forked from kxhit/vMAP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.py
292 lines (262 loc) · 12.6 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import imgviz
from torch.utils.data import Dataset, DataLoader
import torch
import numpy as np
import cv2
import os
from utils import enlarge_bbox, get_bbox2d, get_bbox2d_batch, box_filter
import glob
from torchvision import transforms
import image_transforms
import open3d
import time
def next_live_data(track_to_map_IDT, inited):
while True:
if track_to_map_IDT.empty():
if inited:
return None # no new frame, use kf buffer
else: # blocking until get the first frame
continue
else:
Buffer_data = track_to_map_IDT.get(block=False)
break
if Buffer_data is not None:
image, depth, T, obj, bbox_dict, kf_id = Buffer_data
del Buffer_data
T_obj = torch.eye(4)
sample = {"image": image, "depth": depth, "T": T, "T_obj": T_obj,
"obj": obj, "bbox_dict": bbox_dict, "frame_id": kf_id}
return sample
else:
print("getting nothing?")
exit(-1)
# return None
def init_loader(cfg, multi_worker=True):
if cfg.dataset_format == "Replica":
dataset = Replica(cfg)
elif cfg.dataset_format == "ScanNet":
dataset = ScanNet(cfg)
else:
print("Dataset format {} not found".format(cfg.dataset_format))
exit(-1)
# init dataloader
if multi_worker:
# multi worker loader
dataloader = DataLoader(dataset, batch_size=None, shuffle=False, sampler=None,
batch_sampler=None, num_workers=4, collate_fn=None,
pin_memory=True, drop_last=False, timeout=0,
worker_init_fn=None, generator=None, prefetch_factor=2,
persistent_workers=True)
else:
# single worker loader
dataloader = DataLoader(dataset, batch_size=None, shuffle=False, sampler=None,
batch_sampler=None, num_workers=0)
return dataloader
class Replica(Dataset):
def __init__(self, cfg):
self.imap_mode = cfg.imap_mode
self.root_dir = cfg.dataset_dir
traj_file = os.path.join(self.root_dir, "traj_w_c.txt")
self.Twc = np.loadtxt(traj_file, delimiter=" ").reshape([-1, 4, 4])
self.depth_transform = transforms.Compose(
[image_transforms.DepthScale(cfg.depth_scale),
image_transforms.DepthFilter(cfg.max_depth)])
# background semantic classes: undefined--1, undefined-0 beam-5 blinds-12 curtain-30 ceiling-31 floor-40 pillar-60 vent-92 wall-93 wall-plug-95 window-97 rug-98
self.background_cls_list = [5,12,30,31,40,60,92,93,95,97,98,79]
# Not sure: door-37 handrail-43 lamp-47 pipe-62 rack-66 shower-stall-73 stair-77 switch-79 wall-cabinet-94 picture-59
self.bbox_scale = 0.2 # 1 #1.5 0.9== s=1/9, s=0.2
def __len__(self):
return len(os.listdir(os.path.join(self.root_dir, "depth")))
def __getitem__(self, idx):
bbox_dict = {}
rgb_file = os.path.join(self.root_dir, "rgb", "rgb_" + str(idx) + ".png")
depth_file = os.path.join(self.root_dir, "depth", "depth_" + str(idx) + ".png")
inst_file = os.path.join(self.root_dir, "semantic_instance", "semantic_instance_" + str(idx) + ".png")
obj_file = os.path.join(self.root_dir, "semantic_class", "semantic_class_" + str(idx) + ".png")
depth = cv2.imread(depth_file, -1).astype(np.float32).transpose(1,0)
image = cv2.imread(rgb_file).astype(np.uint8)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB).transpose(1,0,2)
obj = cv2.imread(obj_file, cv2.IMREAD_UNCHANGED).astype(np.int32).transpose(1,0) # uint16 -> int32
inst = cv2.imread(inst_file, cv2.IMREAD_UNCHANGED).astype(np.int32).transpose(1,0) # uint16 -> int32
bbox_scale = self.bbox_scale
if self.imap_mode:
obj = np.zeros_like(obj)
else:
obj_ = np.zeros_like(obj)
inst_list = []
batch_masks = []
for inst_id in np.unique(inst):
inst_mask = inst == inst_id
# if np.sum(inst_mask) <= 2000: # too small 20 400
# continue
sem_cls = np.unique(obj[inst_mask]) # sem label, only interested obj
assert sem_cls.shape[0] != 0
if sem_cls in self.background_cls_list:
continue
obj_mask = inst == inst_id
batch_masks.append(obj_mask)
inst_list.append(inst_id)
if len(batch_masks) > 0:
batch_masks = torch.from_numpy(np.stack(batch_masks))
cmins, cmaxs, rmins, rmaxs = get_bbox2d_batch(batch_masks)
for i in range(batch_masks.shape[0]):
w = rmaxs[i] - rmins[i]
h = cmaxs[i] - cmins[i]
if w <= 10 or h <= 10: # too small todo
continue
bbox_enlarged = enlarge_bbox([rmins[i], cmins[i], rmaxs[i], cmaxs[i]], scale=bbox_scale,
w=obj.shape[1], h=obj.shape[0])
# inst_list.append(inst_id)
inst_id = inst_list[i]
obj_[batch_masks[i]] = 1
# bbox_dict.update({int(inst_id): torch.from_numpy(np.array(bbox_enlarged).reshape(-1))}) # batch format
bbox_dict.update({inst_id: torch.from_numpy(np.array(
[bbox_enlarged[1], bbox_enlarged[3], bbox_enlarged[0], bbox_enlarged[2]]))}) # bbox order
inst[obj_ == 0] = 0 # for background
obj = inst
bbox_dict.update({0: torch.from_numpy(np.array([int(0), int(obj.shape[0]), 0, int(obj.shape[1])]))}) # bbox order
T = self.Twc[idx] # could change to ORB-SLAM pose or else
T_obj = np.eye(4) # obj pose, if dynamic
sample = {"image": image, "depth": depth, "T": T, "T_obj": T_obj,
"obj": obj, "bbox_dict": bbox_dict, "frame_id": idx}
if image is None or depth is None:
print(rgb_file)
print(depth_file)
raise ValueError
if self.depth_transform:
sample["depth"] = self.depth_transform(sample["depth"])
return sample
class ScanNet(Dataset):
def __init__(self, cfg):
self.imap_mode = cfg.imap_mode
self.root_dir = cfg.dataset_dir
self.color_paths = sorted(glob.glob(os.path.join(
self.root_dir, 'color', '*.jpg')), key=lambda x: int(os.path.basename(x)[:-4]))
self.depth_paths = sorted(glob.glob(os.path.join(
self.root_dir, 'depth', '*.png')), key=lambda x: int(os.path.basename(x)[:-4]))
self.inst_paths = sorted(glob.glob(os.path.join(
self.root_dir, 'instance-filt', '*.png')), key=lambda x: int(os.path.basename(x)[:-4])) # instance-filt
self.sem_paths = sorted(glob.glob(os.path.join(
self.root_dir, 'label-filt', '*.png')), key=lambda x: int(os.path.basename(x)[:-4])) # label-filt
self.load_poses(os.path.join(self.root_dir, 'pose'))
self.n_img = len(self.color_paths)
self.depth_transform = transforms.Compose(
[image_transforms.DepthScale(cfg.depth_scale),
image_transforms.DepthFilter(cfg.max_depth)])
# self.rgb_transform = rgb_transform
self.W = cfg.W
self.H = cfg.H
self.fx = cfg.fx
self.fy = cfg.fy
self.cx = cfg.cx
self.cy = cfg.cy
self.edge = cfg.mw
self.intrinsic_open3d = open3d.camera.PinholeCameraIntrinsic(
width=self.W,
height=self.H,
fx=self.fx,
fy=self.fy,
cx=self.cx,
cy=self.cy,
)
self.min_pixels = 1500
# from scannetv2-labels.combined.tsv
#1-wall, 3-floor, 16-window, 41-ceiling, 232-light switch 0-unknown? 21-pillar 161-doorframe, shower walls-128, curtain-21, windowsill-141
self.background_cls_list = [-1, 0, 1, 3, 16, 41, 232, 21, 161, 128, 21]
self.bbox_scale = 0.2
self.inst_dict = {}
def load_poses(self, path):
self.poses = []
pose_paths = sorted(glob.glob(os.path.join(path, '*.txt')),
key=lambda x: int(os.path.basename(x)[:-4]))
for pose_path in pose_paths:
with open(pose_path, "r") as f:
lines = f.readlines()
ls = []
for line in lines:
l = list(map(float, line.split(' ')))
ls.append(l)
c2w = np.array(ls).reshape(4, 4)
self.poses.append(c2w)
def __len__(self):
return self.n_img
def __getitem__(self, index):
bbox_scale = self.bbox_scale
color_path = self.color_paths[index]
depth_path = self.depth_paths[index]
inst_path = self.inst_paths[index]
sem_path = self.sem_paths[index]
color_data = cv2.imread(color_path).astype(np.uint8)
color_data = cv2.cvtColor(color_data, cv2.COLOR_BGR2RGB)
depth_data = cv2.imread(depth_path, cv2.IMREAD_UNCHANGED).astype(np.float32)
depth_data = np.nan_to_num(depth_data, nan=0.)
T = None
if self.poses is not None:
T = self.poses[index]
if np.any(np.isinf(T)):
if index + 1 == self.__len__():
print("pose inf!")
return None
return self.__getitem__(index + 1)
H, W = depth_data.shape
color_data = cv2.resize(color_data, (W, H), interpolation=cv2.INTER_LINEAR)
if self.edge:
edge = self.edge # crop image edge, there are invalid value on the edge of the color image
color_data = color_data[edge:-edge, edge:-edge]
depth_data = depth_data[edge:-edge, edge:-edge]
if self.depth_transform:
depth_data = self.depth_transform(depth_data)
bbox_dict = {}
if self.imap_mode:
inst_data = np.zeros_like(depth_data).astype(np.int32)
else:
inst_data = cv2.imread(inst_path, cv2.IMREAD_UNCHANGED)
inst_data = cv2.resize(inst_data, (W, H), interpolation=cv2.INTER_NEAREST).astype(np.int32)
sem_data = cv2.imread(sem_path, cv2.IMREAD_UNCHANGED)#.astype(np.int32)
sem_data = cv2.resize(sem_data, (W, H), interpolation=cv2.INTER_NEAREST)
if self.edge:
edge = self.edge
inst_data = inst_data[edge:-edge, edge:-edge]
sem_data = sem_data[edge:-edge, edge:-edge]
inst_data += 1 # shift from 0->1 , 0 is for background
# box filter
track_start = time.time()
masks = []
classes = []
# convert to list of arrays
obj_ids = np.unique(inst_data)
for obj_id in obj_ids:
mask = inst_data == obj_id
sem_cls = np.unique(sem_data[mask])
if sem_cls in self.background_cls_list:
inst_data[mask] = 0 # set to background
continue
masks.append(mask)
classes.append(obj_id)
T_CW = np.linalg.inv(T)
inst_data = box_filter(masks, classes, depth_data, self.inst_dict, self.intrinsic_open3d, T_CW, min_pixels=self.min_pixels)
merged_obj_ids = np.unique(inst_data)
for obj_id in merged_obj_ids:
mask = inst_data == obj_id
bbox2d = get_bbox2d(mask, bbox_scale=bbox_scale)
if bbox2d is None:
inst_data[mask] = 0 # set to bg
else:
min_x, min_y, max_x, max_y = bbox2d
bbox_dict.update({int(obj_id): torch.from_numpy(np.array([min_x, max_x, min_y, max_y]).reshape(-1))}) # batch format
bbox_time = time.time()
# print("bbox time ", bbox_time - filter_time)
cv2.imshow("inst", imgviz.label2rgb(inst_data))
cv2.waitKey(1)
print("frame {} track time {}".format(index, bbox_time-track_start))
bbox_dict.update({0: torch.from_numpy(np.array([int(0), int(inst_data.shape[1]), 0, int(inst_data.shape[0])]))}) # bbox order
# wrap data to frame dict
T_obj = np.identity(4)
sample = {"image": color_data.transpose(1,0,2), "depth": depth_data.transpose(1,0), "T": T, "T_obj": T_obj}
if color_data is None or depth_data is None:
print(color_path)
print(depth_path)
raise ValueError
sample.update({"obj": inst_data.transpose(1,0)})
sample.update({"bbox_dict": bbox_dict})
return sample