-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNADE.jl
297 lines (242 loc) · 6.96 KB
/
NADE.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
using Flux
using Flux.Optimise: update!
using DelimitedFiles
using Random
using Distributions
using LinearAlgebra
using Statistics
using JLD2
function initialize_parameters(;seed=1234, zero_weights=false)
b = zeros(N)
c = zeros(Nh)
if zero_weights
W = zeros(Nh, N)
U = zeros(N, Nh)
else
r = MersenneTwister(seed)
W = randn(r, Float64, (Nh, N)) / sqrt(N)
U = randn(r, Float64, (N, Nh)) / sqrt(N)
end
global θ = (b, c, U, W)
end
function activation(v, idx)
if idx == 1
if length(size(v)) == 1
return ones(Nh)
else
return ones(Nh, size(v,1))
end
else
if length(size(v)) == 1
return σ.(θ[2] + θ[4][:,1:idx-1] * v[1:idx-1])
else
return σ.(θ[2] .+ θ[4][:,1:idx-1] * transpose(v[:,1:idx-1]))
end
end
end
function Flux.Optimise.update!(opt, xs::Tuple, gs)
for (x, g) in zip(xs, gs)
update!(opt, x, g)
end
end
function prob_v_given_vlt(vlt, idx)
h = activation(vlt, idx)
return σ.(θ[1][idx] .+ transpose(h) * θ[3][idx,:])
end
function probability(v)
if length(size(v)) == 1
prob = 1
a = θ[2]
for i in 1:N
h = σ.(a)
p = σ.(θ[1][i] .+ transpose(h) * θ[3][i,:])
prob *= ( p^(v[i]) * (1 - p)^(1 - v[i]) )
a += θ[4][:,i] * v[i]
end
else
prob = ones(size(v,1))
a = θ[2]
for i in 2:size(v,1)
a = hcat(a,θ[2])
end
for i in 1:N
h = σ.(a)
p = σ.(θ[1][i] .+ transpose(h) * θ[3][i,:])
prob .*= ( p .^ (v[:,i]) .* (1 .- p) .^ (1 .- v[:,i]) )
a .+= θ[4][:,i] .* transpose(v[:,i])
end
end
return prob
end
function psi(v)
return sqrt.(probability(v))
end
function sample(num_samples)
# meant for > 1 sample
v = [] # put samples here
a = θ[2]
for i in 2:num_samples
a = hcat(a,θ[2])
end
for i in 1:N
h = σ.(a)
prob = σ.(θ[1][i] .+ transpose(h) * θ[3][i,:])
v_i = rand.(Bernoulli.(prob))
if i == 1
v = v_i
v = reshape(v, (num_samples,1))
else
v = hcat(v, v_i)
end
a .+= θ[4][:,i] .* transpose(v[:,i])
end
return v
end
function NLL(v)
if length(size(v)) == 1
nll = 0
for idx in 1:N
nll -= prob_v_given_vlt(v, idx)
end
else
nll = zeros(size(v,1))
for idx in 1:N
nll .-= prob_v_given_vlt(v, idx)
end
nll = sum(nll) / size(v,1)
end
return nll
end
function gradients(v)
# please make 'v' a batch
grads = [
zeros(size(θ[1],1),batch_size),
zeros(size(θ[2],1), batch_size),
zeros(size(θ[3],1), size(θ[3],2), batch_size),
zeros(size(θ[4],1), size(θ[4],2), batch_size)
]
da = zeros(Nh, batch_size)
for i = 1:N
p = prob_v_given_vlt(v, i)
h = activation(v, i)
dh = transpose((p .- v[:,i]) * transpose(θ[3][i,:])) .* h .* (ones(size(h)) .- h)
grads[1][i,:] = p .- v[:,i]
grads[2] .+= dh
grads[3][i, :, :] = transpose((p .- v[:,i]) .* transpose(h))
grads[4][:,i,:] = transpose(v[:,i] .* transpose(da))
da .+= dh
end
for i in 1:size(grads,1)
grads[i] = reshape(
sum(grads[i],dims=length(size(grads[i]))),
size(θ[i])
) / batch_size
end
# must reteurn a tuple
return (grads[1], grads[2], grads[3], grads[4])
end
function fidelity(space, target)
return dot(target, sqrt.(probability(space)))
end
function statistics_from_observable(observable, samples; args=nothing)
obs = zeros(size(samples,1))
for i in 1:size(samples, 1)
obs[i] += observable(samples[i,:], args=args)
end
mean = sum(obs) / size(samples,1)
variance = var(obs)
std_error = std(obs) / sqrt(size(samples,1))
return [mean variance std_error]
end
function train(
train_data;
batch_size=100,
opt=ADAM(),
epochs=1000,
parameter_path=nothing,
log_every=100,
calc_fidelity=false,
target=nothing,
calc_observable=false,
num_samples=nothing,
observable=nothing,
observable_args=nothing,
early_stopping=nothing,
early_stopping_args=nothing
)
return_args = []
# TODO: what if train_size % batch_size != 0
num_batches = Int(size(train_data, 1) / batch_size)
# allocate space for monitoring metrics
if calc_fidelity
space = generate_hilbert_space()
fidelities = []
end
if calc_observable
# observable value (mean), variance, std error
observable_stats = []
end
count = 1
for ep in 1:epochs
# shuffle training data
train_data[randperm(size(train_data, 1)),:]
for n in 0:num_batches-1
# pass through train_data
batch = train_data[(n*batch_size+1):(n+1)*batch_size, :]
grads = gradients(batch)
update!(opt, θ, grads)
end
if ep%log_every == 0
println("epoch: ", ep)
if calc_fidelity
fid = fidelity(space, target)
fidelities = vcat(fid, fidelities)
println("Fidelity = ",fid)
if early_stopping != nothing
if early_stopping(fid, early_stopping_args)
println("Met early stopping criteria.")
break
end
end
end
if calc_observable
samples = sample(num_samples)
stats = statistics_from_observable(
observable, samples, args=observable_args
)
if count == 1
observable_stats = stats
else
observbale_stats = vcat(stats, observable_stats)
end
println(string(observable)*" = ", stats)
#if early_stopping != nothing
# if early_stopping(observable_stats[count,:], early_stopping_args)
# println("Met early stopping criteria.")
# break
# end
#end
end
count += 1
end
end
if calc_fidelity
push!(return_args, fidelities)
end
if calc_observable
push!(return_args, observable_stats)
end
return return_args
end
function save_params(path)
@save path θ
end
function generate_hilbert_space()
dim = [i for i in 0:2^N-1]
space = space = parse.(Int64, split(bitstring(dim[1])[end-N+1:end],""))
for i in 2:length(dim)
tmp = parse.(Int64, split(bitstring(dim[i])[end-N+1:end],""))
space = hcat(space, tmp)
end
return transpose(space)
end