-
Notifications
You must be signed in to change notification settings - Fork 1
/
DQN_with_target_network.py
355 lines (307 loc) · 13.6 KB
/
DQN_with_target_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
# -*- coding: utf-8 -*-
"""
Created on Thu May 17 10:24:12 2018
@author: len
"""
#!/usr/bin/env python
from __future__ import print_function
import tensorflow as tf
import tflearn
import cv2
import sys
sys.path.append("game/")
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import wrapped_flappy_bird as game
import random
import numpy as np
from collections import deque
import matplotlib.pylab as plt
import pygame
import time
GAME = 'bird' # the name of the game being played for log files
ACTIONS = 2 # number of valid actions
GAMMA = 0.99 # decay rate of past observations
OBSERVE = 10000. # timesteps to observe before training
EXPLORE = 3000000. # frames over which to anneal epsilon
FINAL_EPSILON = 0.0001 # final value of epsilon
INITIAL_EPSILON = 0.1 # starting value of epsilon 探索度,epsilon贪心策略
REPLAY_MEMORY = 50000 # number of previous transitions to remember
BATCH = 32 # size of minibatch
FRAME_PER_ACTION = 1
def createNetwork():
# input layer
s = tf.placeholder("float", [None, 80, 80, 4])
# hidden layers
h_conv1 = tflearn.conv_2d(s, 32, 8, strides=4, activation='relu',weights_init=tflearn.initializations.truncated_normal(stddev=0.01))
h_pool1 = tflearn.max_pool_2d(h_conv1,2,2)
h_conv2 = tflearn.conv_2d(h_pool1,64,4,strides=2,activation='relu',weights_init=tflearn.initializations.truncated_normal(stddev=0.01))
h_conv3 = tflearn.conv_2d(h_conv2,64,3,strides=1,activation='relu',weights_init=tflearn.initializations.truncated_normal(stddev=0.01))
h_conv3_flat = tflearn.reshape(h_conv3,[-1,1600])
h_fc1 = tflearn.fully_connected(incoming=h_conv3_flat,n_units=512,activation='relu',weights_init=tflearn.initializations.truncated_normal(stddev=0.01))
readout = tflearn.fully_connected(incoming=h_fc1,n_units=ACTIONS)
return s, readout
def plot_score(score_list):
#plt.plot(np.arange(len(score_list)), score_list)
plt.semilogx(np.arange(len(score_list)), score_list)
plt.ylabel('score')
plt.xlabel('game')
plt.show()
def plot_cost(cost_list):
#plt.plot(np.arange(len(cost_list)), cost_list)
plt.semilogx(np.arange(len(cost_list)), cost_list)
plt.ylabel('Cost')
plt.xlabel('training steps')
plt.show()
def plot_maxvalue(value_list):
#plt.plot(np.arange(len(value_list)),value_list)
plt.semilogx(np.arange(len(value_list)),value_list)
plt.ylabel('max_value')
plt.xlabel('training step')
plt.show()
score_list = []
cost_list = []
value_list = []
def trainNetwork(s,q_values,st,target_q_values,reset_target_network_params,sess,train,acceleration):
# define the cost function
a = tf.placeholder("float", [None, ACTIONS])#action
y = tf.placeholder("float", [None])#Q现实
readout_action = tf.reduce_sum(tf.multiply(q_values, a), reduction_indices=1)
#readout是在s状态下,采取各个动作的Q值,a是实际采取的动作,
# multiply一下再reduce_sum就是网络预测的在状态s下采取动作a的Q值,也就是Q估计
#readout is the Q value of each action at state s
#the result of multiply and reduce_sum is the Q value from network at state s with action a,that is Q evaluate
cost = tf.reduce_mean(tf.square(y - readout_action))
#这里就是Q现实与Q估计的差值
#the diffence between Q real and Q evaluate
train_step = tf.train.AdamOptimizer(1e-6).minimize(cost)
# open up a game state to communicate with emulator
game_state = game.GameState()
game_state.acceleration = acceleration#if acceleration
# store the previous observations in replay memory
D = deque()
cost_tmp = deque(maxlen = 1000)##save a length of cost to judge if we should adjust the step parameter C
cost_tmp.append(0)#to avoid np.mean nan
# get the first state by doing nothing and preprocess the image to 80x80x4
do_nothing = np.zeros(ACTIONS)
do_nothing[0] = 1
x_t, r_0, terminal = game_state.frame_step(do_nothing)#image_data, reward, terminal
x_t = cv2.cvtColor(cv2.resize(x_t, (80, 80)), cv2.COLOR_BGR2GRAY)
ret, x_t = cv2.threshold(x_t,1,255,cv2.THRESH_BINARY)
s_t = np.stack((x_t, x_t, x_t, x_t), axis=2)
# saving and loading networks
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
if not os.path.exists("saved_networks"):
os.makedirs("saved_networks")
checkpoint = tf.train.get_checkpoint_state("saved_networks")
if checkpoint and checkpoint.model_checkpoint_path:
saver.restore(sess, checkpoint.model_checkpoint_path)
print("Successfully loaded:", checkpoint.model_checkpoint_path)
else:
print("Could not find old network weights")
t = 0
score = 0
start_time = time.time()#to compute the time to avoid ploting too frequently
##################################train the network#######################################
if train:
sess.run(reset_target_network_params)
# print('reset_target_network_params!!!!!!!')
# start training
epsilon = INITIAL_EPSILON
game_num = 0
C = 1#every C step reset target Q network
while "flappy bird" != "angry bird":
# choose an action epsilon greedily
readout_t = q_values.eval(feed_dict={s : [s_t]})[0]
a_t = np.zeros([ACTIONS])
action_index = 0
if t % FRAME_PER_ACTION == 0:
if random.random() <= epsilon:
# print("----------Random Action----------")
action_index = random.randrange(ACTIONS)
a_t[random.randrange(ACTIONS)] = 1
else:
action_index = np.argmax(readout_t)
a_t[action_index] = 1
else:
a_t[0] = 1 # do nothing
# scale down epsilon
if epsilon > FINAL_EPSILON and t > OBSERVE:
epsilon -= (INITIAL_EPSILON - FINAL_EPSILON) / EXPLORE
# run the selected action and observe next state and reward
x_t1_colored, r_t, terminal = game_state.frame_step(a_t)
x_t1 = cv2.cvtColor(cv2.resize(x_t1_colored, (80, 80)), cv2.COLOR_BGR2GRAY)
ret, x_t1 = cv2.threshold(x_t1, 1, 255, cv2.THRESH_BINARY)
x_t1 = np.reshape(x_t1, (80, 80, 1))
#s_t1 = np.append(x_t1, s_t[:,:,1:], axis = 2)
s_t1 = np.append(x_t1, s_t[:, :, :3], axis=2)
# store the transition in D
D.append((s_t, a_t, r_t, s_t1, terminal))
if len(D) > REPLAY_MEMORY:
D.popleft()
# only train if done observing
if t > OBSERVE:
# sample a minibatch to train on
minibatch = random.sample(D, BATCH)
# get the batch variables
#s_t, a_t, r_t, s_t1
s_j_batch = [d[0] for d in minibatch]
a_batch = [d[1] for d in minibatch]
r_batch = [d[2] for d in minibatch]
s_j1_batch = [d[3] for d in minibatch]
y_batch = []#Q现实
readout_j1_batch = target_q_values.eval(feed_dict = {st : s_j1_batch})
#tensorflow还可以这样操作,这个eval可以转变BN吗,可以试试
for i in range(0, len(minibatch)):
terminal_ = minibatch[i][4]#this terminal_ should be different from terminal
# if terminal_, only equals reward
if terminal_:
y_batch.append(r_batch[i])
else:
y_batch.append(r_batch[i] + GAMMA * np.max(readout_j1_batch[i]))
# perform gradient step
train_step.run(feed_dict = {
y : y_batch,
a : a_batch,
s : s_j_batch}
)
cost_list.append(cost.eval(feed_dict = {y:y_batch,a:a_batch,s:s_j_batch}))
cost_tmp.append(cost.eval(feed_dict = {y:y_batch,a:a_batch,s:s_j_batch}))
# update the old values
s_t = s_t1
t += 1
# save progress every 10000 iterations
if t % 10000 == 0:
saver.save(sess, 'saved_networks/' + GAME + '-dqn', global_step = t)
#adjust the step C by cost_tmp
if t % C == 0:
sess.run(reset_target_network_params)
# print('reset_target_network_params!!!!!!!',C)
if np.mean(cost_tmp)>0.5:
C*=2
else:
C = np.ceil(C/2)
# print info
state = ""
if t <= OBSERVE:
state = "observe"
elif t > OBSERVE and t <= OBSERVE + EXPLORE:
state = "explore"
else:
state = "train"
# print("TIMESTEP", t, "/ STATE", state, \
# "/ EPSILON", epsilon, "/ ACTION", action_index, "/ REWARD", r_t, \
# "/ Q_MAX %e" % np.max(readout_t))
# write info to files
'''
if t % 10000 <= 100:
a_file.write(",".join([str(x) for x in readout_t]) + '\n')
h_file.write(",".join([str(x) for x in h_fc1.eval(feed_dict={s:[s_t]})[0]]) + '\n')
cv2.imwrite("logs_tetris/frame" + str(t) + ".png", x_t1)
'''
score+=r_t
value_list.append(np.max(readout_t))
if terminal:
game_state.acceleration = acceleration#if acceleration
game_num+=1
score_list.append(score)
if time.time()-start_time>60:#don't print too frequently
#i run the code in spyder ipython console before, but if in terminal like CMD, it will pause when plot
#so you can just comment the plot funtion
#plot_cost(cost_list)
#plot_maxvalue(value_list)
#plot_score(score_list)
print('---------game:',game_num,state,'train_step:',t,'score:',score)
print('C is:',C,'mean cost:',np.mean(cost_tmp))
start_time = time.time()
score=0
##########################test network###############################################3
else:
terminal = False
while not terminal:
# choose an action epsilon greedily
readout_t = q_values.eval(feed_dict={s : [s_t]})[0]
a_t = np.zeros([ACTIONS])
action_index = 0
if t % FRAME_PER_ACTION == 0:
action_index = np.argmax(readout_t)
a_t[action_index] = 1
else:
a_t[0] = 1 # do nothing
# run the selected action and observe next state and reward
x_t1_colored, r_t, terminal = game_state.frame_step(a_t)
x_t1 = cv2.cvtColor(cv2.resize(x_t1_colored, (80, 80)), cv2.COLOR_BGR2GRAY)
ret, x_t1 = cv2.threshold(x_t1, 1, 255, cv2.THRESH_BINARY)
x_t1 = np.reshape(x_t1, (80, 80, 1))
#s_t1 = np.append(x_t1, s_t[:,:,1:], axis = 2)
s_t1 = np.append(x_t1, s_t[:, :, :3], axis=2)
s_t = s_t1
score+=r_t
if time.time()-start_time>10:
print('current score:',score)
start_time = time.time()
if terminal:
print('total score:',score)
#for human to play the game
###################space key to fly, do nothing to fall down#################################
#just take a try to feel the game's difficulty
def play_by_human():
game_state = game.GameState()
game_state.acceleration = False
game_1 = True
score = 0
start_time = time.time()
while game_1:
a_t = np.zeros([2])
keystate = pygame.key.get_pressed()
if keystate[pygame.K_SPACE]:
a_t = np.array([0,1])
else:
a_t = np.array([1,0])
x_t1_colored, r_t, terminal = game_state.frame_step(a_t)
score += r_t
if time.time()-start_time>10:
print('current score:',score)
if terminal:
print('total score:',score)
# print('time:',time.time()-start)
game_1 = False
def playGame(train):
sess = tf.InteractiveSession()
s, q_network= createNetwork()
network_params = tf.trainable_variables()
q_values = q_network
st, target_q_network = createNetwork()
target_network_params = tf.trainable_variables()[len(network_params):]
target_q_values = target_q_network
reset_target_network_params = \
[target_network_params[i].assign(network_params[i])
for i in range(len(target_network_params))]
trainNetwork(s, q_values, st,target_q_values,reset_target_network_params, sess,train=train,acceleration=train)
#if play_by_human = True, play it by yourself with space key
#if train = True, train the network with acceleration(do not use FPS)
#if train = False, test the network model
# human_play = False
# train = True
def main():
if human_play:
play_by_human()
elif train:
playGame(train)
else:
playGame(train)
# main()
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--train',type =bool,default = False)
parser.add_argument('--human_play',type=bool,default = False)
parser.add_argument('--test',type = bool,default = True)
args = parser.parse_args()
if args.human_play:
play_by_human()
elif args.train:
playGame(train=True)
elif args.test:
playGame(train=False)