Ae8QGx1rdiyRDKFiuchDiouN46PXPsUwDNp1b031elXNjiQiYrN8/XLy2eRPkicE2hDCVyM1IZCIiIijmfjFFNYt34i7hxsfjH9X7VdEHJinlyefTf4EP/9cHNh9iDHDv8QwDLNjiaSbiuUiD+nnL6Zw4uhJ/PPm5tX3XzQ7joiIzStZtjgffjsCgFlT5jD3f/NMTiQiIiIZJXjRWiZ+9SsAw8cOI6hyGZMTiUhmy18okNE/fYCTkxMLZy1h3h8LzY4kkm4qlos8hH0h+5n2wx8AvDVmKDlz5TA5kYiIfWjUqv5NEwKNI2TzLpMTiYiISHrt2b6P91/6BIAeT3elbbdWJicSkaxSrW4Vnn1jAACfvTOOI/uPmpxIJH1ULBeHEBsby8iRIylTpgweHh4UKFCAAQMGcPr06QdaT3h4ONOnT6dXr16UL18eb29vcuTIQe3atfn6669JSEggIT6Bj177lKSkJFp2bkbj1g2YMmUKTzzxBOXKlSN37ty4ublRoEABunXrxoYNGzLpVYuI2Kf/Tgh07vT51NusViszZ85k2LBhNGzYEG9vbywWC4MHDzYxsYiIiP0IDg7GYrHc8atOnToPtd6kpCR+/vlnGjRogJ+fH56enpQoUYL2bTsw8PHniI6KoWaD6rz83vMZ/IpExNb1fbE3dZvWIi42nuHPvE9UZPQDryOj6ypffvkljz32GKVLl8bX1xd3d3eKFi1K37592bt37wOvT7IPi6GGQmLnYmNjadasGRs2bCB//vw0bNiQ0NBQtmzZQp48edi4cSMlS5a8r3W9++67fPLJJzg5OVG1alVKlSrFxYsXWb9+PXFxcTRo0IDurXry2/cz8PPPxYzgX8nln4saNWqwc+dOKlWqRKFChfDw8ODgwYPs2rULi8XCTz/9xMCBAzP5nZDMlhiXwO+v/wBAz8+ew8Xd1eREIvYrJjqGQZ1e5NDeI5QoW5yf544nh28OwsPD8fPzS3P/Z599lgkTJpiQVERExL4EBwfTtGlTSpYsSYMGDdLcXrJkSUaMGPFA64yOjqZDhw6sXLkSPz8/6tevj4eHB3t27eHAoYMU9y1D04aPMv6Pz/Hy9sqolyKSZXSul37hl8N5suVALoRdpFWX5nz47btYLJb7fnxG11UCAgKIioqicuXKFCxYEIC9e/dy6NAh3NzcmDt3Lm3atHng1ymOz8XsACLpNWrUKDZs2EDdunVZunQpPj4+QPJfEYcOHcqAAQNYvXr1fa3Lx8eHt99+m+effz71lynA4cOHad68OevWreNYyEkK5ijGsI9fJpd/LgC+++47ypcvT44ct7Zj+eeff+jatSsvvfQSjz32GLlz586YFy0iYuc8vTz5Yspo+rcfzLGDx3lz0Ht8PW0srq6uPPXUU9SsWZOaNWsSEhLCc889Z3ZcERERu9OgQfIVsBmhf//+rFy5kgEDBjB+/HhcXVyZ+t10Tm28xCN5falYozzf/K5CuUh2lss/F5/8MJLBXV9myZzlVKv7CF2e7Hjfj8/ousrff/9N9erV8fDwuGX5Dz/8wPPPP8/AgQM5efIkzs7O951Rsge1YRG7lpCQwPjx44HkX6wphXKA1157jcqVK7NmzRq2bdt2X+t76623+OSTT24plAOULl2ad99JHn1xKeY87bq3pkWnR1Nvr127dppf6AAdO3akSZMmxMTEsGnTpgd+fSIijixfwbx8NXUMXt6ebF23nY+HjcXLy4upU6cyZMgQ6tSpk+bgVkRERLLWypUrmTlzJjVr1uTnn39mz9Z99Go2gB8/m0RSUhJde3Xml9k/4O2jQrlIdvdIrUo8P3wQAF+MGM+hPYfv+7EZXVdJuQLmv5577jlKlSrF2bNnOXjw4H2vT7IPFcvFrq1bt47w8HBKlixJ1apV09zerVs3AObNm5eu50lKSiJ47noAEpMSeGPUK/f92JS/Urq5uaUrg4iIIypbqQyjf/oAZ2dnFv25lB8/m2R2JBEREbnJjz/+CEC96g3p2/oZXnxiKCeOniR3ntx8+O27vPvlm7h7uJucUkRsRe/BPWjQvC7xcfEMf3YkkRFR6V5nRtdVVKeRu1GxXOzazp07AahWrdptb09ZnnK/hzX1u+n8u+lfAAIDA/H08ryvx61YsYJVq1aRO3duatWqla4MIiKOqm7T2rw55jUAJo2bytz/zTc5kYiIiP07fPgww4cP55lnnuHtt99m4cKFJCUl3fNxhmFwOvQM82cuZtTrn/H3nL8BWP3XBnbsCCEs+hRO+RKo0rosuQrkeKCexCLi+JycnBj59dsEFszHqeNn+GTYWNIzXWJG11WmTp3KwYMHKVOmDCVKlEj3+sTxqGe52LWTJ08CUKhQodvenrI85X4PY/umnUz49BfOR50BoGu3rne87+TJk1m9ejWxsbEcPXqUrVu3kjNnTqZPn07OnDkfOoOIiKPr3Ls9586cZ9K4qXz61pfkCQygfrM6ZscSERGxWxs2bGDDhg23LKtUqRKzZ8+mdOnStyyPvB5J8KK1/LtuG1vX7+DiuUsAJFjjiUuIw9nigpEjgX3HticX00OOszlkI5+O/ZQnn3ySSZMm4eqqCRFFJJmvX04+mTCSZ7oMYcW8YP6sM5fH+3e5r8dmdF3ls88+Y+/evURFRbF//3727t1LgQIFmD59Ok5OGkMsaalYLnYtMjISAC+v2/fH8/b2vuV+D+rsqTCGD3qPcxGnuR4fTq5cuXjrrbfueP/169fz66+/pv7fz8+Pn3/+mVatWj3U84uIZCfPvj6AsNPnWPTnUt4a9B7f/P6Z2ZFERETsjq+vL6+//jpdu3ZNLYqHhITwzjvvsGnTJlq0aMHOnTvx9fVlX8h+Zk2Zy/J/VhEXG5e6DhdXF8o/EkS+YgGEjN+ExRl2Ht3GU089xbvvvkvevHlZsWIFgwcPZtq0aRQsWJAxY8aY9ZJFxAZVql6BIe8OZtz73zHug+8oXyWIClXL3fNxGV1XWbJkCStWrEj9f+HChfntt9+oXr36Q61PHJ/+hCJ2LeVSnjtd+peeS30iI6J4rc9wTpwN5VTEMSwWC5MmTaJAgQJ3fMzEiRMxDIOIiAi2bt1KixYt6NatG88888xD5xARyS4sFgsjvniT+s3rEhcbx2t9hhN2+pzZsUREROxK1apVGTt2LLVr1yZ37tzkzp2bRx99lHXr1tGwYUNOnDjBmFFjGNb/Hfq1HcyCmYuJi42jRNni9H/5Kb6b+RUrDyxk4j/f0evZ7gAkJiZSt25dpk6dSpkyZciVKxddu3ZlypQpAHzzzTdcv37dxFctIrao56DHadKmIQnxCbw5cARXL4ff8zEZXVdZvnw5hmFw9epV1qxZQ9myZWnSpAmffPLJQ61PHJ9GlotdS5kpOSrq9hNGREdHA+Dj4/NA601MTOTd5z5gz57dHL22nyQjiW+++YYuXe7vsiEfHx+qV6/OjBkziI2NTf0raNeud27hIiIiySPZRv/4AS/3fp0dm3byvx9mmB1JRETEpvTr1y/Nss6dO9O5c+e7Ps7Z2Zk333yTtWvX8sM3P1LGrxJOTk60eqw5Xft0olL1CmkGIaWcbwEMGDAgzTrbtWtHvnz5OH/+PFu2bKF58+YP9ZpExDFZLBbeGzecLf9uYdP+ddStXo9ajWqktj/5/PPPCQgIuO1jM7qukitXLho2bMjChQupW7cuI0aMoGXLltSsWfOhX584Jo0sF7tWpEgRAE6fPn3b21OWp9zvfiQlJfHRa5+ycmkwh67uIdGawPvvv8+QIUMeKuOTTz4JwN9///1QjxcRyW48PN354tfRlK8SRHRU8h89r1y6anIqERER2/Drr7+m+QoJCbnn4xITElkzP7mHeWxCLI/UqsTvqybzwTfvULlGxdterVugQAHc3NwAKFq06G3Xm7L8woULD/mKRMSR+eTwpm2vllyOOc/BE/v57bffUn933W/L3Iysq7i6utKjRw8Mw2DevHnpXp84HhXLxa498sgjAGzfvv22t6csr1y58n2tzzAMvhjxDX/PmMehK7tJsMbz8ssvM3LkyIfOmPJX0osXLz70OkREshufHN58+8cXFC6ePFHzumUb2L5pp8mpREREzGcYRpqv999//66PibweyQs9XmPerIUA5M2Xhwmzv6Z46WJ3fZyLiwsVK1YE4MqVK7e9z+XLl4EHv5pXRLKPN94axrJ/VlIzfyNq5m/EivnBGIZBsWLF7uvxGV1XUZ1G7kbFcrFr9evXx9fXl6NHj7Jjx440t//5558AtG/f/p7rMgyDbz/5kd9/mcmhK3uIs8bSv39/vvrqq3RlXL16NQAlS5ZM13pERLIbn5w+9B7cA4DERCsv93qdjcFbTE4lIiJiXyKvRzKk5zB2bNpJZNI1AFq1bYmzs/N9Pb5jx44ArFq1Ks1toaGhhIaGAsm90kVE7qR5h6b0fjb52P79l0axb+eB+35sRtdVVKeRu1GxXOyam5sbL774IgAvvvjiLb3Lv/zyS3bt2kWDBg3S9KD69ttvCQoKYvjw4UBy65XP3h7HlO+mcejKHmISo+jevTs///zzHScPTbFv3z5+/vlnYmJiblluGAZ//PEHY8eOxWKx0Ldv34x4ySIi2Yqbe/Kl34EF896Y9PMt/p6+wORUIiIituvHH39MHe0dFxvHsP7vsGf7PiK4SljEKSwWC4MHD07zuKCgIIKCgjhz5swty59//nly5szJ5MmTWbZsWeryyMhInnvuOaxWK+3ataNw4cKZ+8JExO698M4z1G5ck9iYWF576i3OnDgLPHxdZc6cOQQFBdGnT59blq9du5YZM2aQmJh4y/KEhATGjx/Pb7/9hqenJz169MiEVyn2ThN8it179913Wb58ORs2bKB06dKpM7xv3rwZf39/Jk+enOYxly5d4uDBg4SFhZEQn8DHw8ay6M+lnIkIJSohAmdnZ1xcXHj66adv+5wps75Dcm++Z555hmHDhlGjRg0CAwMJDw9n3759hIaG4uTkxBdffKFJI0RE7tPzzz+f2kYr5dLI89fCcLVcJvzcNXr368noY2N54e1nUicHEhERkWSjR49myJAhlC9fnqirMVw6f5lYazSxiTE4OTnx9ddfU7169TSPO3jwIJBcTLpZnjx5mDJlCt27d6d169bUqVOHvHnzsmnTJs6dO0fx4sX58ccfs+S1iYh9c3FxYczPH/JslyEc2nuEl3q/zsS/v3vousq1a9c4ePAggYGBtyw/evQo/fv3JyAggOrVq+Pv78+lS5fYvXs3YWFheHh4MGXKFP2RT25LxXKxex4eHqxatYrRo0czffp05s6di5+fH3379uWjjz666y+/+Lh4hvQcxvaNITg7O1OpZnnOB5/BarUyffr0Oz7u5mJ5hQoV+PDDDwkODubQoUOsX78eJycnChUqxIABA3jhhReoVq1aRr5kERGHtm/fPjZv3nzLsv9OGvbb979zaM9h3h//Dv55cmdlPBEREZs2dOhQli5dyoZ1Gwi/Fo5hGAQGBtKseVdeeumlhxrE06VLFzZs2MAnn3zCunXr2Lp1K4ULF2bo0KEMHz4cf3//THglIuKIvH28GDdtLE93eJ5Tx07zQvdX+fD7dzK0rtK4cWPefvttVq9eza5du7h06RJubm4UK1aMbt268dJLL1GqVKlMfJVizyyGYRhmhxAxw5H9RxnW/x3OngzD28eLj75/jwbN65odS2xYYlwCv7/+AwA9P3sOF3dXkxOJZE+L/1rGqNc/JzYmFv+8ufnw2xHUbKA/SoqIiKSYP2MRH746BovFwqgf36dZ+yZmRxKxaTrXy3onjp7iuW4vc+n8ZUqVK8F3M7/Czz+X2bFE1LNcsh/DMJg1eQ792w3m7MkwChYtwMR536tQLiJiJ1o/1oIpi36kRNniXL5whRd7vMaPY38hIT7h3g8WERFxcIf2HObT4V8CMGhoPxXKRcQmFS1ZmB9mjSMgnz9H9h9jcNeXOXsqzOxYIiqWS/ZyIewiQ/sO57N3xhEXG0/dprWYPP8HSpYtbnY0ERF5ACXKFGPKggl07NkOwzD4ZdxU+rQexO5te82OJiIiYprr4RG8MXAEcbHx1G9WhwGv9Ln3g0RETFK0VBF+mDWOPIEBHD8UyoB2z7F3x36zY0k2p2K5ZAtJSUn8OWUOPZr0Zd3yjbi6uTL0wyGMmzaWXLrMR0TELnl4efDuF2/w8ffvkSu3L0cPHGdgxxf4eOhYLoRdNDueiIhIlkpKSmLkS59w9mQY+QsH8v4372gibBGxeUVLFWHS/B8oXb4UVy5dZXDXl1g0e6nZsSQb055THN62DTvo324wY98eR1REFBWqluPXRT/SY2A3LBaL2fFERCSdWnZuxszVU2nXvTWGYfDP7wvoWr833436iauXw82OJyIikiUmfzON9cs34ubuxqc/f4SvX06zI4mI3Jd8BfLy09zx1G9el7jYeEYO+YSPh44lNjrW7GiSDalYLg5rX8h+Xu3zFs91e4X9Ow/i5e3J0I9eYuI/31GqXEmz44mISAbK5Z+LkeOGM/Hv73ikZiXiYuP49dv/0bFmdz57Zxynjp82O6KIiEim2RT8Lz99NgmAN0a9QlDlMiYnEhF5MN4+Xnw++RMGDe2PxWLhn98X0K/dYA7tPWJ2NMlmVCwXh2IYBts27GDIE0Pp13Yw65dvxNnFmcf7deGvjb/T4+muODs7mx1TREQySeWaFflp7ng+m/QJQZXLEhcbx6zJc+havzeDu77MglmLNUJFREQcStjpc4x44SMMw6BTr3Z07NnO7EgiIg/F2dmZQUP78e2ML/HPm5tjB4/Tv91g/jdhBklJSWbHk2zCYhiGYXYIkfSKjYljxfxVzP71b/Zs3wck/5Jt9Vhz+r/0FEVLFjY5oTiCxLgEfn/9BwB6fvYcLu6uJicSkbsxDIN/121n+o8z2LhqCymHPN45vGnUsh5N2zamTpNaeHi6m5xURETk4cTHxfNMlyHsCzlAUOWy/Dx3PO4e2q+JPCid69meK5euMmrYZ6xZuh6A6vWr8v64t8lXMK/JycTRqVgudu344VDm/DaPhX8u4Xp4BABu7m50eKINTz3fkwKF85ucUByJDqBE7Nf5MxeYP2sx8/5YyNmTYanLPb08qdesNo1bNaBu09rq7yoiInZl9JtfMOe3f8jpl5Opi3/S+Y/IQ9K5nm0yDIO/p8/ny/e+JTYmlhy+Prw5+jVadm5mdjRxYCqWi925ejmclQtWs/ivZezcsjt1ef5CgXTq3Z6OPdsSkNffxITiqHQAJWL/kpKS2PXvHlYuXMOqBas5f/ZC6m3Ozs5UqV2JBi3q0ahlfQoXL2RiUhERkbubP2MRH746BovFwrhpn1K3aW2zI4nYLZ3r2baTx04zcsjH7N2xH4DWj7Xg9U9eJodvDpOTiSNSsVzsQuT1SIIXr2Pp3BX8u3YbVqsVACcnJxq0qMdjT3WgduOa6kcumUoHUCKOxTAM9u88QPCitaxdtoGjB47fcnvx0kVTC+cVq5fXPkZERGzGvpD9PNPlJeLj4hk0tD+DhvYzO5KIXdO5nu1LTEhk0te/MWncVJKSkggsmI/3v3mbanWrmB1NHIyK5WKzYqNjWbt8A0vnrmDDys0kxCek3hZUuSwtOz1Ki06Pkq+A+lVJ1tABlIhjO3MyjHVL17Nm6Qa2bwrBmmhNvS1Xbl8aNK9Lqy7NqdGgmgrnIiJimssXr9C39TNcCLtIo5b1GTvpY5ycnMyOJWLXdK5nP3Zt3cPIIZ9w5sRZLBYLTz3fk2dfH4Crm7aZZAwVy8WmJMQnsCl4C0vmrmDt0g3ERMek3la8dFFadm5G846PasJOMYUOoESyj4hrEWxctYW1yzawYeUmIq5Fpt6WN38e2nZrSbvHW1O0VBETU4qISHYTFxvHi08MZeeW3RQtWYTJCyfgk8Pb7Fgidk/nevYlKjKar0Z+yz+/LwCgbMXSfPzDSNWKJEOoWC6mi42JY/PqfwlevJY1S9bdUpAoUCT/jRHkzShVrgQWi8XEpJLd6QBKJHtKTEgkZMsuVswPZtnfK1MnlAao3agGPQZ2o96jtTWqT0REMlVSUhLvPvchy+etwjuHN5Pn/0Cx0kXNjiXiEHSuZ59WLVrDqGGfc+3qNby8PXnr06G0fqyF2bHEzqlYLqaIvB7JuuUbCV68lg0rNhMbE5t6W0A+f5p3fJSWnR6lQtVyKpCLzdABlIjEx8WzdtkG5s9czMaVm0lKSgKgcPGCdO//GO16tNEIPxERyRTjPviO6T/OxMXVha//9xk1G1QzO5KIw9C5nv26eO4SI174iO0bQwDo8ERbhn38Ep5enuYGE7ulYrlkmSuXrrJmyTqCF61ly9ptJCYkpt4WWDAfTdo0pEmbhjxSq5J6wYpN0gGUiNzszMkw/pw8h79/X0Dk9eSrorx9vOjwRFse79+FwsULmZxQREQcxZTx0/h+9M8AfPjtuxo5KZLBdK5n36xWK798NZVfvvoVwzAoXqYYoyaMpGRQCbOjiR1SsVwy1bnT5wlevJZVC9ewc8vu1BF4kNyDvEnbRjRp05CgSmU0glxsng6gROR2oqOiWfjnUmb+MpvQIycBsFgsNGxRj97P9aBKrcrax4mIyEOb+OUUfvp8MgBD3h3MU8/3NDmRiOPRuZ5j+Hfddt578SMuX7iCu4cbz77+ND2feVwDMuWBOEyx3DAMDMNQv1AbcPxwKMGL1rJq4VoO7Dp4y23lHilL07aNaNK6ofrrid3RAZSI3E1SUhJb1mxjxi9/sn7FptTlFauVp/fgHjRp01AH6iIict8Mw2DC2F+Y/PVvALww/Bn6DultcioRx6RzPcdx5dJVPnh5FBtXbQGSj8VHfPUmxUsXMzeY2A2HKZaHnT5Hp1o9cHN3w8PTHXcPdzw83fHz9yNP/gDyBOYhX4E8FC1ZhOJlipG/UD4V1jOIYRjs33WQ4EVrCV64JnVUHYCTkxNValemaZuGNG7dkMBC+UxMKpI+OoASkft14shJpv80kwWzlhAfFw9AoWIF6fXM47Tv3gYPLw+TE4qIiC2LiY7ho1c/Zfm8VQC8/N7z9B7cw+RUIo5L53qOxTAM/p6+gK8//J6oiChc3VwZ8Eofej/bAw9Pd7PjiY1zmGJ56OETdG/c577v7+7hTvEyxShXuQzlq5SjfJUgipcpiouLSyamdBxWq5WdW3YnF8gXreXcmfOpt7m4ulC7UQ0at25Io1b1yR3gZ2JS+3Lx4kWzI8hdJMYnMP/D/wHQ/r3euLjpAErkQeXJk8fsCFnq8sUrzJo8hz9/ncv1q9cB8PXz5fF+nXl8wGP4+ecyN6CIiNicMyfDePPpdzm09wjOLs68OfpVOvfuYHasDKHzHbFVOtdLP1s8zj9/9gJj3vwi9arPvPnz8OzrA2jTraXqf3JHDlMst1qtXA+PIDYmlriYOOJi44iJjuXyxStcPHeJC2EXOXf6PKFHT3LiyEkS4hPSrMPdw52gSmUoVyWIClWCqFitPAWK5Fef0RtiomPYsmYba5dtYO3S9Vy9HJ56m6eXJ/Wa1aZJ64bUb1YHn5w+5gW1Y/pZs23OONEioBYAyy5twUrSPR4hIv/lIIcdDywmOoZ/fl/I9J9mEnbqHADuHm60696aXs/0oEgJTQYqIpLdJSUl8ddv/zD+ownERMfg55+LMRM/pGrtR8yOlmF0viO2Sud66Werx/mGYbB07gq+G/VT6kDP/IUDeWJgNzr2bIe3j5fJCcXWOEyx/EEkJiZy9uQ5juw/yr6QA+wN2c+BnQeJioxOc99cuX2pUK08FaoE3fhejpy5cpiQ2hxnToaxfvlG1i3fyPaNIamXkgPk9MtJoxb1aNKmEbUa1dClLBlAB4+2TQdQIumXDQ87bpGYmMiqhWuY9sMf7N+ZPK+HxWKhcesGPPncE1SqXkH7AhGRbGhfyH7GfzyBbRtCAKhSuzIfjH+H/IUCzQ2WwbSPE1ulc730s/Xj/LjYOGZNnsOv307n2tVrQPLAz8atG9CyczNqNayOm7ubySnFFmTLYvntJCUlcfLoKfbtPMDeHfvZF3KAg3sOk5iQmOa+RUoUpkK1clSoUo6K1cpRunwpXB3kEp3ExER2bd2bWiA/fij0ltsLFi1Ag+Z1adiyPtXqPIKLqy5byUg6eLRtOoASST8ddiQzDIPtG0OYNmEG65dvTF1eqlwJ2j3emlaPNScgr7+JCUVEJLMZhsHubXv57fvfWb14HZB8tfOLbz/D4wMec8g5tnS+I7ZK53rpZy/H+bHRsSycvZTff5rFiaP/P+eeh6cH1etVoU6TWtRpUosiJQrpd1Y2pWL5XcTHxXNo7xH2bt/H3pAD7N2xj1PHz6S5n7OLM0VKFKZk2eKUDCpOiaDilCxbgoJF8+Ps7GxC8vuXmJjIoT2H2b5xJ9s2hrBzy24ir0em3u7s7MwjtSrRoHldGjSvS9FSRfTLIhPpvbVtOoASST8ddqR19OBxpk+YweI5y1PbxDk7O1O7cQ2atm1Mo1b11dtcRMSBnDt9ntWL1/L37ws4sv8YAE5OTrTp1pJBQ/tRoHB+kxNmHp3viK3SuV762dtxvmEY7N2xnyVzlrNifjCXzl++5Xb/vLmpUrsyVWpVpmrtypQsV8Lma3ySMVQsf0DhV66xL2Q/e3ckF8/37jiQevnGf7l7uFGsVFEKFy9EwaIFKFg0PwUK56dg0QLkK5DXlFHZl85fZv/OA+wLOcC+nQfY9e+eNO1nfP18qfdoLRo0r0edJjXJ4Zt92s6YTRPe2DZN+iKSfrY48Y+tuB4ewbJ/VrJg1mL2bNuXutzJyYnKNSvSsEU9qterQpmKpTUhkdiFL0d+i4enO37+ufDzz0WxUkUpUbaYLnGWbOfa1evs2rqHHZt2smXNVg7tPZJ6m7uHG807PkqfF3pSvHQx80JmEZ3viK3SuV762fNxvmEYHNl/jI2rNrMxeAu7/t2TZq5Dn5w+PFKzIlVqVaZK7cqUe6SsjmkclIrl6WQYBhfCLnLs4HGOHjjO0Rvfjx86Tlxs/B0f5+zsTN4CeShQJD95AwPIE5iHPIEB5C2Qh4C8/uTMlRPfXDnw8fV5oBPi+Lh4Ll+8wqXzl7l0/jJhp89x4shJThw9ReiRk1y5eCXNY3L4+lClVmWq1atC9bpVKV2hpP5aJnIbiXEJ/P76DwD0/Ow5XNx1ACUimePEkZMsnx/M6kVrObD70C23eft4UblmRSpWq0Cp8iUoFVSCgkULOOTl+mK/rFYr9Yo0SzPKzNnFmVJBJajZsDp1GtfkkVqVcPfQvDeOyDAMLl+8wtVL4URcjyTyWiQR1yNIiE/AMAxSfjTc3N3w9PLAw9Pjxnd3PLw8k797euDm7oa7uxsuri42OyrZMAyuh0dw6fwlLp67zImjJwk9coLQwyc4fjjtOVjKH0GbtW9Cm64ts9WcWCK2Sud6crPYmDj27TxAyOZdhGzexa5/dxMdFXPLfVzdXClRphhlKpYmqFIZylYsTanyJfDy1oSh9k7F8kxitVo5cyKMYwePc+bkWc6eDOPsyTDOnDhL2Olzdy2k/5d3Dm98cnjj5u6Ki6srrq4uuLq5YnGyEBsdS1RkNDFRMcREx9xzvU5OThQrXZTyj5Sl3CNBVKpeQcVxkfukAygRMUPK5fpb1m4jZMsuIq5FprmPh6cHBYrkJ7BgXvIVzEfe/HnI6ZuDHL4+eOfwxtvHCycnJ5ycnXB2dk7d78fFxhEXG0dsTNz//zs2jriYOGJjYomJjiUmOobY6Fiib3xPXRYThzXRioEBNwpfyQUwA2dnJ9w93HH3cMfD0z313yn/9/DyxMvbE8+U7943ffdK/u7p5ZG63MPTQ38MsDPxcfH89v3vXL0cztVL4Vw8f4ljB49zPTzilvu5e7hRvV5VGrVqQMMW9cgTGGBSYnlYMdExHDsYypH9xziy/yihh08Qdvo858+ef6BznnuxWCzJhXMPN1zdXHFxccHJ2QkXl+TfaU43frc5OzvhnLos+d8uKf++cT+X/9x+8+OcnP7/96STc/LvnYT4BBISEkiITyQmKobIiEgir0cRFRlN5PVIwq9cIz7u7q+1SInCVK1Tmap1HqFu09pqryViY3SuJ3eTmJjI4X1HU4vnIZt3cfVy+G3vmyu3L4GFAslfKB8Bef3xzuGFt4833jm8cHVzw9nZCYuTJXk/45T8bxdXFzw83HH39MDDww13Tw+8vb3IncdPo9dNoGK5CZKSkrh84QpnT4YRdvocF89d4kLYxeTv5y5y+fwVrl+LICoi6qHW7+rmSkBef/zz5SZv/jwUK1WUoiULU7RUEYqVKqK/cok8JB1AiYjZrFYrR/cfY/umnRzac5gj+49x7FDoPYs0jsDT66ai+o0iu4eXBy6uLv9f6Lq5+OWU/L33sz0oVrqo2fGFG1dknr1IyJZdbF79L5vXbOXiuUu33KfcI2Vp1KoBjVrWp1S5EjY7kjg7SkpKIuz0eY7sO8qR/Uc5vP8oR/Yd49Tx03fsU+vk5ESu3L7kuOmPd+7ubmCxkLJp4+PiiYmOJTYmjtgbf4hL/n8scbFxWfgK0y+nX04C8vpTqFhBipcuSrHSRSheuihFSxXF20fnYCK2TOd68iAMwyDs9DkO7j7MwT03vnYfStP3PCPkzJUD/7z+5MnnT76C+QgsmC91gExgwXzkK5AnS6/Si42OJfzKtZu+wrl29TrXbl529RqR1yKJi4sn/sZXXFw88bHxvDnmVdo93jrL8j4MFcttWGJiIpHXIrkWHkFUZBSJ8YmpIxoSEhJIsibh6eWBl49X6smjt483OXx9dGIhkgl0ACUitigxMZEzoWdvjOS8wPkz57lw7hKR1yOJvB5JxPVIYqJisCYlkWRN/rJarUDyqN57jQD39EpujeDp6XHL/z28PHF2ccZiAQsWLJbkLyyQZE26MVI9/tYR6zeWxUbHEB0VQ0xUDNHRN77/5/8py9J7qDph9tdUq1slA95pyWiGYXDs4HHWLdvImqXr2bN93y3bO3/hQBq2qEeN+tV4pFYljcTNQlcvh3P0wDGO7j+W2mby2MHjaeY6SpE7T25KlytBqXIlKVG2WPKVLoUCyZc/T7rmaUpKSiIhPuH/T7JvnGjHx8WTaLViTbSm/k6zWpOwJlqxWq0kWa0kWm/cdmNZyu1JSdYby2487sY6UteXlJT8+BuPA3BzSx7N7urmgqeXJz45vPHO6Y23jzc+Ob3x9fMlIG9utRQSsWM615OMEHEtgrDT5zl3+jxhp8K4euUaURFRyV+R0amtyKzW5H1NkmGQZE3e16UeJ9/4Y3FkRBSJCYn39by5A/zIVzBvcvH8RjE9paieM1fOG/uw5E4VVmsS8XHxyc8ZF09CXDyREVFcD4/gengEEdciuB5+nevXIrh+Nfnf165eTy2Ep/cP2W+OeY2ufTqlax2ZTcVyEZH7pAMoEZGsZRgGcTFxaQvqN9rPRUdFk5hwa/ErKSnppn9bafNYSwIL5TP7pch9uHThMuuXb2LNknVsWbs1TQuPIiUKU7lGBUqULU6x0kUpXroogYXyqZ3gQ0iIT+DKpaucO32es6fCUltGnj0VxvFDJ7hy6eptH5fSn7VU+ZKUKleC0uVKUrJcCfzz5M7iVyAikrF0rie2xjAMrl29zuWLV7h8/jIXzl3i/JnznDtznnNnLtz49wViY2KzPJuLqwt+/rnw9cuJb25fcqV8+SV/971xVZmHpzuubq64u7vh5uGGm7s7fv6+Nt/x4uH/zC8iIiIikoksFgseXh54eHlAgJ/ZcSSTBeT1p1OvdnTq1Y7Y6Fi2rN3GhlWb2LllN0cPHOfksVOcPHbqlsc4OzuTO48fAfn8CcjrT06/nHh6etzS997d3S25b7WLS+p3i5Pltldi3unqzAddzp0u8rypt3/KFzeGLt2y7Lb/58b8AEbqBJnJtyXfnpiQmDr/QOyNeQeSv5Lbmly7eo2rl8K5evnqbec++K+CRQtQMqgEJYOKUyqoBCWCilO0ROF0jRQXERGR+2OxWFKL0CXLFr/tfVIK6imF8/NnL3DuzHnOn7lwo6h+nsjrUSQkJNwySt3Z2Rk3dzdc3V1xc3PFJ4c3OXxzkNMvJzl9fciZKyc5fHPgmysHOXLlSM3hmzsXuXL74uXt6dAdLTSyXETkPhmGgTU+eQfj7Obi0DsHERERW3Lt6nV2b9vLvpADhB4+QeiRE5w8djpb9OvPLM7OzuTNn4cCRQLJXyiQAkXyU6BIfoqVKkLxMsXw9PI0O6KISJbRuZ44uqSkJBITEm9Mjq0/fN+NiuUiIiIiImJ3rFYrly9c4dKFy1w+f5lLFy4TcS2S2OjY5NY90bFE3+gPmphoxZqYSGJCIomJiSQlpT0FutNp0R1Pl+60+C7rubm3f8q/LSmTXab8+8awdMuN+3DTff7/8cn3Sv0/4OzinHwlhqdH8pwDN31393DH1y8nfgF+5PbPhV+AHzl8fXBycrrreywiIiKS3ahYLiIiIiIiIiIiIiLZnoYSiIiIiIiIiIiIiEi2p2K5iIiIiIiIiIiIiGR7KpaLiIiIiIiIiIiISLanYrmIiIiIiIiIiIiIZHsqlouIiIiIiIiIiIhItqdiuYiIiIiIiIiIiIhkeyqWi4iIiIiIiIiIiEi2p2K5iIiIiIiIiIiIiGR7KpaLiIiIiIiIiIiISLanYrmIiIiIiIiIiIiIZHsqlouIiIiIiIiIiIhItqdiuYiIiIiIiIiIiIhkeyqWi4iIiIiIiIiIiEi2p2K5iIiIiIiIiIiIiGR7KpaLiIiIiIiIiIiISLanYrmIiIiIiIiIiIiIZHsqlouIiIiIiIiIiIhItqdiuYiIiIiIiIiIiIhkeyqWi4iIiIiIiIiIiEi255KRKzMMg/j4+IxcpYiIiIiIXXNzc8NisWT58+rYXERERETkVvc6Ns/QYnl8fDxjxozJyFWKiIiIiNi1t956C3d39yx/Xh2bi4iIiIjc6l7H5hbDMIyMerKMHr1y7tw5pkyZQr9+/QgMDMyw9cqD0XawDdoOtkHbwTZoO9gGbQfboO1gG+62HbLryHL9bNoPbSv7ou1lP7St7Iu2l/3QtrIvtra9snRkucViydBRM25ubqnfzRiNI8m0HWyDtoNt0HawDdoOtkHbwTZoO9gGW9wOGX1s/qBs8T2R29O2si/aXvZD28q+aHvZD20r+2Jv20sTfIqIiIiIiIiIiIhItmfTxXIfHx8aN26Mj4+P2VGyNW0H26DtYBu0HWyDtoNt0HawDdoOtkHbIS29J/ZD28q+aHvZD20r+6LtZT+0reyLvW2vDO1ZLiIiIiIiIiIiIiJij2x6ZLmIiIiIiIiIiIiISFZQsVxEREREREREREREsj0Vy0VEREREREREREQk21OxXERERERERERERESyPRXLRURERERERERERCTby/Ji+blz5xg4cCD58+fHw8ODMmXK8OGHHxIfH3/f6zh8+DCjRo2iUaNGFChQADc3NwoXLkyfPn04cODAbR/Tr18/LBbLbb+CgoIy6uXZlH///Ze2bdvi5+eHt7c3tWrVYvr06Q+0jqSkJL799lsqV66Mp6cnefLkoXv37hw+fDhTn9fRpPc9WbduHUOHDqV69er4+/vj4eFBUFAQb775JuHh4bd9TLFixe74Mz948OAMemX2Jb3bITg4+I7vqcViYdOmTZnyvI4mve9HkyZN7rodLBYLv/322y2P0efhVtOmTePZZ5+lRo0auLu7Y7FYmDJlygOvR/uI9MmI7aD9Q/plxHbQ/uH+bN++nccff5zixYvj6elJ0aJF6dSpE2vWrDE7mtwkNDT0nvtZZ2dns2PKbezcuZNevXpRsGBB3N3dKVCgAG3atGHVqlVmR5MbsmNdwpFs2rQJZ2dnLBYLY8aMMTuO3GTMmDG0bNmSwoUL4+npib+/PzVq1ODLL78kOjra7Hhyk6ioKKZNm0b37t0pU6YMnp6e5MqVi8aNG/P777+bHQ8Al6x8snPnzlG7dm1OnTpF586dKVOmDOvWrWPkyJFs3LiRBQsW4OR07/r9iBEjmDFjBhUrVqRTp07kzJmT3bt389tvv/Hnn3+yZMkSGjZseNvHvvzyy+TKleuWZQEBARnx8mxKcHAwrVq1ws3NjSeeeAJfX1/++usvevfuTWhoKG+//fZ9rWfw4MH8/PPPlC9fniFDhnD+/HlmzJjB0qVL2bBhA+XLl8+U53UkGfGedOvWjUuXLtGgQQP69OmDxWIhODiYsWPHMnv2bDZs2EDevHnTPM7X15dXXnklzfIaNWpkxEuzKxn5s9m4cWOaNGmSZnmhQoUy9XkdQUa8H/369bvt+5+QkMDo0aNxcnKiWbNmaW7X5+H/vfvuu5w4cYKAgADy58/PiRMnHmo92kekT0ZsB+0f0i+jPg+g/cPdzJ07l65du+Lu7k6XLl0oXLgwp06dYs6cOfzzzz9MnjyZfv36mR1TgFy5cjFy5Mjb3rZ161YWLFhAq1atsjiV3MvUqVMZMGAAvr6+tG/fnoIFC3Lp0iW2bt3Khg0baNq0qdkR5SbZpS7hSGJiYujXrx+enp5ERUWZHUf+48cffyQgIIAWLVqQN29eIiMjCQ4OZujQoUydOpUNGzbg5eVldkwB1q5dy1NPPYW/vz/NmjWja9euXLhwgb/++otevXqxYcMGxo8fb25IIwv16dPHAIzvv/8+dVlSUpLRt29fAzAmTZp0X+uZPHmyERISkmb577//bgBG+fLl09yW8hzHjx9/6Pz2IiEhwShZsqTh7u5ubN++PXX59evXjQoVKhguLi7GoUOH7rmelStXGoDRsGFDIzY2NnX58uXLDYvFYjRq1ChTnteRZNR7MmbMGOPs2bO3LEtKSjKee+45AzCef/75NI8pWrSoUbRo0XS/BkeQUdth1apVBmCMHDkyS5/XUWT2+/Hnn38agNGhQ4c0t+nzcKtly5YZoaGhhmEYxujRow3AmDx58gOtQ/uI9MuI7aD9Q/plxHbQ/uHeypUrZ1gsFmPHjh23LN+2bZthsViM4sWLmxNMHkj79u0NwJg9e7bZUeQmW7duNVxcXIy6desaV65cSXN7QkKCCankdrJTXcLRvPrqq0bOnDmNjz76yACM0aNHmx1JbhITE3Pb5U899ZQBGN9++20WJ5I7CQkJMf73v/8Z8fHxtyw/d+6cUbRoUQMwtmzZYlK6ZFnWhiUiIoIZM2ZQokSJWy7xtVgsqSMBf/755/taV79+/XjkkUfSLH/iiScoU6YM+/bt49KlSxmW3d6sXLmSo0eP0qtXL6pWrZq6PEeOHIwYMYLExEQmT558z/WkbI+PP/4Yd3f31OXNmjWjVatWrFmzhkOHDmX48zqSjHpP3nzzTfLnz3/LMovFwogRIwBYvXp1xgZ3MGb9bOozcavMfj8mTpwIwNNPP53urI6uefPmFC1aNF3r0D4i/TJiO2j/kH4ZsR0eVHb8PBw7dowCBQpQpUqVW5ZXq1aN/Pnzc+HCBXOCyX07e/YsixYtIm/evHTo0MHsOHKTd999F6vVytSpU/Hz80tzu4tLll5QLuJw1q9fz9dff83nn39+26vFxHweHh63Xd6tWzcAjhw5kpVx5C4eeeQRevXqhaur6y3L8+XLx7PPPguYfw6TZXvNjRs3EhcXR4sWLbBYLLfclj9/fipVqsTmzZuJjY294w/5/Uh5s+90QLBgwQIiIiJwd3encuXKNGnSxOF67gUHBwPQsmXLNLelLLufH7zg4GC8vb2pX79+mttatWrF4sWLWb16NWXKlMnQ53Ukmf2e3OvnPS4ujl9//ZUzZ87g5+dHvXr1bvuHJkeX0dvh8OHDfPPNN0RHR1O0aFFatGhx28sm9Zm4VWa+H6dPn2bp0qUEBgbSrl27295Hn4eMpX2EbdP+wRzaP9xZhQoVCAkJYdeuXVSuXDl1eUhICGFhYbRv397EdHI/pkyZgtVqpU+fPmlOcMU84eHhLF26lKpVq1KqVClWr17Nli1bcHFxoXbt2tSrV8/siHIb2aEu4Siio6NT20AOGjTooeb5EfMsWLAAgIoVK5qcRO7Hvc5hskqWPXvKZF+lS5e+7e2lS5dm586dHDt2LE2P0/u1ZcsW9u7dS82aNdP0/0rx4osv3vL/MmXK8Pvvv1OtWrWHek5bdLf32s/Pj4CAgLtOvgbJDffDwsKoWLHibXfaKeu+eT0Z8byOJrPfk0mTJgG3P9mG5HkC/tv/s3Xr1vz222/ZqideRm+H6dOn3zIBm6enJx988AGvv/56pj6vvcvM92Py5MkkJSXRr1+/O+5Y9XnIONpH2D7tH8yh/cOdffnll7Rv35569erRpUsXChUqxOnTp/nrr79o2LAhP/74o9kR5S4Mw0j9vaIruGzL9u3bSUpKonDhwnTs2JF58+bdcnuLFi2YNWsWvr6+JiWU28kOdQlH8dZbbxEWFsbSpUvNjiL3Ydy4cYSHhxMeHs769evZunUrLVu2pE+fPmZHk3tIuULKYrHQvHlzU7NkWRuWa9euAdxxJ50zZ85b7vcw6+/bty9OTk6MHTs2ze2NGzdm9uzZnDp1ipiYGPbv388rr7zC0aNHadmyJWfPnn2o57VF9/Ne3+t9fpjtlRHP62gy8z0JCQnhgw8+IG/evLzxxhtpbh8wYADBwcFcvHiR69evs2nTJtq0acPixYvp2LEjhmE81PPao4zaDnny5OGzzz5j//79REVFcebMGaZNm0bu3Ll544030pzo6zNxq8x6PwzDSG1XcKcTeH0eMpb2EbZN+4esp/3DvTVu3Jg1a9YQGBjItGnTGDNmDNOmTcPf35/+/funaScktmX16tUcPXqUBg0aEBQUZHYcuUlKC6P58+ezZcsW5s6dy7Vr19i/fz8dO3Zk2bJlPPPMMyanlBTZqS7hCFavXs23337LqFGjKF68uNlx5D6MGzeODz74gK+//pqtW7fy5JNPMnv2bF0RZQdGjBjB7t276d+/v+lXAjxwsTwgIACLxXLfXymXmWam2NhYHnvsMQ4cOMBHH31EkyZN0tynf//+PPbYYxQqVAgPDw+CgoL46quvePPNN7l8+TJfffVVpucUySjHjx+nffv2WK1W/vjjj9uOAnzvvfdo3LgxAQEB5MiRg9q1azN//nwaNGjAxo0bWbhwoQnJ7VuFChUYNmwYQUFBeHl5UaBAAXr37s3ixYtxc3Nj5MiRJCUlmR0z21m5ciXHjx+ncePGlCpV6rb30edBsgvtH8yRXfYP6TkPWLRoEU2aNKF27drs27eP6Oho9u/fT5MmTejfvz+vvfaaeS/MQWXkedsvv/wCaFR5ZnrY7ZXyu8VqtTJhwgQ6depEzpw5CQoKYubMmRQpUoRZs2Zx6tQpE1+dY0nPZ0t1iaz3sNsrKiqKAQMGULdu3TRXAkjmyIj9VmhoKIZhEBYWxvTp0wkODqZ27dqcPn0661+Qg8vI44yffvqJ0aNHU7VqVb7++uusexF38MBtWHr27ElERMR93z8wMBD4/5Ezdxolc/369Vvud7/i4uLo0qULK1euZPjw4bz99tsP9Pinn36aUaNGsX79+gd6nC27n/f6Xu/zw2yvjHheR5MZ78mJEydo2rQpFy9eZPbs2TRt2vS+H+vk5ET//v1Zt24d69evv2NvZ0eT2T+bFStWpHbt2qxdu5YjR46k9mjWZ+JWmfV+pEzsOXDgwAd6XHb9PGQE7SNsk/YPtsfR9g8Pex5w5coVevXqRenSpfntt99wckoerxMUFMSvv/7K4cOH+frrr3nhhRcoWbJkpmTPjh52e/1XeHg4s2fPJmfOnHTv3j2j4sl/pPc829nZOc3vbnd3d1q2bMnEiRPZtm0bhQsXzrjA2VhGfbZu5oh1CVvxsNvrnXfe4ezZsyxcuDB1vyWZKyM/W4GBgfTs2ZNSpUpRq1Ythg4dyowZMzIiptyQUdtr8uTJDB48mEqVKrFs2TJ8fHwyKuJDe+Bi+fjx4x/qiW7Xv/Rmhw8fxsnJiRIlStz3OmNjY+ncuTNLlizhjTfeYNSoUQ+cK2XEVXR09AM/1lbd/F5Xr179ltuuXr3KpUuX7jnRi7e3N/nz5+f48eNYrdY0PWlv12szI57X0WT0exIaGkrTpk05e/Yss2bNeqjJsBzxZ/5esuJn83bvqz4Tt8qM9+Pq1avMmTOHXLly0bVr1wfOlB0/DxlB+wjbo/2D7XKk/cPDngesX7+e8PBwGjdunKbgYLFYaNq0KZs2bWLHjh0qlmegh91e/zV9+nRiYmLo06cPXl5eGbJOSetht1fZsmUB8PLyum2bgZS5vGJiYh46m9wqoz5bN9M+OPM87PYKCQkhNjb2jq2nhg8fzvDhw3n55ZcZN25cOhJKisz4bNWsWRM/P78s6XqR3WTE9po0aRKDBg2ifPnyrFixAn9//wxIln5Z9uexOnXq4O7uzrJly9L0wgwLC2P37t3Url0bDw+P+1rfzYXyYcOG8emnnz5Urs2bNwNQrFixh3q8LWrcuDHAbSegSFmWcp97rScqKuq2f91esmRJmvVk1PM6kox8T0JDQ2nSpAlnzpxhxowZdOrU6aEyOeLP/L1k9s9mYmIi27dvx2KxUKRIkSx7XnuTGe/HtGnTiIuLo3fv3nh6ej5wpuz4ecgo2kfYDu0fbJf2D8ni4+MBuHjx4m1vT1nu7u6eZZnk/qW0YHnQK7gka5QsWZIiRYoQERFx2zYD+/btA/S73dZpH2x72rVrx9NPP53mq1GjRkByEfbpp5+mbt26JieVu4mMjOTatWu4uDzwWGHJZJMmTWLgwIEEBQWxcuVK8uTJY3ak/2dkoT59+hiA8f3336cuS0pKMvr27WsAxqRJk265f1RUlLF//37jxIkTtyyPiYkxWrZsaQDGa6+9ds/nDQsLM44cOZJm+enTp42goCADMP7444+HfFW2JyEhwShRooTh7u5u7NixI3X59evXjQoVKhguLi7GwYMHU5dfvHjR2L9/v3Hx4sVb1rNy5UoDMBo2bGjExcWlLl++fLlhsViMRo0apet5s4OM2hbHjx83ihYtari4uBizZ8++5/Pu3bvXuHr1aprla9euNTw8PAx3d/c0nytHllHbYcOGDUZSUlKadb/yyisGYLRu3Tpdz+voMmo73OyRRx4xAGP79u13vI8+D3c3evRoAzAmT55829u1j8gaD7sdtH/IWA+7HbR/uLvTp08bzs7Ohqenp7Fz585bbtuzZ4/h7e1tuLu73/X3vZhjx44dBmBUrlzZ7ChyF6NGjTIA46mnnjKsVmvq8uDgYMNisRjFihUzEhISTEwohpH96hKOavLkyQZgjB492uwockNoaKhx/PjxNMvj4+ONp59+2gCMp59+OuuDyR1NnDjRsFgsRrly5Yxz586ZHSeNLP3TypgxY1i1ahUvvPACy5cvp0yZMqxdu5b169fTqlUr+vbte8v9t2zZQtOmTWncuPEtl0wMHjyYpUuXEhgYSI4cOXj//ffTPFe/fv1S/yp74MABHn300dTZ23Pnzk1oaCjz588nKiqKvn37OlT/PRcXFyZOnEirVq1o2LAhPXv2JGfOnPz1118cP36cjz/+OLVnJsC3337LBx98wMiRI295L5s2bcrAgQOZOHEiVatWpV27dpw/f54ZM2aQM2dOfvjhh3Q9b3aQUduiSZMmnDhxgjp16rBr1y527dqV5rluvv/MmTMZO3YszZo1o1ixYri7u7Nnzx6WLl2Kk5MTEyZMuGWEm6PLqO3Qs2dPLBYL9erVo2DBgoSHh7NmzRoOHjxIkSJFmDBhQrqe19Fl1HZIsW3bNnbu3Em1atWoWrXqHZ9Xn4e0Jk6cyLp16wDYvXt36rKUfW3nzp3p3LkzoH1EZsqI7aD9Q/plxHbQ/uHuChYsyPDhw/n444+pWbMmnTt3plixYpw8eZI5c+YQFxfHZ599dtsJacVcGlVuH1577TXmz5/Pb7/9xr59+2jUqBFhYWHMnj0bd3d3Jk2apFGVNiC71SVEssqOHTvo2rUrDRs2pHTp0gQEBHD+/HmWL1/OqVOnKFu2LJ988onZMeWGlStXMmjQIAzDoFGjRmnOGwGqVKmSevxtiqyuzp89e9YYMGCAkS9fPsPNzc0oVaqU8cEHHxixsbFp7rtq1SoDMBo3bnzL8saNGxvAXb9WrVqVev+TJ08aAwcONCpXrmz4+fkZLi4uhr+/v9GiRQuH/svt5s2bjdatWxu+vr6Gp6enUaNGDWPatGlp7jdy5EgDMEaOHJnmNqvVanzzzTdGhQoVDHd3d8Pf39/o1q3bXUc73e/zZifp3Rb3+nn/70c5ODjY6N69u1GqVCkjR44chqurq1GoUCHjiSeeMDZv3pyZL9WmpXc7jBkzxmjSpIlRoEABw83NzfDy8jIqV65svPPOO8aVK1fS/bzZRUb8bjIMw3juuefSXK10O/o8pJVyRdedvm5+z7WPyDwZsR20f0i/jNgO2j/cn5kzZxrNmjUz/Pz8DGdnZyN37txGy5YtjXnz5pkdTW4jJibG8PPzM9zd3e/6cyy2ISoqyhgxYoRRqlQpw83NzcidO7fRpUsXIyQkxOxockN2rUs4Go0stz0nTpwwXn31VaN69eqGv7+/4ezsbPj6+hp16tQxPv30UyMyMtLsiHKTlM/Q3b769u1rakaLYfyngbiIiIiIiIiIiIiISDaTZRN8ioiIiIiIiIiIiIjYKhXLRURERERERERERCTbU7FcRERERERERERERLI9FctFREREREREREREJNtTsVxEREREREREREREsj0Vy0VEREREREREREQk21OxXERERERERERERESyPRXLRURERERERERERCTbU7FcRERERERERERERLI9FctFREREREREREREJNtTsVxEREREREREREREsj0Vy0VEREREREREREQk2/s/xwuXnqjIDSEAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -625,7 +743,7 @@ " two_level_hgf_idata,\n", " var_names=[\"mu_temperature\", \"mu_volatility\"],\n", " ref_val=[0.5, -4.0],\n", - ")" + ");" ] }, { @@ -636,6 +754,68 @@ "The reference values on both posterior distributions indicate the mean of the distribution used for simulation." ] }, + { + "cell_type": "markdown", + "id": "3ebdbf9a-b76b-4007-952e-0416aff5fc92", + "metadata": {}, + "source": [ + "## Model comparison" + ] + }, + { + "cell_type": "markdown", + "id": "4df4b830-431d-4946-abc7-9ace4b23a3cd", + "metadata": {}, + "source": [ + "The posterior samples we get from [PyMC](https://www.pymc.io/welcome.html) are crucial to inform inference over parameter values, but they can also be helpful to compare different models that were fitted on the same observations. Here, we use leave-one-out cross-validation {cite:p}`Vehtari:2015`, which is the default method recommended by [Arviz](https://python.arviz.org/en/stable/). This function requires that the posterior samples also include pointwise estimates, it is therefore crucial to save this information during sampling, or alternativeæly to compute this manually from the samples a posteriori. We compute the expected log pointwise predictive density (ELPD) for one model, which indicates the quality of model fit (the higher the better). This quantity can be used to compare models side by side, provided that they are fitted to the same observed data." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "36310588-728c-49c2-8bc9-09383d018ff2", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture --no-display\n", + "loo_hgf = az.loo(two_level_hgf_idata)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "fa65cc15-ee38-45b0-9629-9c7271ea5f62", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Computed from 2000 posterior samples and 3200 observations log-likelihood matrix.\n", + "\n", + " Estimate SE\n", + "elpd_loo -1684.95 25.65\n", + "p_loo 18.68 -\n", + "\n", + "There has been a warning during the calculation. Please check the results.\n", + "------\n", + "\n", + "Pareto k diagnostic values:\n", + " Count Pct.\n", + "(-Inf, 0.5] (good) 3186 99.6%\n", + " (0.5, 0.7] (ok) 1 0.0%\n", + " (0.7, 1] (bad) 2 0.1%\n", + " (1, Inf) (very bad) 11 0.3%" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "loo_hgf" + ] + }, { "cell_type": "markdown", "id": "ffe250ba-d679-4c9c-ab48-d9d4f8fd3eaa", @@ -646,7 +826,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 20, "id": "bb873616-fc3d-4e97-aa8c-1498dcb00952", "metadata": {}, "outputs": [ @@ -654,7 +834,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Last updated: Thu Jun 27 2024\n", + "Last updated: Mon Jul 08 2024\n", "\n", "Python implementation: CPython\n", "Python version : 3.12.3\n", @@ -664,14 +844,14 @@ "jax : 0.4.30\n", "jaxlib: 0.4.30\n", "\n", - "jax : 0.4.30\n", - "arviz : 0.18.0\n", - "pymc : 5.16.1\n", + "numpy : 1.26.0\n", "pytensor : 2.23.0\n", - "sys : 3.12.3 | packaged by conda-forge | (main, Apr 15 2024, 18:38:13) [GCC 12.3.0]\n", + "jax : 0.4.30\n", "matplotlib: 3.8.4\n", - "numpy : 1.26.0\n", + "sys : 3.12.3 | packaged by conda-forge | (main, Apr 15 2024, 18:38:13) [GCC 12.3.0]\n", + "pymc : 5.16.1\n", "seaborn : 0.13.2\n", + "arviz : 0.18.0\n", "\n", "Watermark: 2.4.3\n", "\n" diff --git a/docs/source/refs.bib b/docs/source/refs.bib index ece45ff03..b97cb5d96 100644 --- a/docs/source/refs.bib +++ b/docs/source/refs.bib @@ -211,3 +211,14 @@ @InProceedings{mathys:2020 abstract="Active inference relies on state-space models to describe the environments that agents sample with their actions. These actions lead to state changes intended to minimize future surprise. We show that surprise minimization relying on Bayesian inference can be achieved by filtering of the sufficient statistic time series of exponential family input distributions, and we propose the hierarchical Gaussian filter (HGF) as an appropriate, efficient, and scalable tool for active inference agents to achieve this.", isbn="978-3-030-64919-7" } + +@article{Vehtari:2015, + doi = {10.48550/ARXIV.1507.04544}, + url = {https://arxiv.org/abs/1507.04544}, + author = {Vehtari, Aki and Gelman, Andrew and Gabry, Jonah}, + keywords = {Computation (stat.CO), Methodology (stat.ME), FOS: Computer and information sciences, FOS: Computer and information sciences}, + title = {Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC}, + publisher = {arXiv}, + year = {2015}, + copyright = {arXiv.org perpetual, non-exclusive license} +} \ No newline at end of file