From fa873262c2b16249d81e6264b8cd505968fb90cf Mon Sep 17 00:00:00 2001 From: Jad Ghalayini Date: Sun, 1 Dec 2024 21:01:53 +0000 Subject: [PATCH] Removed let1_inl, let1_inr --- DeBruijnSSA/BinSyntax/Rewrite/Region/Eqv.lean | 53 ++- .../BinSyntax/Rewrite/Region/Setoid.lean | 14 - .../BinSyntax/Rewrite/Region/Step.lean | 3 +- .../BinSyntax/Rewrite/Region/Typing.lean | 91 ----- DeBruijnSSA/BinSyntax/Rewrite/Term/Case.lean | 40 ++ DeBruijnSSA/BinSyntax/Rewrite/Term/Eqv.lean | 44 -- .../BinSyntax/Rewrite/Term/Setoid.lean | 8 - .../BinSyntax/Syntax/Compose/Term.lean | 1 - DeBruijnSSA/BinSyntax/Syntax/Rewrite.lean | 132 ------ .../Syntax/Rewrite/Region/Directed.lean | 376 ------------------ .../Syntax/Rewrite/Region/Equiv.lean | 3 - .../Syntax/Rewrite/Region/Rewrite.lean | 20 - .../BinSyntax/Syntax/Rewrite/Region/Step.lean | 240 ----------- .../BinSyntax/Syntax/Rewrite/Subst.lean | 37 -- .../BinSyntax/Syntax/Rewrite/Term/Step.lean | 10 - 15 files changed, 68 insertions(+), 1004 deletions(-) delete mode 100644 DeBruijnSSA/BinSyntax/Rewrite/Region/Typing.lean delete mode 100644 DeBruijnSSA/BinSyntax/Syntax/Rewrite.lean delete mode 100644 DeBruijnSSA/BinSyntax/Syntax/Rewrite/Region/Directed.lean delete mode 100644 DeBruijnSSA/BinSyntax/Syntax/Rewrite/Region/Step.lean delete mode 100644 DeBruijnSSA/BinSyntax/Syntax/Rewrite/Subst.lean diff --git a/DeBruijnSSA/BinSyntax/Rewrite/Region/Eqv.lean b/DeBruijnSSA/BinSyntax/Rewrite/Region/Eqv.lean index ae43d78..2b5faa8 100644 --- a/DeBruijnSSA/BinSyntax/Rewrite/Region/Eqv.lean +++ b/DeBruijnSSA/BinSyntax/Rewrite/Region/Eqv.lean @@ -1,5 +1,6 @@ import DeBruijnSSA.BinSyntax.Rewrite.Region.Setoid import DeBruijnSSA.BinSyntax.Rewrite.Term.Eqv +import DeBruijnSSA.BinSyntax.Rewrite.Term.Case import Discretion.Utils.Quotient @@ -980,24 +981,6 @@ theorem Eqv.let1_let2 {Γ : Ctx α ε} {L : LCtx α} {A B : Ty α} induction b using Quotient.inductionOn apply Eqv.sound; apply InS.let1_let2 -theorem Eqv.let1_inl {Γ : Ctx α ε} {L : LCtx α} {A B : Ty α} (e' := ⊥) - {r : Eqv φ (⟨A.coprod B, ⊥⟩::Γ) L} - (a : Term.Eqv φ Γ ⟨A, e⟩) - : Eqv.let1 a.inl r - = (r.vwk1.let1 ((var 0 (by simp)).inl (e := e'))).let1 a := by - induction a using Quotient.inductionOn - induction r using Quotient.inductionOn - apply Eqv.sound; apply InS.let1_inl - -theorem Eqv.let1_inr {Γ : Ctx α ε} {L : LCtx α} {A B : Ty α} (e' := ⊥) - {r : Eqv φ (⟨A.coprod B, ⊥⟩::Γ) L} - (b : Term.Eqv φ Γ ⟨B, e⟩) - : Eqv.let1 b.inr r - = (r.vwk1.let1 ((var 0 (by simp)).inr (e := e'))).let1 b := by - induction b using Quotient.inductionOn - induction r using Quotient.inductionOn - apply Eqv.sound; apply InS.let1_inr - theorem Eqv.let1_case {Γ : Ctx α ε} {L : LCtx α} {A B : Ty α} {s : Eqv φ (⟨C, ⊥⟩::Γ) L} (a : Term.Eqv φ Γ ⟨Ty.coprod A B, e⟩) @@ -1010,15 +993,6 @@ theorem Eqv.let1_case {Γ : Ctx α ε} {L : LCtx α} {A B : Ty α} induction s using Quotient.inductionOn apply Eqv.sound; apply InS.let1_case -theorem Eqv.let1_abort {Γ : Ctx α ε} {L : LCtx α} {A : Ty α} (e' := ⊥) - {r : Eqv φ (⟨A, ⊥⟩::Γ) L} - (a : Term.Eqv φ Γ ⟨Ty.empty, e⟩) - : Eqv.let1 (a.abort _) r - = (r.vwk1.let1 ((var 0 (by simp)).abort (e := e') _)).let1 a := by - induction a using Quotient.inductionOn - induction r using Quotient.inductionOn - apply Eqv.sound; apply InS.let1_abort - theorem Eqv.let2_bind {Γ : Ctx α ε} {L : LCtx α} {e : Term.Eqv φ Γ ⟨A.prod B, e⟩} {r : Eqv φ (⟨B, ⊥⟩::⟨A, ⊥⟩::Γ) L} : let2 e r @@ -1233,6 +1207,31 @@ theorem Eqv.case_inr {Γ : Ctx α ε} {L : LCtx α} induction s using Quotient.inductionOn case _ e r s => exact Eqv.sound (InS.case_inr e r s) +theorem Eqv.let1_inl {Γ : Ctx α ε} {L : LCtx α} {A B : Ty α} (e' := ⊥) + {r : Eqv φ (⟨A.coprod B, ⊥⟩::Γ) L} + (a : Term.Eqv φ Γ ⟨A, e⟩) + : Eqv.let1 a.inl r + = (r.vwk1.let1 ((var 0 (by simp)).inl (e := e'))).let1 a := by + rw [<-Term.Eqv.case_eta (a := inl a), let1_case, case_inl] + rfl + +theorem Eqv.let1_inr {Γ : Ctx α ε} {L : LCtx α} {A B : Ty α} (e' := ⊥) + {r : Eqv φ (⟨A.coprod B, ⊥⟩::Γ) L} + (b : Term.Eqv φ Γ ⟨B, e⟩) + : Eqv.let1 b.inr r + = (r.vwk1.let1 ((var 0 (by simp)).inr (e := e'))).let1 b := by + rw [<-Term.Eqv.case_eta (a := inr b), let1_case, case_inr] + rfl + +theorem Eqv.let1_abort {Γ : Ctx α ε} {L : LCtx α} {A : Ty α} (e' := ⊥) + {r : Eqv φ (⟨A, ⊥⟩::Γ) L} + (a : Term.Eqv φ Γ ⟨Ty.empty, e⟩) + : Eqv.let1 (a.abort _) r + = (r.vwk1.let1 ((var 0 (by simp)).abort (e := e') _)).let1 a := by + induction a using Quotient.inductionOn + induction r using Quotient.inductionOn + apply Eqv.sound; apply InS.let1_abort + -- TODO: Eqv.dead_cfg_left theorem Eqv.let1_beta {Γ : Ctx α ε} {L : LCtx α} diff --git a/DeBruijnSSA/BinSyntax/Rewrite/Region/Setoid.lean b/DeBruijnSSA/BinSyntax/Rewrite/Region/Setoid.lean index b79f6d8..4e9d97a 100644 --- a/DeBruijnSSA/BinSyntax/Rewrite/Region/Setoid.lean +++ b/DeBruijnSSA/BinSyntax/Rewrite/Region/Setoid.lean @@ -212,20 +212,6 @@ theorem InS.let1_let2 {Γ : Ctx α ε} {L : LCtx α} {A B : Ty α} ≈ (let2 a $ let1 b $ r.vwk1.vwk1) := Uniform.rel $ TStep.rewrite InS.coe_wf InS.coe_wf (by constructor) -theorem InS.let1_inl {Γ : Ctx α ε} {L : LCtx α} {A B : Ty α} (e' := ⊥) - {r : InS φ (⟨A.coprod B, ⊥⟩::Γ) L} - (a : Term.InS φ Γ ⟨A, e⟩) - : r.let1 a.inl - ≈ (r.vwk1.let1 ((var 0 (by simp)).inl (e := e'))).let1 a - := Uniform.rel $ TStep.rewrite InS.coe_wf InS.coe_wf (by constructor) - -theorem InS.let1_inr {Γ : Ctx α ε} {L : LCtx α} {A B : Ty α} (e' := ⊥) - {r : InS φ (⟨A.coprod B, ⊥⟩::Γ) L} - (b : Term.InS φ Γ ⟨B, e⟩) - : r.let1 b.inr - ≈ (r.vwk1.let1 ((var 0 (by simp)).inr (e := e'))).let1 b - := Uniform.rel $ TStep.rewrite InS.coe_wf InS.coe_wf (by constructor) - theorem InS.let1_case {Γ : Ctx α ε} {L : LCtx α} {A B : Ty α} {s : InS φ (⟨C, ⊥⟩::Γ) L} (a : Term.InS φ Γ ⟨Ty.coprod A B, e⟩) diff --git a/DeBruijnSSA/BinSyntax/Rewrite/Region/Step.lean b/DeBruijnSSA/BinSyntax/Rewrite/Region/Step.lean index 452c316..066bb93 100644 --- a/DeBruijnSSA/BinSyntax/Rewrite/Region/Step.lean +++ b/DeBruijnSSA/BinSyntax/Rewrite/Region/Step.lean @@ -1,5 +1,6 @@ import DeBruijnSSA.BinSyntax.Typing.Region -import DeBruijnSSA.BinSyntax.Syntax.Rewrite.Region.Step +import DeBruijnSSA.BinSyntax.Syntax.Rewrite.Region.Rewrite +import DeBruijnSSA.BinSyntax.Syntax.Rewrite.Region.Reduce import DeBruijnSSA.BinSyntax.Rewrite.Region.Cong import DeBruijnSSA.BinSyntax.Rewrite.Term.Setoid diff --git a/DeBruijnSSA/BinSyntax/Rewrite/Region/Typing.lean b/DeBruijnSSA/BinSyntax/Rewrite/Region/Typing.lean deleted file mode 100644 index 077b177..0000000 --- a/DeBruijnSSA/BinSyntax/Rewrite/Region/Typing.lean +++ /dev/null @@ -1,91 +0,0 @@ -import DeBruijnSSA.BinSyntax.Typing.Region -import DeBruijnSSA.BinSyntax.Syntax.Rewrite - -import Discretion.Utils.Quotient - -namespace BinSyntax - -variable [Φ: EffInstSet φ (Ty α) ε] [PartialOrder α] [SemilatticeSup ε] [OrderBot ε] - --- TODO: rewrite to use subst.cons... - --- def Term.WfD.subst₂ {Γ : Ctx α ε} {a b : Term φ} --- (ha : a.WfD Γ ⟨A, e⟩) (hb : b.WfD Γ ⟨B, e'⟩) --- : (a.subst₂ b).WfD Γ (⟨A, e⟩::⟨B, e'⟩::Γ) --- | ⟨0, _⟩ => ha --- | ⟨1, _⟩ => hb --- | ⟨n + 2, h⟩ => var ⟨by simp at h; exact h, le_refl _⟩ - --- namespace Region - --- structure HaveTrg (Γ : Ctx α ε) (L : LCtx α) (r r' : Region φ) where --- left : r.WfD Γ L --- right : r'.WfD Γ L - --- -- TODO: therefore, a prefunctor to HaveTrg lifts via CongD... - --- def RewriteD.wfD {Γ : Ctx α ε} {r r' : Region φ} {L} --- : RewriteD r r' → r.WfD Γ L → r'.WfD Γ L --- | let1_op f e r, WfD.let1 (Term.WfD.op hf he) hr --- => WfD.let1 he (WfD.let1 (Term.WfD.op hf Term.WfD.var0_pure) hr.vwk1) --- | let1_pair a b r, WfD.let1 (Term.WfD.pair ha hb) hr --- => WfD.let1 ha $ --- WfD.let1 hb.wk0 $ --- WfD.let1 (Term.WfD.pair Term.WfD.var1 Term.WfD.var0) hr.vwk1.vwk1 --- | let1_inl a r, WfD.let1 (Term.WfD.inl ha) hr --- => WfD.let1 ha $ WfD.let1 (Term.WfD.inl Term.WfD.var0) hr.vwk1 --- | let1_inr b r, WfD.let1 (Term.WfD.inr hb) hr --- => WfD.let1 hb $ WfD.let1 (Term.WfD.inr Term.WfD.var0) hr.vwk1 --- | let1_abort A r, WfD.let1 (Term.WfD.abort ha) hr --- => WfD.let1 ha $ WfD.let1 (Term.WfD.abort Term.WfD.var0) hr.vwk1 --- | let2_op f e r, WfD.let2 (Term.WfD.op hf he) hr --- => WfD.let1 he --- (WfD.let2 (Term.WfD.op hf Term.WfD.var0_pure) --- (hr.vwk (by simp [Nat.liftnWk_two]))) --- | let2_pair a b r, _ => sorry --- | let2_abort e r, _ => sorry --- | case_op f e r s, _ => sorry --- | case_abort e r s, _ => sorry --- | let1_case a b r s, _ => sorry --- | let2_case a b r s, _ => sorry --- | cfg_br_lt ℓ e n G h, _ => sorry --- | cfg_let1 a β n G, _ => sorry --- | cfg_let2 a β n G, _ => sorry --- | cfg_case e r s n G, _ => sorry --- | cfg_cfg β n G n' G', _ => sorry --- | cfg_zero β G, WfD.cfg _ [] rfl dβ dG => dβ --- | cfg_fuse β n G k ρ hρ, WfD.cfg _ R hR dβ dG => sorry --- | let2_eta e r, _ => sorry - --- def RewriteD.wfD_inv {Γ : Ctx α ε} {r r' : Region φ} {L} --- : RewriteD r r' → r'.WfD Γ L → r.WfD Γ L --- | let1_op f e r, WfD.let1 (A := A) he (WfD.let1 (Term.WfD.op hf hv) hr) --- => sorry --WfD.let1 (Term.WfD.op sorry he) sorry --- | let1_pair a b r, _ => sorry --- | let1_inl a r, _ => sorry --- | let1_inr b r, _ => sorry --- | let1_abort A r, _ => sorry --- | let2_op f e r, _=> sorry --- | let2_pair a b r, _ => sorry --- | let2_abort e r, _ => sorry --- | case_op f e r s, _ => sorry --- | case_abort e r s, _ => sorry --- | let1_case a b r s, _ => sorry --- | let2_case a b r s, _ => sorry --- | cfg_br_lt ℓ e n G h, _ => sorry --- | cfg_let1 a β n G, _ => sorry --- | cfg_let2 a β n G, _ => sorry --- | cfg_case e r s n G, _ => sorry --- | cfg_cfg β n G n' G', _ => sorry --- | cfg_zero β G, dβ => WfD.cfg 0 [] rfl dβ (λi => i.elim0) --- | cfg_fuse β n G k ρ hρ, WfD.cfg _ R hR dβ dG => sorry --- | let2_eta e r, _ => sorry - --- def ReduceD.wfD {Γ : Ctx α ε} {r r' : Region φ} {L} --- : ReduceD r r' → r.WfD Γ L → r'.WfD Γ L --- | case_inl e r s, WfD.case (Term.WfD.inl de) dr ds => dr.let1 de --- | case_inr e r s, WfD.case (Term.WfD.inr de) dr ds => ds.let1 de --- | wk_cfg β n G k ρ, WfD.cfg _ R hR dβ dG => --- sorry --- | dead_cfg_left β n G m G', WfD.cfg _ R hR dβ dG => --- sorry diff --git a/DeBruijnSSA/BinSyntax/Rewrite/Term/Case.lean b/DeBruijnSSA/BinSyntax/Rewrite/Term/Case.lean index 7e103fc..e583f76 100644 --- a/DeBruijnSSA/BinSyntax/Rewrite/Term/Case.lean +++ b/DeBruijnSSA/BinSyntax/Rewrite/Term/Case.lean @@ -215,6 +215,46 @@ theorem Eqv.case_let1_wk0_pure {Γ : Ctx α ε} -- TODO: derive these... +theorem Eqv.let1_inl {Γ : Ctx α ε} {a : Eqv φ Γ ⟨A, e⟩} {r : Eqv φ (⟨Ty.coprod A B, ⊥⟩::Γ) ⟨C, e⟩} + : let1 (inl a) r = (let1 a $ let1 (inl (var 0 (by simp))) $ r.wk1) := by + rw [<-case_eta (a := inl a), let1_case, case_inl] + +theorem Eqv.let1_inr {Γ : Ctx α ε} {a : Eqv φ Γ ⟨B, e⟩} {r : Eqv φ (⟨Ty.coprod A B, ⊥⟩::Γ) ⟨C, e⟩} + : let1 (inr a) r = (let1 a $ let1 (inr (var 0 (by simp))) $ r.wk1) := by + rw [<-case_eta (a := inr a), let1_case, case_inr] + +theorem Eqv.inl_bind {Γ : Ctx α ε} {a : Eqv φ Γ ⟨A, e⟩} + : a.inl (B := B) = let1 a (inl (var 0 (by simp))) := calc + _ = let1 a.inl (var 0 Ctx.Var.bhead) := by rw [let1_eta] + _ = let1 a (let1 (inl (var 0 Ctx.Var.bhead)) (var 0 Ctx.Var.bhead)) := by rw [let1_inl, wk1_var0] + _ = let1 a (let1 (wk_eff bot_le (inl (var 0 Ctx.Var.shead))) (var 0 Ctx.Var.bhead)) := by rfl + _ = _ := by rw [let1_beta]; rfl + +theorem Eqv.inr_bind {Γ : Ctx α ε} {a : Eqv φ Γ ⟨A, e⟩} + : a.inr (A := B) = let1 a (inr (var 0 (by simp))) := calc + _ = let1 a.inr (var 0 Ctx.Var.bhead) := by rw [let1_eta] + _ = let1 a (let1 (inr (var 0 Ctx.Var.bhead)) (var 0 Ctx.Var.bhead)) := by rw [let1_inr, wk1_var0] + _ = let1 a (let1 (wk_eff bot_le (inr (var 0 Ctx.Var.shead))) (var 0 Ctx.Var.bhead)) := by rfl + _ = _ := by rw [let1_beta]; rfl + +theorem Eqv.inl_let1 {Γ : Ctx α ε} {a : Eqv φ Γ ⟨A, e⟩} {b : Eqv φ ((A, ⊥)::Γ) ⟨B, e⟩} + : (let1 a b).inl = let1 a (b.inl (B := C)) := by + rw [inl_bind, let1_let1, wk1_inl, wk1_var0, <-inl_bind] + +theorem Eqv.inr_let1 {Γ : Ctx α ε} {a : Eqv φ Γ ⟨A, e⟩} {b : Eqv φ ((A, ⊥)::Γ) ⟨B, e⟩} + : (let1 a b).inr = let1 a (b.inr (A := C)) := by + rw [inr_bind, let1_let1, wk1_inr, wk1_var0, <-inr_bind] + +theorem Eqv.inl_let2 {Γ : Ctx α ε} + {a : Eqv φ Γ ⟨A.prod B, e⟩} {b : Eqv φ ((B, ⊥)::(A, ⊥)::Γ) ⟨C, e⟩} + : (let2 a b).inl = let2 a (b.inl (B := D)) := by + rw [inl_bind, let1_let2, wk1_inl, wk1_inl, wk1_var0, wk1_var0, <-inl_bind] + +theorem Eqv.inr_let2 {Γ : Ctx α ε} + {a : Eqv φ Γ ⟨A.prod B, e⟩} {b : Eqv φ ((B, ⊥)::(A, ⊥)::Γ) ⟨C, e⟩} + : (let2 a b).inr = let2 a (b.inr (A := D)) := by + rw [inr_bind, let1_let2, wk1_inr, wk1_inr, wk1_var0, wk1_var0, <-inr_bind] + theorem Eqv.case_inl_inl {Γ : Ctx α ε} {a : Eqv φ Γ ⟨A.coprod B, e⟩} {r : Eqv φ (⟨A, ⊥⟩::Γ) ⟨C, e⟩} diff --git a/DeBruijnSSA/BinSyntax/Rewrite/Term/Eqv.lean b/DeBruijnSSA/BinSyntax/Rewrite/Term/Eqv.lean index 2695578..3812a87 100644 --- a/DeBruijnSSA/BinSyntax/Rewrite/Term/Eqv.lean +++ b/DeBruijnSSA/BinSyntax/Rewrite/Term/Eqv.lean @@ -1029,18 +1029,6 @@ theorem Eqv.let1_let2_inv {Γ : Ctx α ε} {a : Eqv φ Γ ⟨Ty.prod A B, e⟩} (h : r' = r.wk1.wk1) : (let2 a $ let1 b $ r') = let1 (let2 a b) r := by cases h; rw [let1_let2] -theorem Eqv.let1_inl {Γ : Ctx α ε} {a : Eqv φ Γ ⟨A, e⟩} {r : Eqv φ (⟨Ty.coprod A B, ⊥⟩::Γ) ⟨C, e⟩} - : let1 (inl a) r = (let1 a $ let1 (inl (var 0 (by simp))) $ r.wk1) := by - induction a using Quotient.inductionOn - induction r using Quotient.inductionOn - apply Eqv.sound; apply InS.let1_inl - -theorem Eqv.let1_inr {Γ : Ctx α ε} {a : Eqv φ Γ ⟨B, e⟩} {r : Eqv φ (⟨Ty.coprod A B, ⊥⟩::Γ) ⟨C, e⟩} - : let1 (inr a) r = (let1 a $ let1 (inr (var 0 (by simp))) $ r.wk1) := by - induction a using Quotient.inductionOn - induction r using Quotient.inductionOn - apply Eqv.sound; apply InS.let1_inr - theorem Eqv.let1_case {Γ : Ctx α ε} {a : Eqv φ Γ ⟨Ty.coprod A B, e⟩} {l : Eqv φ (⟨A, ⊥⟩::Γ) ⟨C, e⟩} {r : Eqv φ (⟨B, ⊥⟩::Γ) ⟨C, e⟩} {s : Eqv φ (⟨C, ⊥⟩::Γ) ⟨D, e⟩} @@ -1600,38 +1588,6 @@ theorem Eqv.Pure.let2_let1_of_left {Γ : Ctx α ε} : let2 b (let1 a' c') = let1 a (let2 b.wk0 c) := by rw [ha.let1_let2_of_right, ha', hc'] -theorem Eqv.inl_bind {Γ : Ctx α ε} {a : Eqv φ Γ ⟨A, e⟩} - : a.inl (B := B) = let1 a (inl (var 0 (by simp))) := calc - _ = let1 a.inl (var 0 Ctx.Var.bhead) := by rw [let1_eta] - _ = let1 a (let1 (inl (var 0 Ctx.Var.bhead)) (var 0 Ctx.Var.bhead)) := by rw [let1_inl, wk1_var0] - _ = let1 a (let1 (wk_eff bot_le (inl (var 0 Ctx.Var.shead))) (var 0 Ctx.Var.bhead)) := by rfl - _ = _ := by rw [let1_beta]; rfl - -theorem Eqv.inr_bind {Γ : Ctx α ε} {a : Eqv φ Γ ⟨A, e⟩} - : a.inr (A := B) = let1 a (inr (var 0 (by simp))) := calc - _ = let1 a.inr (var 0 Ctx.Var.bhead) := by rw [let1_eta] - _ = let1 a (let1 (inr (var 0 Ctx.Var.bhead)) (var 0 Ctx.Var.bhead)) := by rw [let1_inr, wk1_var0] - _ = let1 a (let1 (wk_eff bot_le (inr (var 0 Ctx.Var.shead))) (var 0 Ctx.Var.bhead)) := by rfl - _ = _ := by rw [let1_beta]; rfl - -theorem Eqv.inl_let1 {Γ : Ctx α ε} {a : Eqv φ Γ ⟨A, e⟩} {b : Eqv φ ((A, ⊥)::Γ) ⟨B, e⟩} - : (let1 a b).inl = let1 a (b.inl (B := C)) := by - rw [inl_bind, let1_let1, wk1_inl, wk1_var0, <-inl_bind] - -theorem Eqv.inr_let1 {Γ : Ctx α ε} {a : Eqv φ Γ ⟨A, e⟩} {b : Eqv φ ((A, ⊥)::Γ) ⟨B, e⟩} - : (let1 a b).inr = let1 a (b.inr (A := C)) := by - rw [inr_bind, let1_let1, wk1_inr, wk1_var0, <-inr_bind] - -theorem Eqv.inl_let2 {Γ : Ctx α ε} - {a : Eqv φ Γ ⟨A.prod B, e⟩} {b : Eqv φ ((B, ⊥)::(A, ⊥)::Γ) ⟨C, e⟩} - : (let2 a b).inl = let2 a (b.inl (B := D)) := by - rw [inl_bind, let1_let2, wk1_inl, wk1_inl, wk1_var0, wk1_var0, <-inl_bind] - -theorem Eqv.inr_let2 {Γ : Ctx α ε} - {a : Eqv φ Γ ⟨A.prod B, e⟩} {b : Eqv φ ((B, ⊥)::(A, ⊥)::Γ) ⟨C, e⟩} - : (let2 a b).inr = let2 a (b.inr (A := D)) := by - rw [inr_bind, let1_let2, wk1_inr, wk1_inr, wk1_var0, wk1_var0, <-inr_bind] - end Basic end Term diff --git a/DeBruijnSSA/BinSyntax/Rewrite/Term/Setoid.lean b/DeBruijnSSA/BinSyntax/Rewrite/Term/Setoid.lean index a283614..6fd5c90 100644 --- a/DeBruijnSSA/BinSyntax/Rewrite/Term/Setoid.lean +++ b/DeBruijnSSA/BinSyntax/Rewrite/Term/Setoid.lean @@ -137,14 +137,6 @@ theorem InS.let1_let2 {Γ : Ctx α ε} {a : InS φ Γ ⟨Ty.prod A B, e⟩} : let1 (let2 a b) r ≈ (let2 a $ let1 b $ r.wk1.wk1) := Uniform.rel $ TStep.rewrite InS.coe_wf InS.coe_wf (by constructor) -theorem InS.let1_inl {Γ : Ctx α ε} {a : InS φ Γ ⟨A, e⟩} {r : InS φ (⟨Ty.coprod A B, ⊥⟩::Γ) ⟨C, e⟩} - : let1 (inl a) r ≈ (let1 a $ let1 (inl (var 0 (by simp))) $ r.wk1) - := Uniform.rel $ TStep.rewrite InS.coe_wf InS.coe_wf (by constructor) - -theorem InS.let1_inr {Γ : Ctx α ε} {a : InS φ Γ ⟨B, e⟩} {r : InS φ (⟨Ty.coprod A B, ⊥⟩::Γ) ⟨C, e⟩} - : let1 (inr a) r ≈ (let1 a $ let1 (inr (var 0 (by simp))) $ r.wk1) - := Uniform.rel $ TStep.rewrite InS.coe_wf InS.coe_wf (by constructor) - theorem InS.let1_case {Γ : Ctx α ε} {a : InS φ Γ ⟨Ty.coprod A B, e⟩} {l : InS φ (⟨A, ⊥⟩::Γ) ⟨C, e⟩} {r : InS φ (⟨B, ⊥⟩::Γ) ⟨C, e⟩} {s : InS φ (⟨C, ⊥⟩::Γ) ⟨D, e⟩} diff --git a/DeBruijnSSA/BinSyntax/Syntax/Compose/Term.lean b/DeBruijnSSA/BinSyntax/Syntax/Compose/Term.lean index 36ab67b..ed914fa 100644 --- a/DeBruijnSSA/BinSyntax/Syntax/Compose/Term.lean +++ b/DeBruijnSSA/BinSyntax/Syntax/Compose/Term.lean @@ -1,5 +1,4 @@ import DeBruijnSSA.BinSyntax.Syntax.Subst -import DeBruijnSSA.BinSyntax.Syntax.Rewrite import DeBruijnSSA.InstSet namespace BinSyntax diff --git a/DeBruijnSSA/BinSyntax/Syntax/Rewrite.lean b/DeBruijnSSA/BinSyntax/Syntax/Rewrite.lean deleted file mode 100644 index c7396f8..0000000 --- a/DeBruijnSSA/BinSyntax/Syntax/Rewrite.lean +++ /dev/null @@ -1,132 +0,0 @@ -namespace BinSyntax -namespace Region - --- inductive PureBeta (Γ : ℕ → ε) : Region φ → Region φ → Prop --- | let1 (e : Term φ) (r : Region φ) --- : e.effect Γ = ⊥ → PureBeta Γ (r.let1 e) (r.vsubst e.subst0) - --- theorem PureBeta.let1_pure {Γ : ℕ → ε} {e} {r r' : Region φ} --- (h : PureBeta Γ (r.let1 e) r') : e.effect Γ = ⊥ := by cases h; assumption - --- theorem PureBeta.let1_trg {Γ : ℕ → ε} {e} {r r' : Region φ} --- (h : PureBeta Γ (r.let1 e) r') : r' = r.vsubst e.subst0 := by cases h; rfl - --- inductive Reduce : Region φ → Region φ → Prop --- | let2_pair (a b r) : Reduce (let2 (Term.pair a b) r) (let1 a $ let1 (b.wk Nat.succ) $ r) --- | case_inl (e r s) : Reduce (case (Term.inl e) r s) (let1 e r) --- | case_inr (e r s) : Reduce (case (Term.inr e) r s) (let1 e s) - --- theorem Reduce.let2_pair_trg {a b} {r r' : Region φ} --- (h : Reduce (let2 (Term.pair a b) r) r') --- : r' = (let1 a $ let1 (b.wk Nat.succ) $ r) := by cases h; rfl - --- theorem Reduce.case_inl_trg {e} {r s r' : Region φ} --- (h : Reduce (case (Term.inl e) r s) r') --- : r' = (let1 e r) := by cases h; rfl - --- theorem Reduce.case_inr_trg {e} {r s s' : Region φ} --- (h : Reduce (case (Term.inr e) r s) s') --- : s' = (let1 e s) := by cases h; rfl - --- inductive TermEta1 : Region φ → Region φ → Prop --- | let1_op (f e r) : TermEta1 (let1 (Term.op f e) r) --- (let1 e --- $ let1 (Term.op f (Term.var 0)) --- $ r.vwk (Nat.liftWk Nat.succ)) --- | let1_pair (a b r) : TermEta1 (let1 (Term.pair a b) r) --- (let1 a --- $ let1 (b.wk Nat.succ) --- $ let1 (Term.pair (Term.var 1) (Term.var 0)) --- $ r.vwk (Nat.liftWk (· + 2)) --- ) --- | let1_inl (e r) : TermEta1 (let1 (Term.inl e) r) --- (let1 e --- $ let1 (Term.inl (Term.var 0)) --- $ r.vwk (Nat.liftWk Nat.succ)) --- | let1_inr (e r) : TermEta1 (let1 (Term.inr e) r) --- (let1 e --- $ let1 (Term.inr (Term.var 0)) --- $ r.vwk (Nat.liftWk Nat.succ)) --- | let1_abort (e r) : TermEta1 (let1 (Term.abort e) r) --- (let1 e --- $ let1 (Term.abort (Term.var 0)) --- $ r.vwk (Nat.liftWk Nat.succ)) - --- theorem TermEta1.let1_op_trg {f e} {r r' : Region φ} --- (h : TermEta1 (let1 (Term.op f e) r) r') --- : r' = (let1 e $ let1 (Term.op f (Term.var 0)) $ r.vwk (Nat.liftWk Nat.succ)) --- := by cases h; rfl - --- theorem TermEta1.let1_pair_trg {a b} {r r' : Region φ} --- (h : TermEta1 (let1 (Term.pair a b) r) r') --- : r' = (let1 a --- $ let1 (b.wk Nat.succ) --- $ let1 (Term.pair (Term.var 1) (Term.var 0)) --- $ r.vwk (Nat.liftWk (· + 2))) --- := by cases h; rfl - --- theorem TermEta1.let1_inl_trg {e} {r r' : Region φ} --- (h : TermEta1 (let1 (Term.inl e) r) r') --- : r' = (let1 e $ let1 (Term.inl (Term.var 0)) $ r.vwk (Nat.liftWk Nat.succ)) --- := by cases h; rfl - --- theorem TermEta1.let1_inr_trg {e} {r r' : Region φ} --- (h : TermEta1 (let1 (Term.inr e) r) r') --- : r' = (let1 e $ let1 (Term.inr (Term.var 0)) $ r.vwk (Nat.liftWk Nat.succ)) --- := by cases h; rfl - --- theorem TermEta1.let1_abort_trg {e} {r r' : Region φ} --- (h : TermEta1 (let1 (Term.abort e) r) r') --- : r' = (let1 e $ let1 (Term.abort (Term.var 0)) $ r.vwk (Nat.liftWk Nat.succ)) --- := by cases h; rfl - --- inductive TermEta2 : Region φ → Region φ → Prop --- | let2_op (f e r) : TermEta2 (let2 (Term.op f e) r) (let1 e --- $ let2 (Term.op f (Term.var 0)) --- $ r.vwk (Nat.liftnWk 2 Nat.succ)) --- | let2_abort (e r) : TermEta2 (let2 (Term.abort e) r) (let1 e --- $ let2 (Term.abort (Term.var 0)) --- $ r.vwk (Nat.liftnWk 2 Nat.succ)) - --- inductive Eta : Region φ → Region φ → Prop --- | let1_case (a b r s) : Eta --- (let1 a $ case (b.wk Nat.succ) r s) --- (case b (let1 (a.wk Nat.succ) r) (let1 (a.wk Nat.succ) s)) --- | let2_case (a b r s) : Eta --- (let2 a $ case (b.wk (· + 2)) r s) --- (case b (let2 (a.wk Nat.succ) r) (let2 (a.wk Nat.succ) s)) --- | cfg_br_lt (ℓ e n G) (h : ℓ < n) : Eta --- (cfg (br ℓ e) n G) --- (cfg ((G ⟨ℓ, h⟩).vsubst e.subst0) n G) --- | cfg_br_ge (ℓ e n G) (h : n ≤ ℓ) : Eta --- (cfg (br ℓ e) n G) --- (br (ℓ - n) e) --- | cfg_let1 (a β n G) : Eta --- (cfg (let1 a β) n G) --- (let1 a $ cfg β n (vwk Nat.succ ∘ G)) --- | cfg_let2 (a β n G) : Eta --- (cfg (let2 a β) n G) --- (let2 a $ cfg β n (vwk (· + 2) ∘ G)) --- | cfg_case (e r s n G) : Eta --- (cfg (case e r s) n G) --- (case e (cfg r n (vwk Nat.succ ∘ G)) (cfg s n (vwk Nat.succ ∘ G))) --- | cfg_cfg (β n G n' G') : Eta --- (cfg (cfg β n G) n' G') --- (cfg β (n + n') (Fin.addCases G (lwk (· + n) ∘ G'))) - --- inductive SimpleCongruence (P : Region φ → Region φ → Prop) : Region φ → Region φ → Prop --- | step (r r') : P r r' → SimpleCongruence P r r' --- | let1 (e r r') : SimpleCongruence P r r' → SimpleCongruence P (let1 e r) (let1 e r') --- | let2 (e r r') : SimpleCongruence P r r' → SimpleCongruence P (let2 e r) (let2 e r') --- | case_left (e r s r') : SimpleCongruence P r r' → SimpleCongruence P (case e r s) (case e r' s) --- | case_right (e r s s') : SimpleCongruence P s s' → SimpleCongruence P (case e r s) (case e r s') --- | cfg_entry (r r' n G) : SimpleCongruence P r r' → SimpleCongruence P (cfg r n G) (cfg r' n G) --- | cfg_block (r r' n G i G') : SimpleCongruence P r r' → G' = Function.update G i r' → --- SimpleCongruence P (cfg β n G) (cfg β n G') - --- theorem SimpleCongruence.refl (hP : IsRefl _ P) (r : Region φ) : SimpleCongruence P r r := --- step _ _ (hP.refl r) - -end Region - -end BinSyntax diff --git a/DeBruijnSSA/BinSyntax/Syntax/Rewrite/Region/Directed.lean b/DeBruijnSSA/BinSyntax/Syntax/Rewrite/Region/Directed.lean deleted file mode 100644 index 7e5a2ab..0000000 --- a/DeBruijnSSA/BinSyntax/Syntax/Rewrite/Region/Directed.lean +++ /dev/null @@ -1,376 +0,0 @@ -import Mathlib.Combinatorics.Quiver.Path -import Mathlib.Combinatorics.Quiver.Symmetric -import Mathlib.CategoryTheory.PathCategory -import Mathlib.Algebra.Order.BigOperators.Group.Finset - -import Discretion.Correspondence.Definitions - -import DeBruijnSSA.BinSyntax.Syntax.Subst -import DeBruijnSSA.BinSyntax.Syntax.Effect.Subst -import DeBruijnSSA.BinSyntax.Syntax.Fv - -import DeBruijnSSA.BinSyntax.Syntax.Rewrite.Region.Rewrite -import DeBruijnSSA.BinSyntax.Syntax.Rewrite.Region.Equiv -import DeBruijnSSA.BinSyntax.Syntax.Rewrite.Region.Reduce -import DeBruijnSSA.BinSyntax.Syntax.Rewrite.Region.Step - -import DeBruijnSSA.BinSyntax.Syntax.Rewrite.Region.Cong - -namespace BinSyntax - -variable {φ : Type u} {ε : Type v} [Φ: EffectSet φ ε] [SemilatticeSup ε] [OrderBot ε] - --- -- TODO: define as Subst.cons or smt... --- def Term.subst₂ (a b: Term φ) : Subst φ --- | 0 => a --- | 1 => b --- | n + 2 => Term.var n - -namespace Region - -open Term - -abbrev RWD (P : (ℕ → ε) → Region φ → Region φ → Type _) (Γ : ℕ → ε) := Corr.Path ((BCongD P) Γ) - --- TODO: RwD is effect monotone/antitone iff underlying is --- ==> RwD is effect preserving iff underlying is - -@[match_pattern] -def RWD.refl {P} {Γ : ℕ → ε} (r : Region φ) : RWD P Γ r r := Corr.Path.nil r - -@[match_pattern] -def RWD.cons {P} {Γ : ℕ → ε} {a b c : Region φ} : RWD P Γ a b → BCongD P Γ b c → RWD P Γ a c - := Corr.Path.cons - -def RWD.single {P} {Γ : ℕ → ε} {a b : Region φ} : BCongD P Γ a b → RWD P Γ a b := Corr.Path.single - -def RWD.comp {P} {Γ : ℕ → ε} {a b c : Region φ} : RWD P Γ a b → RWD P Γ b c → RWD P Γ a c - := Corr.Path.comp - -def RWD.let1_beta {Γ : ℕ → ε} (e) (r : Region φ) (h : e.effect Γ = ⊥) - : RWD StepD Γ (let1 e r) (r.vsubst e.subst0) - := single $ BCongD.rel $ StepD.let1_beta e r h - -def RWD.case_inl {Γ : ℕ → ε} (e) (r s : Region φ) - : RWD StepD Γ (case (inl e) r s) (let1 e r) - := single $ BCongD.rel $ StepD.case_inl e r s - -def RWD.case_inr {Γ : ℕ → ε} (e) (r s : Region φ) - : RWD StepD Γ (case (inr e) r s) (let1 e s) - := single $ BCongD.rel $ StepD.case_inr e r s - -def RWD.let1_op {Γ : ℕ → ε} (f e) (r : Region φ) - : RWD StepD Γ (let1 (op f e) r) (let1 e $ let1 (op f (var 0)) $ r.vwk (Nat.liftWk Nat.succ)) - := single $ BCongD.rel $ StepD.let1_op f e r - -def RWD.let1_op_op {Γ : ℕ → ε} (f e) (r : Region φ) - : RWD StepD Γ (let1 e $ let1 (op f (var 0)) $ r.vwk (Nat.liftWk Nat.succ)) - (let1 (op f e) r) - := single $ BCongD.rel $ StepD.let1_op_op f e r - -def RWD.let1_pair {Γ : ℕ → ε} (a b) (r : Region φ) - : RWD StepD Γ (let1 (pair a b) r) - (let1 a $ let1 (b.wk Nat.succ) $ let1 (pair (var 1) (var 0)) r.vwk1.vwk1 - ) - := single $ BCongD.rel $ StepD.let1_pair a b r - -def RWD.let1_pair_op {Γ : ℕ → ε} (a b) (r : Region φ) - : RWD StepD Γ (let1 a $ let1 (b.wk Nat.succ) $ let1 (pair (var 1) (var 0)) r.vwk1.vwk1) - (let1 (pair a b) r) - := single $ BCongD.rel $ StepD.let1_pair_op a b r - -def RWD.let1_inl {Γ : ℕ → ε} (e) (r : Region φ) - : RWD StepD Γ (let1 (inl e) r) (let1 e $ let1 (inl (var 0)) $ r.vwk (Nat.liftWk Nat.succ)) - := single $ BCongD.rel $ StepD.let1_inl e r - -def RWD.let1_inl_op {Γ : ℕ → ε} (e) (r : Region φ) - : RWD StepD Γ (let1 e $ let1 (inl (var 0)) $ r.vwk (Nat.liftWk Nat.succ)) - (let1 (inl e) r) - := single $ BCongD.rel $ StepD.let1_inl_op e r - -def RWD.let1_inr {Γ : ℕ → ε} (e) (r : Region φ) - : RWD StepD Γ (let1 (inr e) r) (let1 e $ let1 (inr (var 0)) $ r.vwk (Nat.liftWk Nat.succ)) - := single $ BCongD.rel $ StepD.let1_inr e r - -def RWD.let1_inr_op {Γ : ℕ → ε} (e) (r : Region φ) - : RWD StepD Γ (let1 e $ let1 (inr (var 0)) $ r.vwk (Nat.liftWk Nat.succ)) - (let1 (inr e) r) - := single $ BCongD.rel $ StepD.let1_inr_op e r - -def RWD.let1_abort {Γ : ℕ → ε} (e) (r : Region φ) - : RWD StepD Γ (let1 (abort e) r) (let1 e $ let1 (abort (var 0)) $ r.vwk (Nat.liftWk Nat.succ)) - := single $ BCongD.rel $ StepD.let1_abort e r - -def RWD.let1_abort_op {Γ : ℕ → ε} (e) (r : Region φ) - : RWD StepD Γ (let1 e $ let1 (abort (var 0)) $ r.vwk (Nat.liftWk Nat.succ)) - (let1 (abort e) r) - := single $ BCongD.rel $ StepD.let1_abort_op e r - -def RWD.cfg_br_lt {Γ : ℕ → ε} (ℓ) (e : Term φ) (n G) (h : ℓ < n) - : RWD StepD Γ (cfg (br ℓ e) n G) (cfg ((G ⟨ℓ, h⟩).let1 e) n G) - := single $ BCongD.rel $ StepD.cfg_br_lt ℓ e n G h - -def RWD.cfg_br_lt_op {Γ : ℕ → ε} (ℓ) (e : Term φ) (n G) (h : ℓ < n) - : RWD StepD Γ (cfg ((G ⟨ℓ, h⟩).let1 e) n G) (cfg (br ℓ e) n G) - := single $ BCongD.rel $ StepD.cfg_br_lt_op ℓ e n G h - --- def RWD.cfg_let1 {Γ : ℕ → ε} (a : Term φ) (β n G) --- : RWD StepD Γ (cfg (let1 a β) n G) (let1 a $ cfg β n (vwk1 ∘ G)) --- := single $ BCongD.rel $ StepD.cfg_let1 a β n G - --- def RWD.cfg_let1_op {Γ : ℕ → ε} (a : Term φ) (β n G) --- : RWD StepD Γ (let1 a $ cfg β n (vwk1 ∘ G)) --- (cfg (let1 a β) n G) --- := single $ BCongD.rel $ StepD.cfg_let1_op a β n G - --- def RWD.cfg_let2 {Γ : ℕ → ε} (a : Term φ) (β n G) --- : RWD StepD Γ (cfg (let2 a β) n G) (let2 a $ cfg β n (vwk1 ∘ vwk1 ∘ G)) --- := single $ BCongD.rel $ StepD.cfg_let2 a β n G - --- def RWD.cfg_let2_op {Γ : ℕ → ε} (a : Term φ) (β n G) --- : RWD StepD Γ (let2 a $ cfg β n (vwk1 ∘ vwk1 ∘ G)) --- (cfg (let2 a β) n G) --- := single $ BCongD.rel $ StepD.cfg_let2_op a β n G - --- def RWD.cfg_case {Γ : ℕ → ε} (e : Term φ) (r s n G) --- : RWD StepD Γ (cfg (case e r s) n G) --- (case e (cfg r n (vwk1 ∘ G)) (cfg s n (vwk1 ∘ G)) --- ) --- := single $ BCongD.rel $ StepD.cfg_case e r s n G - --- def RWD.cfg_case_op {Γ : ℕ → ε} (e : Term φ) (r s n G) --- : RWD StepD Γ (case e (cfg r n (vwk1 ∘ G)) (cfg s n (vwk1 ∘ G))) --- (cfg (case e r s) n G) --- := single $ BCongD.rel $ StepD.cfg_case_op e r s n G - --- def RWD.cfg_cfg {Γ : ℕ → ε} (β : Region φ) (n G n' G') --- : RWD StepD Γ (cfg (cfg β n G) n' G') (cfg β (n + n') (Fin.addCases G (lwk (· + n) ∘ G'))) --- := single $ BCongD.rel $ StepD.cfg_cfg β n G n' G' - --- def RWD.cfg_cfg_op {Γ : ℕ → ε} (β : Region φ) (n G n' G') --- : RWD StepD Γ (cfg β (n + n') (Fin.addCases G (lwk (· + n) ∘ G'))) --- (cfg (cfg β n G) n' G') --- := single $ BCongD.rel $ StepD.cfg_cfg_op β n G n' G' - --- def RWD.cfg_zero {Γ : ℕ → ε} (β : Region φ) (G) --- : RWD StepD Γ (cfg β 0 G) β := single $ BCongD.rel $ StepD.cfg_zero β G - --- def RWD.cfg_zero_op {Γ : ℕ → ε} (β : Region φ) (G) --- : RWD StepD Γ β (cfg β 0 G) := single $ BCongD.rel $ StepD.cfg_zero_op β G - --- def RWD.wk_cfg {Γ : ℕ → ε} (β : Region φ) (n G k) (ρ : Fin k → Fin n) /-(hρ : Function.Bijective ρ)-/ --- : RWD StepD Γ --- (cfg (lwk (Fin.toNatWk ρ) β) n (lwk (Fin.toNatWk ρ) ∘ G)) --- (cfg β k (G ∘ ρ)) --- := single $ BCongD.rel $ StepD.wk_cfg β n G k ρ - --- def RWD.dead_cfg_left {Γ : ℕ → ε} (β : Region φ) (n G m G') --- : RWD StepD Γ --- (cfg (β.lwk (· + n)) (n + m) (Fin.addCases G (lwk (· + n) ∘ G'))) --- (cfg β m G') --- := single $ BCongD.rel $ StepD.dead_cfg_left β n G m G' - --- def RWD.swap_cfg' {Γ : ℕ → ε} (β : Region φ) (n G m G') --- : RWD StepD Γ --- (cfg --- (lwk (Fin.toNatWk (Fin.swapAdd n m)) β) --- (m + n) (lwk (Fin.toNatWk (Fin.swapAdd n m)) ∘ Fin.addCases G' G)) --- (cfg β (n + m) (Fin.addCases G G')) --- := --- have h : Fin.addCases G G' = Fin.addCases G' G ∘ Fin.swapAdd n m := by --- rw [Fin.addCases_comp_swapAdd] --- by --- rw [h] --- apply wk_cfg - -def RWD.cast_trg {P} {Γ : ℕ → ε} {r₀ r₁ r₁' : Region φ} (h : RWD P Γ r₀ r₁) (hr₁ : r₁ = r₁') - : RWD P Γ r₀ r₁' - := Corr.Path.cast_trg h hr₁ - -def RWD.cast_src {P} {Γ : ℕ → ε} {r₀ r₀' r₁ : Region φ} (hr₀ : r₀ = r₀') (h : RWD P Γ r₀' r₁) - : RWD P Γ r₀ r₁ - := Corr.Path.cast_src hr₀ h - -def RWD.cast {P} {Γ : ℕ → ε} {r₀ r₀' r₁ r₁' : Region φ} (hr₀ : r₀ = r₀') (hr₁ : r₁ = r₁') - (h : RWD P Γ r₀ r₁) : RWD P Γ r₀' r₁' - := Corr.Path.cast hr₀ hr₁ h - --- def RWD.swap_cfg {Γ : ℕ → ε} (β : Region φ) (n G m G') --- : RWD StepD Γ --- (cfg β (n + m) (Fin.addCases G G')) --- (cfg --- (lwk (Fin.toNatWk (Fin.swapAdd n m)) β) --- (m + n) (lwk (Fin.toNatWk (Fin.swapAdd n m)) ∘ Fin.addCases G' G)) --- := cast_trg (cast_src --- (by --- rw [ --- <-Fin.comp_addCases, --- <-Function.comp_assoc, --- lwk_lwk, comp_lwk, --- Fin.swapAdd --- ] --- simp [<-Fin.toNatWk_comp, Fin.addCases_natAdd_castAdd_nil] --- ) --- (swap_cfg' --- (β.lwk (Fin.toNatWk (Fin.addCases (Fin.natAdd m) (Fin.castAdd n)))) --- m --- (lwk (Fin.toNatWk (Fin.addCases (Fin.natAdd m) (Fin.castAdd n))) ∘ G') --- n --- (lwk (Fin.toNatWk (Fin.addCases (Fin.natAdd m) (Fin.castAdd n))) ∘ G))) --- (by simp [Fin.comp_addCases, Fin.swapAdd]) - -def RWD.let1V0_id {Γ : ℕ → ε} (r : Region φ) (hΓ : Γ 0 = ⊥) - : RWD StepD Γ r.let1V0 r - := cast_trg - (let1_beta (Term.var 0) (r.vwk (Nat.liftWk Nat.succ)) hΓ) - (by rw [<-vsubst_fromWk_apply, vsubst_vsubst, vsubst_id']; funext i; cases i <;> rfl) - -def RWD.let2_eta {Γ : ℕ → ε} (r : Region φ) - : RWD StepD Γ - (let2 e $ - let1 ((Term.var 1).pair (Term.var 0)) $ - r.vwk1.vwk1) (let1 e r) - := single $ BCongD.rel $ StepD.let2_eta e r - -def RWD.let2_eta_op {Γ : ℕ → ε} (r : Region φ) - : RWD StepD Γ (let1 (Term.var 0) r) - (let2 (Term.var 0) $ - let1 ((Term.var 1).pair (Term.var 0)) $ - r.vwk1.vwk1) - := single $ BCongD.rel $ StepD.let2_eta_op r - --- def RWD.let1_eta {Γ : ℕ → ε} (r : Region φ) --- : RWD StepD Γ --- (let1 (Term.var 0) $ --- r.vwk1) r --- := single $ BCongD.rel $ StepD.let1_eta r - --- def RWD.let1_eta_op {Γ : ℕ → ε} (r : Region φ) --- : RWD StepD Γ r --- (let1 (Term.var 0) $ --- r.vwk1) --- := single $ BCongD.rel $ StepD.let1_eta_op r - -instance instTransRWD - {P : (ℕ → ε) → Region φ → Region φ → Type _} {Γ} - : Trans (RWD P Γ) (RWD P Γ) (RWD P Γ) where - trans := RWD.comp - --- infixr:10 " ⟶R " => λ{P Γ} => RWD P Γ - -def RWD.let1 {P} {Γ : ℕ → ε} {r r'} (e : Term φ) (h : RWD P (Nat.liftBot Γ) r r') - : RWD P Γ (let1 e r) (let1 e r') - := (BCongD.let1_func e).mapPath h - -def RWD.let2 {P} {Γ : ℕ → ε} {r r'} (e : Term φ) (h : RWD P (Nat.liftnBot 2 Γ) r r') - : RWD P Γ (let2 e r) (let2 e r') - := (BCongD.let2_func e).mapPath h - -def RWD.case_left {P} {Γ : ℕ → ε} {r r'} (e : Term φ) (h : RWD P (Nat.liftBot Γ) r r') (s) - : RWD P Γ (case e r s) (case e r' s) - := (BCongD.case_left_func e s).mapPath h - -def RWD.case_right {P} {Γ : ℕ → ε} (e : Term φ) (r) (h : RWD P (Nat.liftBot Γ) s s') - : RWD P Γ (case e r s) (case e r s') - := (BCongD.case_right_func e r).mapPath h - -def RWD.cfg_entry {P} {Γ : ℕ → ε} {r r' : Region φ} (h : RWD P Γ r r') (n G) - : RWD P Γ (cfg r n G) (cfg r' n G) - := (BCongD.cfg_entry_func n G).mapPath h - -def RWD.cfg_block' {P} {Γ : ℕ → ε} {r r' : Region φ} (β n G i) (h : RWD P (Nat.liftBot Γ) r r') - : RWD P Γ (cfg β n (Function.update G i r)) (cfg β n (Function.update G i r')) - := (BCongD.cfg_block_func' β n G i).mapPath h - -def RWD.case {P} {Γ : ℕ → ε} {r r' : Region φ} (e : Term φ) - (hr : RWD P (Nat.liftBot Γ) r r') - (hs : RWD P (Nat.liftBot Γ) s s') - : RWD P Γ (case e r s) (case e r' s') - := (case_left e hr s).comp (case_right e r' hs) - -def RWD.of_eq {P} {Γ : ℕ → ε} {r r' : Region φ} (h : r = r') - : RWD P Γ r r' := cast_trg (refl r) h - -def RWD.cfg_blocks_partial {P} {Γ : ℕ → ε} (β n) (G : Fin n → Region φ) (G': Fin n → Region φ) - (h : ∀i, RWD P (Nat.liftBot Γ) (G i) (G' i)) - : ∀k : ℕ, RWD P Γ (Region.cfg β n G) (Region.cfg β n (λi => if i < k then G' i else G i)) - | 0 => RWD.refl _ - | k + 1 => if hk : k < n then - RWD.comp - (cast_trg (cfg_blocks_partial β n G G' h k) - (by - congr - rw [Function.eq_update_self_iff] - simp)) - (cast_trg (cfg_block' β n - (λi => if i < k then G' i else G i) - ⟨k, hk⟩ (h ⟨k, hk⟩)) - (by - congr - funext i - split - case _ h => - rw [Function.update_apply] - split - case _ h => - cases h - rfl - case _ he => - have h : i < k := Nat.lt_of_le_of_ne - (Nat.le_of_lt_succ h) - (Fin.val_ne_of_ne he) - simp [h] - case _ h => - have h := Nat.le_of_not_lt h - rw [Function.update_noteq, ite_cond_eq_false] - simp [Nat.le_of_succ_le h] - apply Fin.ne_of_gt - exact Nat.lt_of_succ_le h - )) - else - cast_trg (cfg_blocks_partial β n G G' h k) (by - have hk := Nat.le_of_not_lt hk; - simp only [cfg.injEq, heq_eq_eq, true_and] - funext i - have hi := Nat.lt_of_lt_of_le i.prop hk - simp [hi, Nat.lt_succ_of_lt hi] - ) - -def RWD.cfg_blocks {P} {Γ : ℕ → ε} (β n) (G G' : Fin n → Region φ) - (h : ∀i, RWD P (Nat.liftBot Γ) (G i) (G' i)) - : RWD P Γ (Region.cfg β n G) (Region.cfg β n G') - := cast_trg (cfg_blocks_partial β n G G' h n) (by simp) - --- def RWD.dead_cfg_right {Γ : ℕ → ε} (β : Region φ) (n G m G') --- : RWD StepD Γ --- (cfg (β.lwk (n.liftnWk (· + m))) (n + m) (Fin.addCases (lwk (n.liftnWk (· + m)) ∘ G) G')) --- (cfg β n G) := --- (cast_trg (swap_cfg (β.lwk (n.liftnWk (· + m))) n (lwk (n.liftnWk (· + m)) ∘ G) m G') --- (by rw [ --- Fin.comp_addCases, lwk_lwk, <-Function.comp_assoc, comp_lwk, --- Fin.toNatWk_swapAdd_comp_liftnWk_add] --- )).comp --- (dead_cfg_left β m _ n G) - --- def RWD.cfg_elim {Γ : ℕ → ε} (β : Region φ) (n G) --- : RWD StepD Γ (cfg (β.lwk (· + n)) n G) β --- := --- let s : RWD StepD Γ --- (cfg (β.lwk (· + n)) n G) --- (cfg (β.lwk (· + n)) (n + 0) (Fin.addCases G (lwk (· + n) ∘ Fin.elim0))) --- := RWD.of_eq (by simp [Fin.addCases_zero]) --- (s.comp (dead_cfg_left β n G 0 Fin.elim0)).comp (RWD.cfg_zero _ _) - -- := match β with - -- | Region.br ℓ e => (cfg_br_ge (ℓ + n) e n G (by simp)).cast_trg (by simp) - -- | Region.let1 a β => (cfg_let1 a (β.lwk (· + n)) n G).comp (let1 a (cfg_elim β n _)) - -- | Region.let2 a β => (cfg_let2 a (β.lwk (· + n)) n G).comp (let2 a (cfg_elim β n _)) - -- | Region.case e r s => - -- (cfg_case e (r.lwk (· + n)) (s.lwk (· + n)) n G).comp - -- (case e (cfg_elim r n _) (cfg_elim s n _)) - -- | Region.cfg β n' G' => (cfg_cfg _ _ _ _ _).comp (dead_cfg_right _ _ _ _ _) - --- def RWD.cfg_br_ge {Γ : ℕ → ε} (ℓ) (e : Term φ) (n G) (h : n ≤ ℓ) --- : RWD StepD Γ (cfg (br ℓ e) n G) (br (ℓ - n) e) --- := cast_src (by simp [h]) (cfg_elim (br (ℓ - n) e) n G) - --- TODO: vwk, lwk lore... diff --git a/DeBruijnSSA/BinSyntax/Syntax/Rewrite/Region/Equiv.lean b/DeBruijnSSA/BinSyntax/Syntax/Rewrite/Region/Equiv.lean index d8f6175..c77b826 100644 --- a/DeBruijnSSA/BinSyntax/Syntax/Rewrite/Region/Equiv.lean +++ b/DeBruijnSSA/BinSyntax/Syntax/Rewrite/Region/Equiv.lean @@ -79,9 +79,6 @@ theorem eqv_let1_inl {e r} : @let1 φ (inl e) r ≈ (let1 e $ let1 (inl (var 0)) theorem eqv_let1_inr {e r} : @let1 φ (inr e) r ≈ (let1 e $ let1 (inr (var 0)) $ r.vwk1) := Relation.EqvGen.rel _ _ $ Cong.rel $ Rewrite.let1_inr e r -theorem eqv_let1_abort {e r} : @let1 φ (abort e) r ≈ (let1 e $ let1 (abort (var 0)) $ r.vwk1) - := Relation.EqvGen.rel _ _ $ Cong.rel $ Rewrite.let1_abort e r - theorem eqv_let2_bind {e r} : @let2 φ e r ≈ (let1 e $ let2 (var 0) $ r.vwk (Nat.liftnWk 2 Nat.succ)) := Relation.EqvGen.rel _ _ $ Cong.rel $ Rewrite.let2_bind e r diff --git a/DeBruijnSSA/BinSyntax/Syntax/Rewrite/Region/Rewrite.lean b/DeBruijnSSA/BinSyntax/Syntax/Rewrite/Region/Rewrite.lean index c8417e8..05d8658 100644 --- a/DeBruijnSSA/BinSyntax/Syntax/Rewrite/Region/Rewrite.lean +++ b/DeBruijnSSA/BinSyntax/Syntax/Rewrite/Region/Rewrite.lean @@ -22,10 +22,6 @@ inductive RewriteD : Region φ → Region φ → Type _ RewriteD (let1 (Term.let1 a b) r) (let1 a $ let1 b $ r.vwk1) | let1_let2 (a b r) : RewriteD (let1 (Term.let2 a b) r) (let2 a $ let1 b $ r.vwk1.vwk1) - | let1_inl (e r) : - RewriteD (let1 (inl e) r) (let1 e $ let1 (inl (var 0)) $ r.vwk1) - | let1_inr (e r) : - RewriteD (let1 (inr e) r) (let1 e $ let1 (inr (var 0)) $ r.vwk1) | let1_case (a l r s) : RewriteD (let1 (Term.case a l r) s) (case a (let1 l $ s.vwk1) (let1 r $ s.vwk1)) | let1_abort (e r) : @@ -150,10 +146,6 @@ inductive Rewrite : Region φ → Region φ → Prop Rewrite (let1 (Term.let1 a b) r) (let1 a $ let1 b $ r.vwk1) | let1_let2 (a b r) : Rewrite (let1 (Term.let2 a b) r) (let2 a $ let1 b $ r.vwk1.vwk1) - | let1_inl (e r) : - Rewrite (let1 (inl e) r) (let1 e $ let1 (inl (var 0)) $ r.vwk1) - | let1_inr (e r) : - Rewrite (let1 (inr e) r) (let1 e $ let1 (inr (var 0)) $ r.vwk1) | let1_case (a l r s) : Rewrite (let1 (Term.case a l r) s) (case a (let1 l $ s.vwk1) (let1 r $ s.vwk1)) | let1_abort (e r) : @@ -271,12 +263,6 @@ def RewriteD.vsubst {r r' : Region φ} (σ : Term.Subst φ) (p : RewriteD r r') | let1_let2 a b r => convert (let1_let2 (a.subst σ) (b.subst (σ.liftn 2)) (r.vsubst σ.lift)) using 1 simp [Term.subst, Region.vsubst_lift₂_vwk1, Term.Subst.liftn_two] - | let1_inl e r => - convert (let1_inl (e.subst σ) (r.vsubst σ.lift)) using 1 - simp [Term.subst, Region.vsubst_lift₂_vwk1] - | let1_inr e r => - convert (let1_inr (e.subst σ) (r.vsubst σ.lift)) using 1 - simp [Term.subst, Region.vsubst_lift₂_vwk1] | let1_case a l r s => convert (let1_case (a.subst σ) (l.subst σ.lift) (r.subst σ.lift) (s.vsubst σ.lift)) using 1 simp [Term.subst, Region.vsubst_lift₂_vwk1] @@ -309,12 +295,6 @@ def RewriteD.lsubst {r r' : Region φ} (σ : Subst φ) (p : RewriteD r r') | let1_let2 a b r => convert (let1_let2 a b (r.lsubst σ.vlift)) using 1 simp [vwk1_lsubst_vlift, Subst.vliftn_two] - | let1_inl e r => - convert (let1_inl e (r.lsubst σ.vlift)) using 1 - simp [vwk1_lsubst_vlift] - | let1_inr e r => - convert (let1_inr e (r.lsubst σ.vlift)) using 1 - simp [vwk1_lsubst_vlift] | let1_case a l r s => convert (let1_case a l r (s.lsubst σ.vlift)) using 1 simp [vwk1_lsubst_vlift] diff --git a/DeBruijnSSA/BinSyntax/Syntax/Rewrite/Region/Step.lean b/DeBruijnSSA/BinSyntax/Syntax/Rewrite/Region/Step.lean deleted file mode 100644 index 500fdac..0000000 --- a/DeBruijnSSA/BinSyntax/Syntax/Rewrite/Region/Step.lean +++ /dev/null @@ -1,240 +0,0 @@ -import Mathlib.Combinatorics.Quiver.Path -import Mathlib.Combinatorics.Quiver.Symmetric -import Mathlib.Algebra.Order.BigOperators.Group.Finset - -import Discretion.Correspondence.Definitions - -import DeBruijnSSA.BinSyntax.Syntax.Subst -import DeBruijnSSA.BinSyntax.Syntax.Effect.Subst -import DeBruijnSSA.BinSyntax.Syntax.Fv - -import DeBruijnSSA.BinSyntax.Syntax.Rewrite.Region.Rewrite -import DeBruijnSSA.BinSyntax.Syntax.Rewrite.Region.Equiv -import DeBruijnSSA.BinSyntax.Syntax.Rewrite.Region.Reduce - -import DeBruijnSSA.BinSyntax.Syntax.Rewrite.Region.Cong - -namespace BinSyntax - -variable {φ : Type u} {ε : Type v} [Φ: EffectSet φ ε] [SemilatticeSup ε] [OrderBot ε] - --- -- TODO: define as Subst.cons or smt... --- def Term.subst₂ (a b: Term φ) : Subst φ --- | 0 => a --- | 1 => b --- | n + 2 => Term.var n - -namespace Region - -open Term - -inductive StepD (Γ : ℕ → ε) : Region φ → Region φ → Type _ - | let1_beta (e r) : e.effect Γ = ⊥ → StepD Γ (let1 e r) (r.vsubst e.subst0) - | reduce {r r'} : ReduceD r r' → StepD Γ r r' - | rw {r r'} : RewriteD r r' → StepD Γ r r' - | rw_op {r r'} : RewriteD r r' → StepD Γ r' r - --- TODO: separate beta relation? Then step is just the inf... - -inductive Step (Γ : ℕ → ε) : Region φ → Region φ → Prop - | let1_beta (e r) : e.effect Γ = ⊥ → Step Γ (let1 e r) (r.vsubst e.subst0) - | reduce {r r'} : Reduce r r' → Step Γ r r' - | rw {r r'} : Rewrite r r' → Step Γ r r' - | rw_op {r r'} : Rewrite r r' → Step Γ r' r - -theorem StepD.step {Γ : ℕ → ε} {r r' : Region φ} : StepD Γ r r' → Step Γ r r' - | let1_beta e r he => Step.let1_beta e r he - | reduce p => Step.reduce p.reduce - | rw p => Step.rw p.rewrite - | rw_op p => Step.rw_op p.rewrite - -theorem Step.nonempty {Γ : ℕ → ε} {r r' : Region φ} : Step Γ r r' → Nonempty (StepD Γ r r') - | let1_beta e r he => ⟨StepD.let1_beta e r he⟩ - | reduce p => let ⟨d⟩ := p.nonempty; ⟨StepD.reduce d⟩ - | rw p => let ⟨d⟩ := p.nonempty; ⟨StepD.rw d⟩ - | rw_op p => let ⟨d⟩ := p.nonempty; ⟨StepD.rw_op d⟩ - -theorem Step.nonempty_iff {Γ : ℕ → ε} {r r' : Region φ} : Step Γ r r' ↔ Nonempty (StepD Γ r r') - := ⟨Step.nonempty, λ⟨d⟩ => d.step⟩ - -def StepD.vwk {Γ : ℕ → ε} {r r' : Region φ} (ρ : ℕ → ℕ) - : StepD (Γ ∘ ρ) r r' → StepD Γ (r.vwk ρ) (r'.vwk ρ) - | let1_beta e r he => by - simp only [Region.vwk, vsubst_subst0_vwk] - apply let1_beta - rw [Term.effect_wk] - assumption - | reduce p => reduce $ p.vwk ρ - | rw p => rw $ p.vwk ρ - | rw_op p => rw_op $ p.vwk ρ - -theorem Step.vwk {Γ : ℕ → ε} {r r' : Region φ} (ρ : ℕ → ℕ) (p : Step (Γ ∘ ρ) r r') - : Step Γ (r.vwk ρ) (r'.vwk ρ) := let ⟨d⟩ := p.nonempty; (d.vwk ρ).step - -inductive FStepD (Γ : ℕ → ε) : Region φ → Region φ → Type _ - | let1_beta (e r) : e.effect Γ = ⊥ → FStepD Γ (let1 e r) (r.vsubst e.subst0) - | reduce {r r'} : ReduceD r r' → FStepD Γ r r' - | rw {r r'} : RewriteD r r' → FStepD Γ r r' - -inductive FStep (Γ : ℕ → ε) : Region φ → Region φ → Prop - | let1_beta (e r) : e.effect Γ = ⊥ → FStep Γ (let1 e r) (r.vsubst e.subst0) - | reduce {r r'} : Reduce r r' → FStep Γ r r' - | rw {r r'} : Rewrite r r' → FStep Γ r r' - -theorem FStepD.step {Γ : ℕ → ε} {r r' : Region φ} : FStepD Γ r r' → FStep Γ r r' - | let1_beta e r he => FStep.let1_beta e r he - | reduce p => FStep.reduce p.reduce - | rw p => FStep.rw p.rewrite - -theorem FStep.nonempty {Γ : ℕ → ε} {r r' : Region φ} : FStep Γ r r' → Nonempty (FStepD Γ r r') - | let1_beta e r he => ⟨FStepD.let1_beta e r he⟩ - | reduce p => let ⟨d⟩ := p.nonempty; ⟨FStepD.reduce d⟩ - | rw p => let ⟨d⟩ := p.nonempty; ⟨FStepD.rw d⟩ - -theorem FStep.nonempty_iff {Γ : ℕ → ε} {r r' : Region φ} : FStep Γ r r' ↔ Nonempty (FStepD Γ r r') - := ⟨FStep.nonempty, λ⟨d⟩ => d.step⟩ - --- theorem FStep.fvs_le {Γ : ℕ → ε} {r r' : Region φ} (p : FStep Γ r r') --- : r'.fvs ⊆ r.fvs := by cases p with --- | let1_beta e r he => apply fvs_vsubst0_le --- | reduce p => exact p.fvs_le --- | rw p => rw [p.fvs_eq] - -def FStepD.vwk {Γ : ℕ → ε} {r r' : Region φ} (ρ : ℕ → ℕ) - : FStepD (Γ ∘ ρ) r r' → FStepD Γ (r.vwk ρ) (r'.vwk ρ) - | let1_beta e r he => by - simp only [Region.vwk, vsubst_subst0_vwk] - apply let1_beta - rw [Term.effect_wk] - assumption - | reduce p => reduce $ p.vwk ρ - | rw p => rw $ p.vwk ρ - -theorem FStep.vwk {Γ : ℕ → ε} {r r' : Region φ} (ρ : ℕ → ℕ) (p : FStep (Γ ∘ ρ) r r') - : FStep Γ (r.vwk ρ) (r'.vwk ρ) := let ⟨d⟩ := p.nonempty; (d.vwk ρ).step - -def FStepD.wk_eff {Γ Δ : ℕ → ε} {r r' : Region φ} - (h : ∀i ∈ r.fvs, Γ i ≤ Δ i) : FStepD Δ r r' → FStepD Γ r r' - | let1_beta e r he => let1_beta e r (by - have he' := e.effect_le (λi hi => h i (Or.inl hi)); - rw [he] at he' - simp only [le_bot_iff] at he' - exact he') - | reduce p => reduce p - | rw p => rw p - -theorem FStep.wk_eff {Γ Δ : ℕ → ε} {r r' : Region φ} - (h : ∀i ∈ r.fvs, Γ i ≤ Δ i) (p : FStep Δ r r') : FStep Γ r r' - := let ⟨d⟩ := p.nonempty; (d.wk_eff h).step - -def FStepD.lwk {Γ : ℕ → ε} {r r' : Region φ} (ρ : ℕ → ℕ) - : FStepD Γ r r' → FStepD Γ (r.lwk ρ) (r'.lwk ρ) - | let1_beta e r he => by - rw [lwk_vsubst] - apply let1_beta - exact he - | reduce p => reduce $ p.lwk ρ - | rw p => rw $ p.lwk ρ - -theorem FStep.lwk {Γ : ℕ → ε} {r r' : Region φ} (ρ : ℕ → ℕ) (p : FStep Γ r r') - : FStep Γ (r.lwk ρ) (r'.lwk ρ) := let ⟨d⟩ := p.nonempty; (d.lwk ρ).step - -@[match_pattern] -def StepD.case_inl {Γ : ℕ → ε} (e : Term φ) (r s) - : StepD Γ (case (inl e) r s) (let1 e r) - := StepD.reduce (ReduceD.case_inl e r s) - -@[match_pattern] -def StepD.case_inr {Γ : ℕ → ε} (e : Term φ) (r s) - : StepD Γ (case (inr e) r s) (let1 e s) - := StepD.reduce (ReduceD.case_inr e r s) - --- @[match_pattern] --- def StepD.wk_cfg {Γ : ℕ → ε} (β : Region φ) (n G k) (ρ : Fin k → Fin n) --- : StepD Γ (cfg (lwk (Fin.toNatWk ρ) β) n (lwk (Fin.toNatWk ρ) ∘ G)) --- (cfg β k (G ∘ ρ)) --- := StepD.reduce (ReduceD.wk_cfg β n G k ρ) - --- @[match_pattern] --- def StepD.dead_cfg_left {Γ : ℕ → ε} (β : Region φ) (n G m G') --- : StepD Γ (cfg (β.lwk (· + n)) (n + m) (Fin.addCases G (lwk (· + n) ∘ G'))) --- (cfg β m G') --- := StepD.reduce (ReduceD.dead_cfg_left β n G m G') - -@[match_pattern] -def StepD.let1_op {Γ : ℕ → ε} (f e) (r : Region φ) - : StepD Γ (let1 (op f e) r) (let1 e $ let1 (op f (var 0)) $ r.vwk (Nat.liftWk Nat.succ)) - := StepD.rw $ RewriteD.let1_op f e r - -@[match_pattern] -def StepD.let1_op_op {Γ : ℕ → ε} (f e) (r : Region φ) - : StepD Γ (let1 e $ let1 (op f (var 0)) $ r.vwk (Nat.liftWk Nat.succ)) - (let1 (op f e) r) - := StepD.rw_op $ RewriteD.let1_op f e r - -@[match_pattern] -def StepD.let1_inl {Γ : ℕ → ε} (e) (r : Region φ) - : StepD Γ (let1 (inl e) r) (let1 e $ let1 (inl (var 0)) $ r.vwk (Nat.liftWk Nat.succ)) - := StepD.rw $ RewriteD.let1_inl e r - -@[match_pattern] -def StepD.let1_inl_op {Γ : ℕ → ε} (e) (r : Region φ) - : StepD Γ (let1 e $ let1 (inl (var 0)) $ r.vwk (Nat.liftWk Nat.succ)) - (let1 (inl e) r) - := StepD.rw_op $ RewriteD.let1_inl e r - -@[match_pattern] -def StepD.let1_inr {Γ : ℕ → ε} (e) (r : Region φ) - : StepD Γ (let1 (inr e) r) (let1 e $ let1 (inr (var 0)) $ r.vwk (Nat.liftWk Nat.succ)) - := StepD.rw $ RewriteD.let1_inr e r - -@[match_pattern] -def StepD.let1_inr_op {Γ : ℕ → ε} (e) (r : Region φ) - : StepD Γ (let1 e $ let1 (inr (var 0)) $ r.vwk (Nat.liftWk Nat.succ)) - (let1 (inr e) r) - := StepD.rw_op $ RewriteD.let1_inr e r - -@[match_pattern] -def StepD.let1_abort {Γ : ℕ → ε} (e) (r : Region φ) - : StepD Γ (let1 (abort e) r) (let1 e $ let1 (abort (var 0)) $ r.vwk (Nat.liftWk Nat.succ)) - := StepD.rw $ RewriteD.let1_abort e r - -@[match_pattern] -def StepD.let1_abort_op {Γ : ℕ → ε} (e) (r : Region φ) - : StepD Γ (let1 e $ let1 (abort (var 0)) $ r.vwk (Nat.liftWk Nat.succ)) - (let1 (abort e) r) - := StepD.rw_op $ RewriteD.let1_abort e r - -@[match_pattern] -def StepD.cfg_br_lt {Γ : ℕ → ε} (ℓ) (e : Term φ) (n G) (h : ℓ < n) - : StepD Γ (cfg (br ℓ e) n G) (cfg ((G ⟨ℓ, h⟩).let1 e) n G) - := StepD.rw $ RewriteD.cfg_br_lt ℓ e n G h - -@[match_pattern] -def StepD.cfg_br_lt_op {Γ : ℕ → ε} (ℓ) (e : Term φ) (n G) (h : ℓ < n) - : StepD Γ (cfg ((G ⟨ℓ, h⟩).let1 e) n G) (cfg (br ℓ e) n G) - := StepD.rw_op $ RewriteD.cfg_br_lt ℓ e n G h - -def StepD.cast_trg {Γ : ℕ → ε} {r₀ r₁ r₁' : Region φ} (p : StepD Γ r₀ r₁) (h : r₁ = r₁') - : StepD Γ r₀ r₁' := h ▸ p - -def StepD.cast_src {Γ : ℕ → ε} {r₀ r₀' r₁ : Region φ} (h : r₀' = r₀) (p : StepD Γ r₀ r₁) - : StepD Γ r₀' r₁ := h ▸ p - -def StepD.cast {Γ : ℕ → ε} {r₀ r₀' r₁ r₁' : Region φ} (h₀ : r₀ = r₀') (h₁ : r₁ = r₁') - (p : StepD Γ r₀ r₁) : StepD Γ r₀' r₁' := h₁ ▸ h₀ ▸ p - --- theorem StepD.effect_le {Γ : ℕ → ε} {r r' : Region φ} (p : StepD Γ r r') --- : r'.effect Γ ≤ r.effect Γ := by --- cases p with --- | let1_beta _ _ he => --- apply le_of_eq --- simp only [effect_vsubst, Subst.effect, effect, he, ge_iff_le, bot_le, sup_of_le_right] --- congr --- funext k --- cases k with --- | zero => simp [he, Nat.liftBot] --- | succ k => rfl --- | reduce p => exact p.effect_le --- | rw p => rw [p.effect] --- | rw_op p => rw [p.effect] diff --git a/DeBruijnSSA/BinSyntax/Syntax/Rewrite/Subst.lean b/DeBruijnSSA/BinSyntax/Syntax/Rewrite/Subst.lean deleted file mode 100644 index ea01515..0000000 --- a/DeBruijnSSA/BinSyntax/Syntax/Rewrite/Subst.lean +++ /dev/null @@ -1,37 +0,0 @@ --- import DeBruijnSSA.BinSyntax.Syntax.Rewrite.Definitions --- import DeBruijnSSA.BinSyntax.Syntax.Rewrite.Cong --- import DeBruijnSSA.BinSyntax.Syntax.Rewrite.Directed - --- namespace BinSyntax - --- variable {φ : Type u} {ε : Type v} [Φ: EffectSet φ ε] [SemilatticeSup ε] [OrderBot ε] - --- namespace Region - --- inductive CongD.SubstCong (P : Region φ → Region φ → Type _) : Subst φ → Subst φ → Type _ --- | step (n) : CongD P r r' → SubstCong P (Function.update σ n r) (Function.update σ' n r') - --- inductive BCongD.SubstCong (P : (ℕ → ε) → Region φ → Region φ → Type _) --- : (ℕ → ε) → Subst φ → Subst φ → Type _ --- | step (n) : BCongD P Γ r r' → SubstCong P Γ (Function.update σ n r) (Function.update σ' n r') - --- def RWD.Subst (P : (ℕ → ε) → Region φ → Region φ → Type _) (Γ : ℕ → ε) (σ σ' : Subst φ) --- := ∀n, RWD P Γ (σ n) (σ' n) - --- -- TODO: RwD.Subst is effect monotone/antitone iff underlying is --- -- ==> RwD.Subst is effect preserving iff underlying is - --- def RWD.Subst.refl {P} {Γ : ℕ → ε} (σ : Region.Subst φ) : RWD.Subst P Γ σ σ := λ_ => RWD.refl _ - --- def RWD.Subst.comp {P} {Γ : ℕ → ε} {σ σ' σ'' : Region.Subst φ} --- (h : RWD.Subst P Γ σ σ') (h' : RWD.Subst P Γ σ' σ'') --- : RWD.Subst P Γ σ σ'' --- := λn => (h n).comp (h' n) - --- -- TODO: lift, liftn, lwk, vwk lore - --- -- TODO: Path SubstCong ==> RWD, RWD ∩ FiniteDiff ==> Path SubstCong, "adjunction" - --- end Region - --- end BinSyntax diff --git a/DeBruijnSSA/BinSyntax/Syntax/Rewrite/Term/Step.lean b/DeBruijnSSA/BinSyntax/Syntax/Rewrite/Term/Step.lean index 54d78ef..9cec7e6 100644 --- a/DeBruijnSSA/BinSyntax/Syntax/Rewrite/Term/Step.lean +++ b/DeBruijnSSA/BinSyntax/Syntax/Rewrite/Term/Step.lean @@ -23,10 +23,6 @@ inductive Rewrite : Term φ → Term φ → Prop Rewrite (let1 (let1 a b) r) (let1 a $ let1 b $ r.wk1) | let1_let2 (a b r) : Rewrite (let1 (let2 a b) r) (let2 a $ let1 b $ r.wk1.wk1) - | let1_inl (e r) : - Rewrite (let1 (inl e) r) (let1 e $ let1 (inl (var 0)) $ r.wk1) - | let1_inr (e r) : - Rewrite (let1 (inr e) r) (let1 e $ let1 (inr (var 0)) $ r.wk1) | let1_case (a l r s) : Rewrite (let1 (case a l r) s) (case a (let1 l $ s.wk1) (let1 r $ s.wk1)) | let1_abort (e r) : @@ -66,12 +62,6 @@ theorem Rewrite.subst {e e' : Term φ} (h : e.Rewrite e') (σ) : (e.subst σ).Re | let1_let2 a b r => simp only [Term.subst, <-wk1_subst_lift, Subst.liftn_two] exact let1_let2 (a.subst σ) (b.subst σ.lift.lift) (r.subst σ.lift) - | let1_inl e r => - simp only [Term.subst, <-wk1_subst_lift] - exact let1_inl (e.subst σ) (r.subst (σ.lift)) - | let1_inr e r => - simp only [Term.subst, <-wk1_subst_lift] - exact let1_inr (e.subst σ) (r.subst (σ.lift)) | let1_case a l r s => simp only [Term.subst, <-wk1_subst_lift] exact let1_case (a.subst σ) (l.subst σ.lift) (r.subst σ.lift) (s.subst σ.lift)