-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy pathinference.py
executable file
·103 lines (79 loc) · 3.32 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from load_data import loadDataJSRT, loadDataMontgomery
import numpy as np
import pandas as pd
from keras.models import load_model
from keras.preprocessing.image import ImageDataGenerator
from skimage import morphology, color, io, exposure
def IoU(y_true, y_pred):
"""Returns Intersection over Union score for ground truth and predicted masks."""
assert y_true.dtype == bool and y_pred.dtype == bool
y_true_f = y_true.flatten()
y_pred_f = y_pred.flatten()
intersection = np.logical_and(y_true_f, y_pred_f).sum()
union = np.logical_or(y_true_f, y_pred_f).sum()
return (intersection + 1) * 1. / (union + 1)
def Dice(y_true, y_pred):
"""Returns Dice Similarity Coefficient for ground truth and predicted masks."""
assert y_true.dtype == bool and y_pred.dtype == bool
y_true_f = y_true.flatten()
y_pred_f = y_pred.flatten()
intersection = np.logical_and(y_true_f, y_pred_f).sum()
return (2. * intersection + 1.) / (y_true.sum() + y_pred.sum() + 1.)
def masked(img, gt, mask, alpha=1):
"""Returns image with GT lung field outlined with red, predicted lung field
filled with blue."""
rows, cols = img.shape
color_mask = np.zeros((rows, cols, 3))
boundary = morphology.dilation(gt, morphology.disk(3)) - gt
color_mask[mask == 1] = [0, 0, 1]
color_mask[boundary == 1] = [1, 0, 0]
img_color = np.dstack((img, img, img))
img_hsv = color.rgb2hsv(img_color)
color_mask_hsv = color.rgb2hsv(color_mask)
img_hsv[..., 0] = color_mask_hsv[..., 0]
img_hsv[..., 1] = color_mask_hsv[..., 1] * alpha
img_masked = color.hsv2rgb(img_hsv)
return img_masked
def remove_small_regions(img, size):
"""Morphologically removes small (less than size) connected regions of 0s or 1s."""
img = morphology.remove_small_objects(img, size)
img = morphology.remove_small_holes(img, size)
return img
if __name__ == '__main__':
# Path to csv-file. File should contain X-ray filenames as first column,
# mask filenames as second column.
csv_path = '/path/to/JSRT/idx.csv'
# Path to the folder with images. Images will be read from path + path_from_csv
path = csv_path[:csv_path.rfind('/')] + '/'
df = pd.read_csv(csv_path)
# Load test data
im_shape = (256, 256)
X, y = loadDataJSRT(df, path, im_shape)
n_test = X.shape[0]
inp_shape = X[0].shape
# Load model
model_name = 'trained_model.hdf5'
UNet = load_model(model_name)
# For inference standard keras ImageGenerator is used.
test_gen = ImageDataGenerator(rescale=1.)
ious = np.zeros(n_test)
dices = np.zeros(n_test)
i = 0
for xx, yy in test_gen.flow(X, y, batch_size=1):
img = exposure.rescale_intensity(np.squeeze(xx), out_range=(0,1))
pred = UNet.predict(xx)[..., 0].reshape(inp_shape[:2])
mask = yy[..., 0].reshape(inp_shape[:2])
# Binarize masks
gt = mask > 0.5
pr = pred > 0.5
# Remove regions smaller than 2% of the image
pr = remove_small_regions(pr, 0.02 * np.prod(im_shape))
io.imsave('results/{}'.format(df.iloc[i][0]), masked(img, gt, pr, 1))
ious[i] = IoU(gt, pr)
dices[i] = Dice(gt, pr)
print df.iloc[i][0], ious[i], dices[i]
i += 1
if i == n_test:
break
print 'Mean IoU:', ious.mean()
print 'Mean Dice:', dices.mean()