-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathstarcoder_service.py
389 lines (342 loc) · 13.6 KB
/
starcoder_service.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
"""
The service backend for starcode.
Please use the following command to start the service:
```
python starcoder_service.py --prompt-dir=/JawTitan/whitefox-data/prompts --output-dir=/JawTitan/whitefox-data/starcoder --device='cuda:N' --num=10
```
where N is the GPU device number.
If you have prompts to be used to generate the code, please put them in the `/JawTitan/whitefox-data/prompts/{target_name}/{step_name}/{prompts}`. The service will scan the prompt-dir every 30 seconds and generate code for the new prompts.
For example, `/JawTitan/whitefox-data/prompts/pytorch-inductor/step0/{prompts}` contains the prompts for the first step of the pytorch inductor.
The output of the prompts will be put in `/JawTitan/whitefox-data/starcode/{target_name}/{step_name}/{prompt_name}/{generated}`. For example, `/JawTitan/whitefox-data/starcode/pytorch-inductor/step0/hello/{generated}` contains the generated code for `hello` optimization in the first step of the pytorch inductor.
For the log file, you can find it in `/JawTitan/whitefox-data/prompts/log.txt`.
"""
import torch
import argparse
from datetime import datetime
import time
from math import ceil
import os
import json
from pathlib import Path
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
StoppingCriteria,
StoppingCriteriaList,
)
EOF_STRINGS = [
"<|endoftext|>",
"###",
"__output__ =",
"if __name__",
'"""',
"'''",
"# Model ends",
"# LLVM IR ends",
"# C++ Code ends",
]
class Logger:
def __init__(self, log_file: Path, is_print=False) -> None:
self.log_file = log_file
self.is_print = is_print
# Initialize log file.
self.log_file.parent.mkdir(parents=True, exist_ok=True)
self.log_file.touch(exist_ok=True)
with open(self.log_file, "a") as f:
current_datetime = datetime.now()
formatted_datetime = current_datetime.strftime("%Y-%m-%d %H:%M:%S")
f.write("====================\n")
f.write(f"[{formatted_datetime}] Start logging.\n")
def log(self, msg):
if self.is_print:
print(msg)
timestamp = datetime.now().strftime("%d.%b %Y %H:%M:%S")
with open(self.log_file, "a") as f:
f.write(f"[{timestamp}] {msg}\n")
class EndOfFunctionCriteria(StoppingCriteria):
def __init__(self, start_length, eos, tokenizer, *args, **kwargs):
super().__init__(*args, **kwargs)
self.start_length = start_length
self.eos = eos
self.tokenizer = tokenizer
self.end_length = {}
def __call__(self, input_ids, scores, **kwargs):
"""Returns true if all generated sequences contain any of the end-of-function strings."""
decoded_generations = self.tokenizer.batch_decode(
input_ids[:, self.start_length :]
)
done = []
for index, decoded_generation in enumerate(decoded_generations):
finished = any(
[stop_string in decoded_generation for stop_string in self.eos]
)
if (
finished and index not in self.end_length
): # ensures first time we see it
for stop_string in self.eos:
if stop_string in decoded_generation:
self.end_length[index] = len(
input_ids[
index, # get length of actual generation
self.start_length : -len(
self.tokenizer.encode(
stop_string,
add_special_tokens=False,
return_tensors="pt",
)[0]
),
]
)
done.append(finished)
return all(done)
class StarCoder:
def __init__(self, device="cuda", max_length=8192) -> None:
checkpoint = "bigcode/starcoder"
self.device = device
self.tokenizer = AutoTokenizer.from_pretrained(
checkpoint, cache_dir=HF_CACHE_DIR
)
self.model = (
AutoModelForCausalLM.from_pretrained(checkpoint, cache_dir=HF_CACHE_DIR)
.to(torch.bfloat16)
.to(device)
)
# self.eos = [self.tokenizer.encode(s)[0] for s in EOF_STRINGS]
self.eos = EOF_STRINGS
self.max_length = max_length
self.prefix_token = "<fim_prefix>"
self.suffix_token = "<fim_suffix><fim_middle>"
self.skip_special_tokens = False
def num_tokens(self, prompt):
input_tokens = self.tokenizer.encode(prompt, return_tensors="pt").to(
self.device
)
return len(input_tokens[0])
def generate(self, prompt, batch_size=10, temperature=1.0):
input_str = self.prefix_token + prompt + self.suffix_token
input_tokens = self.tokenizer.encode(input_str, return_tensors="pt").to(
self.device
)
scores = StoppingCriteriaList(
[
EndOfFunctionCriteria(
start_length=len(input_tokens[0]),
eos=self.eos,
tokenizer=self.tokenizer,
)
]
)
raw_outputs = self.model.generate(
input_tokens,
max_length=self.max_length,
do_sample=True,
top_p=1.0,
temperature=max(temperature, 1e-2),
num_return_sequences=batch_size,
stopping_criteria=scores,
output_scores=True,
return_dict_in_generate=True,
repetition_penalty=1.0,
pad_token_id=self.tokenizer.eos_token_id,
)
gen_seqs = raw_outputs.sequences[:, len(input_tokens[0]) :]
gen_strs = self.tokenizer.batch_decode(
gen_seqs, skip_special_tokens=self.skip_special_tokens
)
outputs = []
# removes eos tokens.
for output in gen_strs:
min_index = 10000
for eos in self.eos:
if eos in output:
min_index = min(min_index, output.index(eos))
outputs.append(output[:min_index])
return outputs
def scan_prompt(prompt_dirs: Path, existing_prompts: set, target: str = None):
new_prompts = set()
for target_dir in prompt_dirs.iterdir():
if not target_dir.is_dir():
continue
if target is not None:
if target_dir.name != target:
continue
for prompt_dir in target_dir.iterdir():
if not prompt_dir.is_dir():
continue
for prompt_file in prompt_dir.iterdir():
if not prompt_file.is_file():
continue
if prompt_file.suffix != ".txt":
continue
if prompt_file in existing_prompts:
continue
new_prompts.add(prompt_file)
return new_prompts
def clean_code(msg: str) -> str:
if "```" not in msg:
# the whole response message is a python program
return msg
codes = msg.split("```")
for code in codes:
# remove ```python
code = code.split("\n", 1)[-1].strip()
if len(code) > 0:
return code
return msg
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--prompt-dir", type=str, default="prompt/pytorch/step0")
parser.add_argument("--output-dir", type=str, default="chatgpt/zero-shot")
parser.add_argument(
"--hf-home",
type=str,
default=None,
help="HuggingFace home dir",
)
parser.add_argument(
"--hf-cache",
type=str,
default=None,
help="HuggingFace cache dir",
)
parser.add_argument(
"--target",
type=str,
default=None,
help="Set a specific target, default to all if unspecified.",
)
parser.add_argument("--temperature", type=float, default=1.0)
parser.add_argument("--prompt-only", action="store_true")
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--num", type=int, default=100)
parser.add_argument("--min_prompt_id", type=int, default=0)
parser.add_argument("--max_prompt_id", type=int, default=10)
parser.add_argument(
"--max_tokens",
type=int,
default=8192,
help="Hard limit - max tokens for starcoder",
)
parser.add_argument(
"--batch_size", type=int, default=10, help="Batch size for starcoder"
)
args = parser.parse_args()
arg_dict = vars(args)
if args.hf_cache is not None:
HF_CACHE_DIR = args.hf_cache
else:
HF_CACHE_DIR = os.environ.get("HF_HOME", "~/.cache/huggingface")
# Set up output directories.
prompt_dir = Path(args.prompt_dir)
outdir = Path(args.output_dir)
prompt_dir.mkdir(parents=True, mode=0o777, exist_ok=True)
os.chmod(prompt_dir, 0o777)
outdir.mkdir(parents=True, exist_ok=True)
os.chmod(outdir, 0o777)
top_p = 1.0
temperature = args.temperature
device = args.device
num = args.num
max_tokens = args.max_tokens
batch_size = args.batch_size
sleep_time = 30
_Model = StarCoder(device=device, max_length=max_tokens)
logger = Logger(prompt_dir / "log.txt", is_print=True)
logger.log("Arguments for starcoder service")
for k, v in arg_dict.items():
logger.log(f" {k}: {v}")
if args.target is not None:
logger.log(f"Targeting: {args.target}")
existing_prompts = set()
while True:
new_prompts = scan_prompt(prompt_dir, existing_prompts, args.target)
if len(new_prompts) == 0:
logger.log(f"No new prompts, sleep {sleep_time}s...")
time.sleep(sleep_time)
continue
length = len(new_prompts)
logger.log(f"Found {length} new prompts, start generating...")
for idx, prompt_file in enumerate(new_prompts):
existing_prompts.add(prompt_file)
# Target name
target_name = prompt_file.parent.parent.stem
# Dir name
dir_name = prompt_file.parent.stem
# Opt name
opt = prompt_file.stem
# Skip if already exists
gen_dir = outdir / target_name / dir_name / opt
# If there is already a generated file, skip.
if (gen_dir / f"{opt}_{batch_size}.py").exists():
logger.log(
f"[{idx+1}/{length}] {target_name} - {opt}: skipped because its output already exists."
)
continue
logger.log(f"[{idx+1}/{length}] {target_name} - {opt}: generating")
code_idx = 0
ret = {"opt": opt}
ret["response"] = {}
os.makedirs(gen_dir, exist_ok=True)
i = 0
cur_num = num
n_batch_size = batch_size
div = num / n_batch_size
user_input = prompt_file.read_text(encoding="ascii", errors="ignore")
(gen_dir / "prompt.txt").write_text(user_input)
try:
logger.log(f"Prompt tokens for {opt}: {_Model.num_tokens(user_input)}")
except Exception as e:
e = str(e)
logger.log(f"[Error] Prompt tokens for {opt} is too long!!!")
continue
while cur_num > 0:
fail = False
while True:
# update batch size
n_batch_size = min(n_batch_size, cur_num)
logger.log(f"[{idx+1}/{length}] {opt} batch size: {n_batch_size}")
try:
t_start = time.time()
response = _Model.generate(
user_input, temperature=temperature, batch_size=n_batch_size
)
g_time = time.time() - t_start
logger.log(f"[{idx+1}/{length}] {opt} used time: {g_time}")
break
except Exception as e:
e = str(e)
if "CUDA out of memory" in str(e):
logger.log(" CUDA out of memory, reduce batch size.")
else:
logger.log(e)
# If batch size is 1, skip.
if n_batch_size == 1:
logger.log("Batch size is 1, skip!!!")
cur_num = 0
fail = True
break
div += 1
n_batch_size = int(cur_num / div)
time.sleep(2)
if fail:
# If fail, skip this generation.
break
cur_num -= n_batch_size
div = max(div - 1, 1)
msgs = response
codes = []
for msg in msgs:
code = clean_code(msg)
codes.append(code)
code_idx += 1
try:
(gen_dir / f"{opt}_{code_idx}.py").write_text(
code.encode("ascii", "ignore").decode()
)
except Exception:
pass
(gen_dir / f"time.txt").write_text(str(g_time))
ret["response"][i] = {"raw": response, "code": codes, "g_time": g_time}
i += 1
with open(gen_dir.parent / "outputs.json", "a") as f:
f.write(json.dumps(ret, indent=4) + "\n")