forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data.py
180 lines (140 loc) · 6.12 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import paddle
from paddlenlp.utils.log import logger
def create_dataloader(dataset,
mode='train',
batch_size=1,
batchify_fn=None,
trans_fn=None):
if trans_fn:
dataset = dataset.map(trans_fn)
shuffle = True if mode == 'train' else False
if mode == 'train':
batch_sampler = paddle.io.DistributedBatchSampler(
dataset, batch_size=batch_size, shuffle=shuffle)
else:
batch_sampler = paddle.io.BatchSampler(
dataset, batch_size=batch_size, shuffle=shuffle)
return paddle.io.DataLoader(
dataset=dataset,
batch_sampler=batch_sampler,
collate_fn=batchify_fn,
return_list=True)
def convert_example(example, tokenizer, max_seq_length=512):
"""
Builds model inputs from a sequence.
A BERT sequence has the following format:
- single sequence: ``[CLS] X [SEP]``
Args:
example(obj:`list(str)`): The list of text to be converted to ids.
tokenizer(obj:`PretrainedTokenizer`): This tokenizer inherits from :class:`~paddlenlp.transformers.PretrainedTokenizer`
which contains most of the methods. Users should refer to the superclass for more information regarding methods.
max_seq_len(obj:`int`): The maximum total input sequence length after tokenization.
Sequences longer than this will be truncated, sequences shorter will be padded.
is_test(obj:`False`, defaults to `False`): Whether the example contains label or not.
Returns:
input_ids(obj:`list[int]`): The list of query token ids.
token_type_ids(obj: `list[int]`): List of query sequence pair mask.
"""
result = []
for key, text in example.items():
encoded_inputs = tokenizer(text=text, max_seq_len=max_seq_length)
input_ids = encoded_inputs["input_ids"]
token_type_ids = encoded_inputs["token_type_ids"]
result += [input_ids, token_type_ids]
return result
def read_text_pair(data_path):
"""Reads data."""
with open(data_path, 'r', encoding='utf-8') as f:
for line in f:
data = line.rstrip().split("\t")
if len(data) != 2:
continue
yield {'text_a': data[0], 'text_b': data[1]}
def read_text_triplet(data_path):
"""Reads data."""
with open(data_path, 'r', encoding='utf-8') as f:
for line in f:
data = line.rstrip().split("\t")
if len(data) != 3:
continue
yield {
'text': data[0],
'pos_sample': data[1],
'neg_sample': data[2]
}
# ANN - active learning ------------------------------------------------------
def get_latest_checkpoint(args):
"""
Return: (latest_checkpint_path, global_step)
"""
if not os.path.exists(args.save_dir):
return args.init_from_ckpt, 0
subdirectories = list(next(os.walk(args.save_dir))[1])
def valid_checkpoint(checkpoint):
chk_path = os.path.join(args.save_dir, checkpoint)
scheduler_path = os.path.join(chk_path, "model_state.pdparams")
succeed_flag_file = os.path.join(chk_path, "succeed_flag_file")
return os.path.exists(scheduler_path) and os.path.exists(
succeed_flag_file)
trained_steps = [int(s) for s in subdirectories if valid_checkpoint(s)]
if len(trained_steps) > 0:
return os.path.join(args.save_dir,
str(max(trained_steps)),
"model_state.pdparams"), max(trained_steps)
return args.init_from_ckpt, 0
# ANN - active learning ------------------------------------------------------
def get_latest_ann_data(ann_data_dir):
if not os.path.exists(ann_data_dir):
return None, -1
subdirectories = list(next(os.walk(ann_data_dir))[1])
def valid_checkpoint(step):
ann_data_file = os.path.join(ann_data_dir, step, "new_ann_data")
# succed_flag_file is an empty file that indicates ann data has been generated
succeed_flag_file = os.path.join(ann_data_dir, step,
"succeed_flag_file")
return os.path.exists(succeed_flag_file) and os.path.exists(
ann_data_file)
ann_data_steps = [int(s) for s in subdirectories if valid_checkpoint(s)]
if len(ann_data_steps) > 0:
latest_ann_data_file = os.path.join(ann_data_dir,
str(max(ann_data_steps)),
"new_ann_data")
logger.info("Using lateset ann_data_file:{}".format(
latest_ann_data_file))
return latest_ann_data_file, max(ann_data_steps)
logger.info("no new ann_data, return (None, -1)")
return None, -1
def gen_id2corpus(corpus_file):
id2corpus = {}
with open(corpus_file, 'r', encoding='utf-8') as f:
for idx, line in enumerate(f):
id2corpus[idx] = line.rstrip()
return id2corpus
def gen_text_file(similar_text_pair_file):
text2similar_text = {}
texts = []
with open(similar_text_pair_file, 'r', encoding='utf-8') as f:
for line in f:
splited_line = line.rstrip().split("\t")
if len(splited_line) != 2:
continue
text, similar_text = line.rstrip().split("\t")
if not text or not similar_text:
continue
text2similar_text[text] = similar_text
texts.append({"text": text})
return texts, text2similar_text