-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathminicpm-llama3-v2.5.py
106 lines (94 loc) · 3.71 KB
/
minicpm-llama3-v2.5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import torch
import time
import argparse
from ipex_llm.transformers.npu_model import AutoModel, AutoModelForCausalLM
from transformers import AutoTokenizer
from transformers.utils import logging
import requests
from PIL import Image
logger = logging.get_logger(__name__)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Predict Tokens using `chat()` API for npu model"
)
parser.add_argument(
"--repo-id-or-model-path",
type=str,
default="openbmb/MiniCPM-Llama3-V-2_5",
help="The huggingface repo id for the MiniCPM-Llama3-V-2_5 model to be downloaded"
", or the path to the huggingface checkpoint folder.",
)
parser.add_argument('--image-url-or-path', type=str,
default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
help='The URL or path to the image to infer')
parser.add_argument('--prompt', type=str, default="What is in this image?",
help='Prompt to infer')
parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict.")
parser.add_argument("--max-context-len", type=int, default=1024)
parser.add_argument("--max-prompt-len", type=int, default=512)
parser.add_argument('--low-bit', type=str, default="sym_int4",
help='Low bit optimizations that will be applied to the model.')
parser.add_argument("--save-directory", type=str,
required=True,
help="The path of folder to save converted model, "
"If path not exists, lowbit model will be saved there. "
"Else, lowbit model will be loaded.",
)
args = parser.parse_args()
model_path = args.repo_id_or_model_path
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16,
trust_remote_code=True,
attn_implementation="eager",
load_in_low_bit=args.low_bit,
optimize_model=True,
max_context_len=args.max_context_len,
max_prompt_len=args.max_prompt_len,
save_directory=args.save_directory
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
print("-" * 80)
print("done")
msgs = [{'role': 'user', 'content': args.prompt}]
image_path = args.image_url_or_path
if os.path.exists(image_path):
image = Image.open(image_path).convert('RGB')
else:
image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
st = time.time()
res = model.chat(
image=image,
msgs=msgs,
tokenizer=tokenizer,
sampling=True,
temperature=0.7,
# system_prompt='' # pass system_prompt if needed
)
end = time.time()
print(f'Inference time: {end-st} s')
print('-'*20, 'Input', '-'*20)
print(image_path)
print('-'*20, 'Prompt', '-'*20)
print(args.prompt)
output_str = res
print('-'*20, 'Output', '-'*20)
print(output_str)
print("done")
print("success shut down")