This recipe is outdated, we recommend using symmetric quantization. You can remove --asym from the command.
auto-round \
--model 01-ai/Yi-6B-Chat \
--device 0 \
--group_size 128 \
--bits 4 \
--iters 1000 \
--nsamples 512 \
--asym \
--minmax_lr 2e-3 \
--format 'auto_gptq,auto_round' \
--output_dir "./tmp_autoround"
Due to licensing restrictions, we are unable to release the model. Install lm-eval-harness from source, and the git id 96d185fa6232a5ab685ba7c43e45d1dbb3bb906d.
We used the following command for evaluation. For reference, the results of official AWQ-INT4 release are listed.
lm_eval --model hf --model_args pretrained="./",autogptq=True,gptq_use_triton=True,trust_remote_code=True --device cuda:0 --tasks ceval-valid,cmmlu,mmlu,gsm8k --batch_size 16 --num_fewshot 0
Metric | BF16 | 01-ai/Yi-6B-Chat-4bits | INT4 |
---|---|---|---|
Avg. | 0.6043 | 0.5867 | 0.5939 |
mmlu | 0.6163 | 0.6133 | 0.6119 |
cmmlu | 0.7431 | 0.7312 | 0.7314 |
ceval | 0.7355 | 0.7155 | 0.7281 |
gsm8k | 0.3222 | 0.2866 | 0.3040 |