diff --git a/DeBruijnSSA/BinSyntax/Rewrite/Region/Compose/Distrib.lean b/DeBruijnSSA/BinSyntax/Rewrite/Region/Compose/Distrib.lean index 58e6e0c..3017e2b 100644 --- a/DeBruijnSSA/BinSyntax/Rewrite/Region/Compose/Distrib.lean +++ b/DeBruijnSSA/BinSyntax/Rewrite/Region/Compose/Distrib.lean @@ -94,13 +94,15 @@ theorem Eqv.distl_seq_injective {A B C : Ty α} {Γ : Ctx α ε} : r = s := by rw [<-nil_seq r, <-nil_seq s, <-distl_inv_distl, seq_assoc, h, seq_assoc] -theorem Eqv.rtimes_inj_l_seq_distl_inv {A B C : Ty α} {Γ : Ctx α ε} {L : LCtx α} +theorem Eqv.rtimes_inj_l_distl_inv {A B C : Ty α} {Γ : Ctx α ε} {L : LCtx α} : A ⋊ inj_l ;; distl_inv (φ := φ) (A := A) (B := B) (C := C) (Γ := Γ) (L := L) = inj_l := by - sorry + rw [inj_l_eq_ret, rtimes_eq_ret, distl_inv_eq_ret, <-ret_of_seq, Term.Eqv.rtimes_inj_l_distl_inv] + rfl -theorem Eqv.rtimes_inj_r_seq_distl_inv {A B C : Ty α} {Γ : Ctx α ε} {L : LCtx α} +theorem Eqv.rtimes_inj_r_distl_inv {A B C : Ty α} {Γ : Ctx α ε} {L : LCtx α} : A ⋊ inj_r ;; distl_inv (φ := φ) (A := A) (B := B) (C := C) (Γ := Γ) (L := L) = inj_r := by - sorry + rw [inj_r_eq_ret, rtimes_eq_ret, distl_inv_eq_ret, <-ret_of_seq, Term.Eqv.rtimes_inj_r_distl_inv] + rfl theorem Eqv.rtimes_sum_seq_distl_inv {A B C : Ty α} {Γ : Ctx α ε} {L : LCtx α} {l : Eqv φ ((A, ⊥)::Γ) (A'::L)} {r : Eqv φ ((B, ⊥)::Γ) (B'::L)} @@ -109,5 +111,5 @@ theorem Eqv.rtimes_sum_seq_distl_inv {A B C : Ty α} {Γ : Ctx α ε} {L : LCtx apply distl_seq_injective rw [<-seq_assoc, <-seq_assoc, distl_distl_inv, nil_seq, distl, coprod_seq, coprod_seq, sum] congr 1 - · rw [rtimes_rtimes, inj_l_coprod, <-rtimes_rtimes, seq_assoc, rtimes_inj_l_seq_distl_inv] - · rw [rtimes_rtimes, inj_r_coprod, <-rtimes_rtimes, seq_assoc, rtimes_inj_r_seq_distl_inv] + · rw [rtimes_rtimes, inj_l_coprod, <-rtimes_rtimes, seq_assoc, rtimes_inj_l_distl_inv] + · rw [rtimes_rtimes, inj_r_coprod, <-rtimes_rtimes, seq_assoc, rtimes_inj_r_distl_inv] diff --git a/DeBruijnSSA/BinSyntax/Rewrite/Term/Compose/Distrib.lean b/DeBruijnSSA/BinSyntax/Rewrite/Term/Compose/Distrib.lean index 3d1d08c..82e1cbb 100644 --- a/DeBruijnSSA/BinSyntax/Rewrite/Term/Compose/Distrib.lean +++ b/DeBruijnSSA/BinSyntax/Rewrite/Term/Compose/Distrib.lean @@ -105,23 +105,23 @@ theorem Eqv.distl_seq_injective {A B C : Ty α} {Γ : Ctx α ε} : r = s := by rw [<-nil_seq r, <-nil_seq s, <-distl_inv_distl, <-seq_assoc, h, seq_assoc] -theorem Eqv.rtimes_inj_l_seq_distl_inv_pure {A B C : Ty α} {Γ : Ctx α ε} +theorem Eqv.rtimes_inj_l_distl_inv_pure {A B C : Ty α} {Γ : Ctx α ε} : A ⋊' inj_l ;;' distl_inv (φ := φ) (A := A) (B := B) (C := C) (Γ := Γ) (e := ⊥) = inj_l := by rw [seq_distl_inv, rtimes, tensor, let2_let2, let2_pair] simp [nil, let1_beta_pure, inj_l, coprod, wk2, Nat.liftnWk, case_inl, <-inl_let2, let2_eta] -theorem Eqv.rtimes_inj_r_seq_distl_inv_pure {A B C : Ty α} {Γ : Ctx α ε} +theorem Eqv.rtimes_inj_r_distl_inv_pure {A B C : Ty α} {Γ : Ctx α ε} : A ⋊' inj_r ;;' distl_inv (φ := φ) (A := A) (B := B) (C := C) (Γ := Γ) (e := ⊥) = inj_r := by rw [seq_distl_inv, rtimes, tensor, let2_let2, let2_pair] simp [nil, let1_beta_pure, inj_r, coprod, wk2, Nat.liftnWk, case_inr, <-inr_let2, let2_eta] -theorem Eqv.rtimes_inj_l_seq_distl_inv {A B C : Ty α} {Γ : Ctx α ε} +theorem Eqv.rtimes_inj_l_distl_inv {A B C : Ty α} {Γ : Ctx α ε} : A ⋊' inj_l ;;' distl_inv (φ := φ) (A := A) (B := B) (C := C) (Γ := Γ) (e := e) = inj_l - := congrArg (wk_eff (he := bot_le)) rtimes_inj_l_seq_distl_inv_pure + := congrArg (wk_eff (he := bot_le)) rtimes_inj_l_distl_inv_pure -theorem Eqv.rtimes_inj_r_seq_distl_inv {A B C : Ty α} {Γ : Ctx α ε} +theorem Eqv.rtimes_inj_r_distl_inv {A B C : Ty α} {Γ : Ctx α ε} : A ⋊' inj_r ;;' distl_inv (φ := φ) (A := A) (B := B) (C := C) (Γ := Γ) (e := e) = inj_r - := congrArg (wk_eff (he := bot_le)) rtimes_inj_r_seq_distl_inv_pure + := congrArg (wk_eff (he := bot_le)) rtimes_inj_r_distl_inv_pure def Eqv.distr {A B C : Ty α} {Γ : Ctx α ε} : Eqv φ (⟨(A.prod C).coprod (B.prod C), ⊥⟩::Γ) ⟨(A.coprod B).prod C, e⟩