-
Notifications
You must be signed in to change notification settings - Fork 52
/
trainer.py
137 lines (117 loc) · 5.89 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
''' Trains a DeepWaterMap model. We provide a copy of the trained checkpoints.
You should not need this script unless you want to re-train the model.
'''
import os, glob
import argparse
import tensorflow as tf
import deepwatermap
from metrics import running_precision, running_recall, running_f1
from metrics import adaptive_maxpool_loss
class TFModelTrainer:
def __init__(self, checkpoint_dir, data_path):
self.checkpoint_dir = checkpoint_dir
# set training parameters
self.image_size = (512, 512)
self.learning_rate = 0.1
self.num_epoch = 150
self.batch_size = 24
# create the data generators
train_filenames = glob.glob(os.path.join(data_path, 'train_*.tfrecord'))
val_filenames = glob.glob(os.path.join(data_path, 'test_*.tfrecord'))
self.dataset_train = self._data_layer(train_filenames)
self.dataset_val = self._data_layer(val_filenames)
self.dataset_train_size = 137682
self.dataset_val_size = 5000
self.steps_per_epoch = self.dataset_train_size // self.batch_size
self.validation_steps = self.dataset_val_size // self.batch_size
def _data_layer(self, filenames, num_threads=24):
dataset = tf.data.TFRecordDataset(filenames)
dataset = dataset.map(self._parse_tfrecord, num_parallel_calls=num_threads)
dataset = dataset.repeat()
dataset = dataset.batch(self.batch_size, drop_remainder=True)
dataset = dataset.prefetch(buffer_size=4)
return dataset
def _parse_tfrecord(self, example_proto):
keys_to_features = {'B2': tf.io.FixedLenFeature([], tf.string),
'B3': tf.io.FixedLenFeature([], tf.string),
'B4': tf.io.FixedLenFeature([], tf.string),
'B5': tf.io.FixedLenFeature([], tf.string),
'B6': tf.io.FixedLenFeature([], tf.string),
'B7': tf.io.FixedLenFeature([], tf.string),
'L': tf.io.FixedLenFeature([], tf.string)}
F = tf.io.parse_single_example(example_proto, keys_to_features)
data = F['B2'], F['B3'], F['B4'], F['B5'], F['B6'], F['B7'], F['L']
image, label = self._decode_images(data)
return image, label
def _decode_images(self, data_strings):
bands = [[]] * len(data_strings)
for i in range(len(data_strings)):
bands[i] = tf.image.decode_png(data_strings[i])
data = tf.concat(bands, -1)
data = tf.image.random_crop(data, size=[self.image_size[0], self.image_size[1], len(data_strings)])
data = tf.cast(data, tf.float32)
image = data[..., :-1] / 255
label = data[..., -1, None] / 3
self._preprocess_images(image)
return image, label
def _preprocess_images(self, image):
image = self._random_channel_mixing(image)
image = self._gaussian_noise(image)
image = self._normalize_image(image)
return image
def _random_channel_mixing(self, image):
ccm = tf.eye(6)[None, :, :, None]
r = tf.random.uniform([3], maxval=0.25) + [0, 1, 0]
filter = r[None, :, None, None]
ccm = tf.nn.depthwise_conv2d(ccm, filter, strides=[1,1,1,1], padding='SAME', data_format='NHWC')
ccm = tf.squeeze(ccm)
image = tf.tensordot(image, ccm, (-1, 0))
return image
def _gaussian_noise(self, image):
r = tf.random.uniform((), maxval=0.04)
image = image + tf.random.normal([self.image_size[0], self.image_size[1], 6], stddev=r)
return image
def _normalize_image(self, image):
image = tf.cast(image, tf.float32)
image = image - tf.reduce_min(image)
image = image / tf.maximum(tf.reduce_max(image), 1)
return image
def _optimizer(self):
optimizer = tf.keras.optimizers.SGD(lr=self.learning_rate, momentum=0.9)
return optimizer
def train(self):
# Callbacks
cp_callback = tf.keras.callbacks.ModelCheckpoint(os.path.join(self.checkpoint_dir, 'cp.{epoch:03d}.ckpt'),
save_weights_only=True)
tb_callback = tf.keras.callbacks.TensorBoard(log_dir=self.checkpoint_dir)
lr_callback = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=3, verbose=1)
# Model
model = deepwatermap.model()
initial_epoch = 0
ckpt = tf.train.get_checkpoint_state(self.checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
model.load_weights(ckpt.model_checkpoint_path)
print("Loaded weights from", ckpt.model_checkpoint_path)
initial_epoch = int(ckpt.model_checkpoint_path.split('.')[-2])
model.compile(optimizer=self._optimizer(),
loss=adaptive_maxpool_loss,
metrics=[tf.keras.metrics.binary_accuracy,
running_precision, running_recall, running_f1])
model.fit(self.dataset_train,
validation_data=self.dataset_val,
epochs=self.num_epoch,
initial_epoch=initial_epoch,
steps_per_epoch=self.steps_per_epoch,
validation_steps=self.validation_steps,
callbacks=[cp_callback, tb_callback, lr_callback])
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint_path', type=str, default='./checkpoints/',
help="Path to the dir where the checkpoints are saved")
parser.add_argument('--data_path', type=str,
help="Path to the tfrecord files")
args = parser.parse_args()
trainer = TFModelTrainer(args.checkpoint_path, args.data_path)
trainer.train()
if __name__ == '__main__':
main()