forked from galeone/tfgo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathestimator.py
145 lines (125 loc) · 5.17 KB
/
estimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import numpy as np
import pandas as pd
import tensorflow as tf
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
class EStrain:
def __init__(self):
self.iris = load_iris()
def get_train_test(self):
data = self.iris.data
target = self.iris.target
x_train, x_test, y_train, y_test = train_test_split(
data, target, test_size=0.3, random_state=0
)
return x_train, x_test, y_train, y_test
def get_feature_columns_by_numpy(self):
columns = [tf.feature_column.numeric_column("your_input", shape=(4,))]
return columns
def get_feature_columns_by_pandas(self):
columns = [
tf.feature_column.numeric_column(name, shape=(1,)) for name in list("abcd")
]
return columns
def input_fn_by_numpy(self, x, y):
return tf.estimator.inputs.numpy_input_fn(
x={"your_input": x},
y=y,
batch_size=512,
num_epochs=1,
shuffle=False,
queue_capacity=1000,
num_threads=1,
)
def input_fn_by_pandas(self, x, y):
return tf.estimator.inputs.pandas_input_fn(
x,
y,
batch_size=32,
num_epochs=1,
shuffle=False,
queue_capacity=1000,
num_threads=1,
)
def to_pandas(self, arr, columns):
return pd.DataFrame(arr, columns=columns)
def get_est(self, path, feature_columns):
est = tf.estimator.DNNClassifier(
feature_columns=feature_columns,
hidden_units=[10, 20, 10],
n_classes=3,
model_dir=path,
)
return est
def train_by_numpy(self):
x_train, x_test, y_train, y_test = self.get_train_test()
feature_columns = self.get_feature_columns_by_numpy()
est = self.get_est("./output/1", feature_columns)
train_input = self.input_fn_by_numpy(x_train, y_train)
test_input = self.input_fn_by_numpy(x_test, y_test)
est.train(input_fn=train_input)
accuracy_score = est.evaluate(input_fn=test_input)["accuracy"]
print("accuracy:%s\n" % accuracy_score)
""" a test example"""
samples = np.array([[6.4, 3.2, 4.5, 1.5], [6.4, 3.2, 4.5, 1.5]])
samples_input = self.input_fn_by_numpy(samples, None)
predictions = list(est.predict(samples_input))
print(predictions)
predicted_classes = int(predictions[0]["classes"])
print("predict result is %s\n" % predicted_classes)
def train_by_pandas(self):
x_train, x_test, y_train, y_test = self.get_train_test()
feature_columns = self.get_feature_columns_by_pandas()
est = self.get_est("./output/2", feature_columns)
x_train_pd = self.to_pandas(x_train, columns=list("abcd"))
x_test_pd = self.to_pandas(x_test, columns=list("abcd"))
y_train_pd = pd.Series(y_train)
y_test_pd = pd.Series(y_test)
train_input = self.input_fn_by_pandas(x_train_pd, y_train_pd)
test_input = self.input_fn_by_pandas(x_test_pd, y_test_pd)
est.train(input_fn=train_input)
accuracy_score = est.evaluate(input_fn=test_input)["accuracy"]
print("accuracy:%s\n" % accuracy_score)
""" a test example"""
samples = pd.DataFrame([[6.4, 3.2, 4.5, 1.5]], columns=list("abcd"))
samples_input = self.input_fn_by_pandas(samples, None)
predictions = list(est.predict(samples_input))
print(predictions)
predicted_classes = int(predictions[0]["classes"])
print("predict result is %s\n" % predicted_classes)
class ConvertToPB:
def __init__(self):
self.model_dir_np = "./output/1"
self.model_dir_pd = "./output/2"
def serving_input_receiver_fn(self, feature_spec):
serizlized_ft_example = tf.placeholder(
dtype=tf.float64, shape=[None, 4], name="input_tensor"
)
receiver_tensors = {"input": serizlized_ft_example}
features = tf.parse_example(serizlized_ft_example, feature_spec)
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)
def convert_np(self):
es = EStrain()
feature_columns = es.get_feature_columns_by_numpy()
est = es.get_est(self.model_dir_np, feature_columns)
feature_spec = tf.feature_column.make_parse_example_spec(feature_columns)
export_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(
feature_spec
)
est.export_saved_model("./output/1pb", export_input_fn, as_text=True)
def convert_pd(self):
es = EStrain()
feature_columns = es.get_feature_columns_by_pandas()
est = es.get_est(self.model_dir_pd, feature_columns)
feature_spec = tf.feature_column.make_parse_example_spec(feature_columns)
export_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(
feature_spec
)
est.export_saved_model("./output/2pb", export_input_fn, as_text=True)
if __name__ == "__main__":
et = EStrain()
et.train_by_pandas()
et.train_by_numpy()
ct = ConvertToPB()
ct.convert_np()
ct.convert_pd()