forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
263 lines (232 loc) · 11.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import ast
import time
import argparse
import logging
import paddle
from tqdm import tqdm
import paddle.nn as nn
from paddle.io import DataLoader
from paddlenlp.transformers import ErnieForGeneration, ErnieTokenizer, ErnieTinyTokenizer, BertTokenizer, ElectraTokenizer, RobertaTokenizer, LinearDecayWithWarmup
from paddlenlp.datasets import load_dataset
from paddlenlp.data import Stack, Tuple, Pad
from paddlenlp.metrics import Rouge1, Rouge2
from paddlenlp.utils.log import logger
from encode import convert_example, after_padding
from decode import post_process, beam_search_infilling
from model import StackModel
# yapf: disable
parser = argparse.ArgumentParser('seq2seq model with ERNIE-GEN')
parser.add_argument("--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: "+ ", ".join(list(ErnieTokenizer.pretrained_init_configuration.keys())))
parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.",)
parser.add_argument('--max_encode_len', type=int, default=5, help="The max encoding sentence length")
parser.add_argument('--max_decode_len', type=int, default=5, help="The max decoding sentence length")
parser.add_argument("--batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.", )
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.1, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--num_epochs", default=3, type=int, help="Total number of training epochs to perform.", )
parser.add_argument("--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_epochs.",)
parser.add_argument("--warmup_proportion", default=0.1, type=float, help="Linear warmup proportion.")
parser.add_argument("--logging_steps", type=int, default=1, help="Log every X updates steps.")
parser.add_argument("--save_steps", type=int, default=100, help="Save checkpoint every X updates steps.")
parser.add_argument("--device", default="gpu", type=str, choices=["cpu", "gpu", "xpu"] ,help="The device to select to train the model, is must be cpu/gpu/xpu.")
parser.add_argument('--beam_width', type=int, default=1, help="Beam search width")
parser.add_argument('--noise_prob', type=float, default=0., help='Probability of token be repalced')
parser.add_argument('--use_random_noice', action='store_true', help='If set, replace target tokens with random token from vocabulary, else replace with `[NOISE]`')
parser.add_argument('--label_smooth', type=float, default=0., help="The soft label smooth rate")
parser.add_argument('--length_penalty', type=float, default=1.0, help="The length penalty during decoding")
parser.add_argument('--init_checkpoint', type=str, default=None, help='Checkpoint to warm start from')
parser.add_argument('--save_dir', type=str, default=None, help='Model output directory')
# yapf: enable
args = parser.parse_args()
def evaluate(model, data_loader, tokenizer, rouge1, rouge2, attn_id,
tgt_type_id, args):
model.eval()
vocab = tokenizer.vocab
eos_id = vocab[tokenizer.sep_token]
sos_id = vocab[tokenizer.cls_token]
pad_id = vocab[tokenizer.pad_token]
unk_id = vocab[tokenizer.unk_token]
vocab_size = len(vocab)
evaluated_sentences_ids = []
reference_sentences_ids = []
logger.info("Evaluating...")
for data in tqdm(data_loader):
(src_ids, src_tids, src_pids, _, _, _, _, _, _, _, _,
raw_tgt_labels) = data # never use target when infer
# Use greedy_search_infilling or beam_search_infilling to get predictions
output_ids = beam_search_infilling(
model,
src_ids,
src_tids,
eos_id=eos_id,
sos_id=sos_id,
attn_id=attn_id,
pad_id=pad_id,
unk_id=unk_id,
vocab_size=vocab_size,
max_decode_len=args.max_decode_len,
max_encode_len=args.max_encode_len,
beam_width=args.beam_width,
length_penalty=args.length_penalty,
tgt_type_id=tgt_type_id)
for ids in output_ids.tolist():
if eos_id in ids:
ids = ids[:ids.index(eos_id)]
evaluated_sentences_ids.append(ids)
for ids in raw_tgt_labels.numpy().tolist():
ids = ids[:ids.index(eos_id)]
reference_sentences_ids.append(ids)
score1 = rouge1.score(evaluated_sentences_ids, reference_sentences_ids)
score2 = rouge2.score(evaluated_sentences_ids, reference_sentences_ids)
logger.info("Rouge-1: %.5f ,Rouge-2: %.5f" % (score1 * 100, score2 * 100))
evaluated_sentences = []
reference_sentences = []
for ids in reference_sentences_ids[:5]:
reference_sentences.append(''.join(
map(post_process, vocab.to_tokens(ids))))
for ids in evaluated_sentences_ids[:5]:
evaluated_sentences.append(''.join(
map(post_process, vocab.to_tokens(ids))))
logger.debug(reference_sentences)
logger.debug(evaluated_sentences)
model.train()
def train():
paddle.set_device(args.device)
if paddle.distributed.get_world_size() > 1:
paddle.distributed.init_parallel_env()
model = ErnieForGeneration.from_pretrained(args.model_name_or_path)
if "ernie-tiny" in args.model_name_or_path:
tokenizer = ErnieTinyTokenizer.from_pretrained(args.model_name_or_path)
elif "ernie" in args.model_name_or_path:
tokenizer = ErnieTokenizer.from_pretrained(args.model_name_or_path)
elif "roberta" in args.model_name_or_path or "rbt" in args.model_name_or_path:
tokenizer = RobertaTokenizer.from_pretrained(args.model_name_or_path)
elif "electra" in args.model_name_or_path:
tokenizer = ElectraTokenizer.from_pretrained(args.model_name_or_path)
else:
tokenizer = BertTokenizer.from_pretrained(args.model_name_or_path)
if args.init_checkpoint:
model_state = paddle.load(args.init_checkpoint)
model.set_state_dict(model_state)
train_dataset, dev_dataset = load_dataset(
'poetry', splits=('train', 'dev'), lazy=False)
attn_id = tokenizer.vocab[
'[ATTN]'] if '[ATTN]' in tokenizer.vocab else tokenizer.vocab['[MASK]']
tgt_type_id = model.sent_emb.weight.shape[0] - 1
trans_func = convert_example(
tokenizer=tokenizer,
attn_id=attn_id,
tgt_type_id=tgt_type_id,
max_encode_len=args.max_encode_len,
max_decode_len=args.max_decode_len,
noise_prob=args.noise_prob,
use_random_noice=args.use_random_noice)
train_dataset = train_dataset.map(trans_func)
train_batch_sampler = paddle.io.DistributedBatchSampler(
train_dataset, batch_size=args.batch_size, shuffle=True)
batchify_fn = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=tokenizer.pad_token_id), # src_ids
Pad(axis=0, pad_val=tokenizer.pad_token_id), # src_pids
Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # src_tids
Pad(axis=0, pad_val=tokenizer.pad_token_id), # tgt_ids
Pad(axis=0, pad_val=tokenizer.pad_token_id), # tgt_pids
Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # tgt_tids
Pad(axis=0, pad_val=tokenizer.pad_token_id), # attn_ids
Pad(axis=0, pad_val=tokenizer.pad_token_id), # tgt_labels
): after_padding(fn(samples))
train_data_loader = DataLoader(
dataset=train_dataset,
batch_sampler=train_batch_sampler,
collate_fn=batchify_fn,
num_workers=0,
return_list=True)
dev_dataset = dev_dataset.map(trans_func)
dev_data_loader = DataLoader(
dataset=dev_dataset,
batch_size=args.batch_size,
collate_fn=batchify_fn,
num_workers=0,
return_list=True)
label_num = model.word_emb.weight.shape[0]
train_model = StackModel(model)
if paddle.distributed.get_world_size() > 1:
# All 'forward' outputs derived from the module parameters using in DataParallel
# must participate in the calculation of losses and subsequent gradient calculations.
# So we use StackModel here to make the model only output loss in its 'forward' function.
train_model = paddle.DataParallel(train_model)
max_steps = len(train_data_loader) * args.num_epochs
lr_scheduler = LinearDecayWithWarmup(args.learning_rate, max_steps,
args.warmup_proportion)
# Generate parameter names needed to perform weight decay.
# All bias and LayerNorm parameters are excluded.
decay_params = [
p.name for n, p in model.named_parameters()
if not any(nd in n for nd in ["bias", "norm"])
]
optimizer = paddle.optimizer.AdamW(
learning_rate=lr_scheduler,
epsilon=args.adam_epsilon,
parameters=model.parameters(),
weight_decay=args.weight_decay,
grad_clip=nn.ClipGradByGlobalNorm(1.0),
apply_decay_param_fun=lambda x: x in decay_params)
rouge1 = Rouge1()
rouge2 = Rouge2()
global_step = 1
tic_train = time.time()
for epoch in range(args.num_epochs):
for step, batch in enumerate(train_data_loader, start=1):
(src_ids, src_tids, src_pids, tgt_ids, tgt_tids, tgt_pids, attn_ids,
mask_src_2_src, mask_tgt_2_srctgt, mask_attn_2_srctgtattn,
tgt_labels, _) = batch
# import pdb; pdb.set_trace()
if args.label_smooth > 0.:
tgt_labels = nn.functional.label_smooth(
nn.functional.one_hot(tgt_labels, label_num),
epsilon=args.label_smooth)
tgt_pos = paddle.nonzero(attn_ids == attn_id)
loss = train_model(src_ids, src_tids, src_pids, tgt_ids, tgt_tids,
tgt_pids, attn_ids, mask_src_2_src,
mask_tgt_2_srctgt, mask_attn_2_srctgtattn,
tgt_labels, tgt_pos)
if global_step % args.logging_steps == 0:
if paddle.distributed.get_rank() == 0:
logger.info(
"global step %d, epoch: %d, batch: %d, loss: %f, speed: %.2f step/s, lr: %.3e"
% (global_step, epoch, step, loss, args.logging_steps /
(time.time() - tic_train), lr_scheduler.get_lr()))
tic_train = time.time()
loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.clear_grad()
if global_step % args.save_steps == 0 and paddle.distributed.get_rank(
) == 0:
evaluate(model, dev_data_loader, tokenizer, rouge1, rouge2,
attn_id, tgt_type_id, args)
output_dir = os.path.join(args.output_dir,
"model_%d" % global_step)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model._layers if isinstance(
model, paddle.DataParallel) else model
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
global_step += 1
if __name__ == "__main__":
train()