forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
254 lines (215 loc) · 9.38 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import os
import time
import yaml
import argparse
import numpy as np
from pprint import pprint
from attrdict import AttrDict
import paddle
import paddle.distributed as dist
import reader
from paddlenlp.transformers import TransformerModel, CrossEntropyCriterion
from paddlenlp.utils.log import logger
from util.record import AverageStatistical
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--config",
default="./configs/transformer.big.yaml",
type=str,
help="Path of the config file. ")
parser.add_argument(
"--benchmark",
action="store_true",
help="Whether to print logs on each cards and use benchmark vocab. Normally, not necessary to set --benchmark. "
)
parser.add_argument(
"--max_iter",
default=None,
type=int,
help="The maximum iteration for training. ")
args = parser.parse_args()
return args
def do_train(args):
if args.device == "gpu":
rank = dist.get_rank()
trainer_count = dist.get_world_size()
else:
rank = 0
trainer_count = 1
paddle.set_device("cpu")
if trainer_count > 1:
dist.init_parallel_env()
# Set seed for CE
random_seed = eval(str(args.random_seed))
if random_seed is not None:
paddle.seed(random_seed)
# Define data loader
(train_loader), (eval_loader) = reader.create_data_loader(args)
# Define model
transformer = TransformerModel(
src_vocab_size=args.src_vocab_size,
trg_vocab_size=args.trg_vocab_size,
max_length=args.max_length + 1,
n_layer=args.n_layer,
n_head=args.n_head,
d_model=args.d_model,
d_inner_hid=args.d_inner_hid,
dropout=args.dropout,
weight_sharing=args.weight_sharing,
bos_id=args.bos_idx,
eos_id=args.eos_idx)
# Define loss
criterion = CrossEntropyCriterion(args.label_smooth_eps, args.bos_idx)
scheduler = paddle.optimizer.lr.NoamDecay(
args.d_model, args.warmup_steps, args.learning_rate, last_epoch=0)
# Define optimizer
optimizer = paddle.optimizer.Adam(
learning_rate=scheduler,
beta1=args.beta1,
beta2=args.beta2,
epsilon=float(args.eps),
parameters=transformer.parameters())
# Init from some checkpoint, to resume the previous training
if args.init_from_checkpoint:
model_dict = paddle.load(
os.path.join(args.init_from_checkpoint, "transformer.pdparams"))
opt_dict = paddle.load(
os.path.join(args.init_from_checkpoint, "transformer.pdopt"))
transformer.set_state_dict(model_dict)
optimizer.set_state_dict(opt_dict)
print("loaded from checkpoint.")
# Init from some pretrain models, to better solve the current task
if args.init_from_pretrain_model:
model_dict = paddle.load(
os.path.join(args.init_from_pretrain_model, "transformer.pdparams"))
transformer.set_state_dict(model_dict)
print("loaded from pre-trained model.")
if trainer_count > 1:
transformer = paddle.DataParallel(transformer)
# The best cross-entropy value with label smoothing
loss_normalizer = -(
(1. - args.label_smooth_eps) * np.log(
(1. - args.label_smooth_eps)) + args.label_smooth_eps *
np.log(args.label_smooth_eps / (args.trg_vocab_size - 1) + 1e-20))
step_idx = 0
# For benchmark
reader_cost_avg = AverageStatistical()
batch_cost_avg = AverageStatistical()
batch_ips_avg = AverageStatistical()
# Train loop
for pass_id in range(args.epoch):
epoch_start = time.time()
batch_id = 0
batch_start = time.time()
for input_data in train_loader:
#NOTE: Used for benchmark and use None as default.
if args.max_iter and step_idx == args.max_iter:
return
train_reader_cost = time.time() - batch_start
(src_word, trg_word, lbl_word) = input_data
if args.use_amp:
scaler = paddle.amp.GradScaler(
init_loss_scaling=args.scale_loss)
with paddle.amp.auto_cast():
logits = transformer(src_word=src_word, trg_word=trg_word)
sum_cost, avg_cost, token_num = criterion(logits, lbl_word)
scaled = scaler.scale(avg_cost) # scale the loss
scaled.backward() # do backward
scaler.minimize(optimizer, scaled) # update parameters
optimizer.clear_grad()
else:
logits = transformer(src_word=src_word, trg_word=trg_word)
sum_cost, avg_cost, token_num = criterion(logits, lbl_word)
avg_cost.backward()
optimizer.step()
optimizer.clear_grad()
tokens_per_cards = token_num.numpy()
train_batch_cost = time.time() - batch_start
reader_cost_avg.record(train_reader_cost)
batch_cost_avg.record(train_batch_cost)
batch_ips_avg.record(train_batch_cost, tokens_per_cards)
# NOTE: For benchmark, loss infomation on all cards will be printed.
if step_idx % args.print_step == 0 and (args.benchmark or
rank == 0):
total_avg_cost = avg_cost.numpy()
if step_idx == 0:
logger.info(
"step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
"normalized loss: %f, ppl: %f " %
(step_idx, pass_id, batch_id, total_avg_cost,
total_avg_cost - loss_normalizer,
np.exp([min(total_avg_cost, 100)])))
else:
train_avg_batch_cost = args.print_step / batch_cost_avg.get_total_time(
)
logger.info(
"step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
"normalized loss: %f, ppl: %f, avg_speed: %.2f step/sec, "
"batch_cost: %.5f sec, reader_cost: %.5f sec, tokens: %d, "
"ips: %.5f words/sec" %
(step_idx, pass_id, batch_id, total_avg_cost,
total_avg_cost - loss_normalizer,
np.exp([min(total_avg_cost, 100)]),
train_avg_batch_cost, batch_cost_avg.get_average(),
reader_cost_avg.get_average(),
batch_ips_avg.get_total_cnt(),
batch_ips_avg.get_average_per_sec()))
reader_cost_avg.reset()
batch_cost_avg.reset()
batch_ips_avg.reset()
if step_idx % args.save_step == 0 and step_idx != 0:
# Validation
transformer.eval()
total_sum_cost = 0
total_token_num = 0
with paddle.no_grad():
for input_data in eval_loader:
(src_word, trg_word, lbl_word) = input_data
logits = transformer(
src_word=src_word, trg_word=trg_word)
sum_cost, avg_cost, token_num = criterion(logits,
lbl_word)
total_sum_cost += sum_cost.numpy()
total_token_num += token_num.numpy()
total_avg_cost = total_sum_cost / total_token_num
logger.info("validation, step_idx: %d, avg loss: %f, "
"normalized loss: %f, ppl: %f" %
(step_idx, total_avg_cost,
total_avg_cost - loss_normalizer,
np.exp([min(total_avg_cost, 100)])))
transformer.train()
if args.save_model and rank == 0:
model_dir = os.path.join(args.save_model,
"step_" + str(step_idx))
if not os.path.exists(model_dir):
os.makedirs(model_dir)
paddle.save(transformer.state_dict(),
os.path.join(model_dir, "transformer.pdparams"))
paddle.save(optimizer.state_dict(),
os.path.join(model_dir, "transformer.pdopt"))
batch_id += 1
step_idx += 1
scheduler.step()
batch_start = time.time()
train_epoch_cost = time.time() - epoch_start
logger.info("train epoch: %d, epoch_cost: %.5f s" %
(pass_id, train_epoch_cost))
if args.save_model and rank == 0:
model_dir = os.path.join(args.save_model, "step_final")
if not os.path.exists(model_dir):
os.makedirs(model_dir)
paddle.save(transformer.state_dict(),
os.path.join(model_dir, "transformer.pdparams"))
paddle.save(optimizer.state_dict(),
os.path.join(model_dir, "transformer.pdopt"))
if __name__ == "__main__":
ARGS = parse_args()
yaml_file = ARGS.config
with open(yaml_file, 'rt') as f:
args = AttrDict(yaml.safe_load(f))
pprint(args)
args.benchmark = ARGS.benchmark
if ARGS.max_iter:
args.max_iter = ARGS.max_iter
do_train(args)