This repository has been archived by the owner on Aug 5, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 44
/
matrix-ops.c
124 lines (98 loc) · 2.94 KB
/
matrix-ops.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
/*
// Copyright (c) 2015 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
#include "matrix-ops.h"
#include <math.h>
void transpose (int rows, int cols, double m[rows][cols], double m_trans[cols][rows])
{
int i,j;
for (i = 0; i < rows; i++)
for (j = 0; j < cols; j++)
m_trans[j][i] = m[i][j];
}
void multiply (int m, int n, int p, double m1[m][n], double m2[n][p], double result[m][p])
{
int i,j,k;
for (i = 0; i < m; i++)
for (k = 0; k < p; k++) {
result [i][k] = 0;
for (j = 0; j < n; j++)
result [i][k] += m1[i][j] * m2 [j][k];
}
}
void invert (int s, double m[s][s], double m_inv[s][s])
{
double t;
int swap,i,j,k;
double tmp[s][s];
for (i = 0; i < s; i++)
for (j = 0; j < s; j++)
m_inv[i][j] = 0;
for (i = 0; i < s; i++)
m_inv[i][i] = 1;
assign(s,s,m,tmp);
for (i = 0; i < s; i++) {
swap = i;
for (j = i+1; j < s; j++) {
if (fabs(tmp[i][j]) > fabs(tmp[i][i]))
swap = j;
}
if (swap != i) {
/* swap rows */
for (k = 0; k < s; k++) {
t = tmp[k][i];
tmp[k][i] = tmp[k][swap];
tmp[k][swap] = t;
t = m_inv[k][i];
m_inv[k][i] = m_inv[k][swap];
m_inv[k][swap] = t;
}
}
t = 1 / tmp[i][i];
for (k = 0 ; k < s ; k++) {
tmp[k][i] *= t;
m_inv[k][i] *= t;
}
for (j = 0 ; j < s ; j++)
if (j != i) {
t = tmp[i][j];
for (k = 0 ; k < s; k++) {
tmp[k][j] -= tmp[k][i] * t;
m_inv[k][j] -= m_inv[k][i] * t;
}
}
}
}
void multiply_scalar_inplace(int rows, int cols, double m[rows][cols], double scalar)
{
int i,j;
for (i = 0; i < rows; i++)
for (j = 0; j < cols; j++)
m[i][j] = m[i][j] * scalar;
}
void assign (int rows, int cols, double m[rows][cols], double m1[rows][cols])
{
int i,j;
for (i = 0; i < rows; i++)
for (j = 0; j < cols; j++)
m1[i][j] = m[i][j];
}
void substract (int rows, int cols, double m1[rows][cols], double m2[rows][cols], double res[rows][cols])
{
int i,j;
for (i = 0; i < rows; i++)
for (j = 0; j < cols; j++)
res[i][j] = m1[i][j] - m2[i][j];
}