This notebook demonstrates how to use the attributions explainer API to explain the CIFAR-10 dataset image classification example using a Custom PyTorch CNN.
TorchVision_CIFAR_Interpret.ipynb
performs the following steps:
- Import dependencies
- Load the CIFAR-10 dataset from TorchVision hub
- Design the PyTorch CNN model
- Train the CNN
- Visualize the custom CNN classifications using
saliency()
,integratedgradients()
,deeplift()
,smoothgrad()
andfeatureablation()
To run TorchVision_CIFAR_Interpret.ipynb
, install the following dependencies: