-
Notifications
You must be signed in to change notification settings - Fork 0
/
ogv.js
7229 lines (7223 loc) · 739 KB
/
ogv.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Copyright (C) 1991-2012 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
/* This header is separate from features.h so that the compiler can
include it implicitly at the start of every compilation. It must
not itself include <features.h> or any other header that includes
<features.h> because the implicit include comes before any feature
test macros that may be defined in a source file before it first
explicitly includes a system header. GCC knows the name of this
header in order to preinclude it. */
/* Define __STDC_IEC_559__ and other similar macros. */
/* Copyright (C) 2005 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. */
/* We do support the IEC 559 math functionality, real and complex. */
/* wchar_t uses ISO/IEC 10646 (2nd ed., published 2011-03-15) /
Unicode 6.0. */
/* We do not support C11 <threads.h>. */
OgvJs = (function(options) {
options = options || {};
var self = this,
processAudio = (options.audio !== undefined) ? !!options.audio : true,
processVideo = (options.video !== undefined) ? !!options.video : true;
var Module = {
noInitialRun: true,
noExitRuntime: true,
TOTAL_MEMORY: 32 * 1024 * 1024, // default heap is 16M
print: function(str) {
console.log("OgvJs: " + str);
}
};
// The Module object: Our interface to the outside world. We import
// and export values on it, and do the work to get that through
// closure compiler if necessary. There are various ways Module can be used:
// 1. Not defined. We create it here
// 2. A function parameter, function(Module) { ..generated code.. }
// 3. pre-run appended it, var Module = {}; ..generated code..
// 4. External script tag defines var Module.
// We need to do an eval in order to handle the closure compiler
// case, where this code here is minified but Module was defined
// elsewhere (e.g. case 4 above). We also need to check if Module
// already exists (e.g. case 3 above).
// Note that if you want to run closure, and also to use Module
// after the generated code, you will need to define var Module = {};
// before the code. Then that object will be used in the code, and you
// can continue to use Module afterwards as well.
var Module;
if (!Module) Module = eval('(function() { try { return Module || {} } catch(e) { return {} } })()');
// Sometimes an existing Module object exists with properties
// meant to overwrite the default module functionality. Here
// we collect those properties and reapply _after_ we configure
// the current environment's defaults to avoid having to be so
// defensive during initialization.
var moduleOverrides = {};
for (var key in Module) {
if (Module.hasOwnProperty(key)) {
moduleOverrides[key] = Module[key];
}
}
// The environment setup code below is customized to use Module.
// *** Environment setup code ***
var ENVIRONMENT_IS_NODE = typeof process === 'object' && typeof require === 'function';
var ENVIRONMENT_IS_WEB = typeof window === 'object';
var ENVIRONMENT_IS_WORKER = typeof importScripts === 'function';
var ENVIRONMENT_IS_SHELL = !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_NODE && !ENVIRONMENT_IS_WORKER;
if (ENVIRONMENT_IS_NODE) {
// Expose functionality in the same simple way that the shells work
// Note that we pollute the global namespace here, otherwise we break in node
if (!Module['print']) Module['print'] = function print(x) {
process['stdout'].write(x + '\n');
};
if (!Module['printErr']) Module['printErr'] = function printErr(x) {
process['stderr'].write(x + '\n');
};
var nodeFS = require('fs');
var nodePath = require('path');
Module['read'] = function read(filename, binary) {
filename = nodePath['normalize'](filename);
var ret = nodeFS['readFileSync'](filename);
// The path is absolute if the normalized version is the same as the resolved.
if (!ret && filename != nodePath['resolve'](filename)) {
filename = path.join(__dirname, '..', 'src', filename);
ret = nodeFS['readFileSync'](filename);
}
if (ret && !binary) ret = ret.toString();
return ret;
};
Module['readBinary'] = function readBinary(filename) { return Module['read'](filename, true) };
Module['load'] = function load(f) {
globalEval(read(f));
};
Module['arguments'] = process['argv'].slice(2);
module['exports'] = Module;
}
else if (ENVIRONMENT_IS_SHELL) {
if (!Module['print']) Module['print'] = print;
if (typeof printErr != 'undefined') Module['printErr'] = printErr; // not present in v8 or older sm
if (typeof read != 'undefined') {
Module['read'] = read;
} else {
Module['read'] = function read() { throw 'no read() available (jsc?)' };
}
Module['readBinary'] = function readBinary(f) {
return read(f, 'binary');
};
if (typeof scriptArgs != 'undefined') {
Module['arguments'] = scriptArgs;
} else if (typeof arguments != 'undefined') {
Module['arguments'] = arguments;
}
this['Module'] = Module;
eval("if (typeof gc === 'function' && gc.toString().indexOf('[native code]') > 0) var gc = undefined"); // wipe out the SpiderMonkey shell 'gc' function, which can confuse closure (uses it as a minified name, and it is then initted to a non-falsey value unexpectedly)
}
else if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) {
Module['read'] = function read(url) {
var xhr = new XMLHttpRequest();
xhr.open('GET', url, false);
xhr.send(null);
return xhr.responseText;
};
if (typeof arguments != 'undefined') {
Module['arguments'] = arguments;
}
if (typeof console !== 'undefined') {
if (!Module['print']) Module['print'] = function print(x) {
console.log(x);
};
if (!Module['printErr']) Module['printErr'] = function printErr(x) {
console.log(x);
};
} else {
// Probably a worker, and without console.log. We can do very little here...
var TRY_USE_DUMP = false;
if (!Module['print']) Module['print'] = (TRY_USE_DUMP && (typeof(dump) !== "undefined") ? (function(x) {
dump(x);
}) : (function(x) {
// self.postMessage(x); // enable this if you want stdout to be sent as messages
}));
}
if (ENVIRONMENT_IS_WEB) {
this['Module'] = Module;
} else {
Module['load'] = importScripts;
}
}
else {
// Unreachable because SHELL is dependant on the others
throw 'Unknown runtime environment. Where are we?';
}
function globalEval(x) {
eval.call(null, x);
}
if (!Module['load'] == 'undefined' && Module['read']) {
Module['load'] = function load(f) {
globalEval(Module['read'](f));
};
}
if (!Module['print']) {
Module['print'] = function(){};
}
if (!Module['printErr']) {
Module['printErr'] = Module['print'];
}
if (!Module['arguments']) {
Module['arguments'] = [];
}
// *** Environment setup code ***
// Closure helpers
Module.print = Module['print'];
Module.printErr = Module['printErr'];
// Callbacks
Module['preRun'] = [];
Module['postRun'] = [];
// Merge back in the overrides
for (var key in moduleOverrides) {
if (moduleOverrides.hasOwnProperty(key)) {
Module[key] = moduleOverrides[key];
}
}
// === Auto-generated preamble library stuff ===
//========================================
// Runtime code shared with compiler
//========================================
var Runtime = {
stackSave: function () {
return STACKTOP;
},
stackRestore: function (stackTop) {
STACKTOP = stackTop;
},
forceAlign: function (target, quantum) {
quantum = quantum || 4;
if (quantum == 1) return target;
if (isNumber(target) && isNumber(quantum)) {
return Math.ceil(target/quantum)*quantum;
} else if (isNumber(quantum) && isPowerOfTwo(quantum)) {
return '(((' +target + ')+' + (quantum-1) + ')&' + -quantum + ')';
}
return 'Math.ceil((' + target + ')/' + quantum + ')*' + quantum;
},
isNumberType: function (type) {
return type in Runtime.INT_TYPES || type in Runtime.FLOAT_TYPES;
},
isPointerType: function isPointerType(type) {
return type[type.length-1] == '*';
},
isStructType: function isStructType(type) {
if (isPointerType(type)) return false;
if (isArrayType(type)) return true;
if (/<?\{ ?[^}]* ?\}>?/.test(type)) return true; // { i32, i8 } etc. - anonymous struct types
// See comment in isStructPointerType()
return type[0] == '%';
},
INT_TYPES: {"i1":0,"i8":0,"i16":0,"i32":0,"i64":0},
FLOAT_TYPES: {"float":0,"double":0},
or64: function (x, y) {
var l = (x | 0) | (y | 0);
var h = (Math.round(x / 4294967296) | Math.round(y / 4294967296)) * 4294967296;
return l + h;
},
and64: function (x, y) {
var l = (x | 0) & (y | 0);
var h = (Math.round(x / 4294967296) & Math.round(y / 4294967296)) * 4294967296;
return l + h;
},
xor64: function (x, y) {
var l = (x | 0) ^ (y | 0);
var h = (Math.round(x / 4294967296) ^ Math.round(y / 4294967296)) * 4294967296;
return l + h;
},
getNativeTypeSize: function (type) {
switch (type) {
case 'i1': case 'i8': return 1;
case 'i16': return 2;
case 'i32': return 4;
case 'i64': return 8;
case 'float': return 4;
case 'double': return 8;
default: {
if (type[type.length-1] === '*') {
return Runtime.QUANTUM_SIZE; // A pointer
} else if (type[0] === 'i') {
var bits = parseInt(type.substr(1));
assert(bits % 8 === 0);
return bits/8;
} else {
return 0;
}
}
}
},
getNativeFieldSize: function (type) {
return Math.max(Runtime.getNativeTypeSize(type), Runtime.QUANTUM_SIZE);
},
dedup: function dedup(items, ident) {
var seen = {};
if (ident) {
return items.filter(function(item) {
if (seen[item[ident]]) return false;
seen[item[ident]] = true;
return true;
});
} else {
return items.filter(function(item) {
if (seen[item]) return false;
seen[item] = true;
return true;
});
}
},
set: function set() {
var args = typeof arguments[0] === 'object' ? arguments[0] : arguments;
var ret = {};
for (var i = 0; i < args.length; i++) {
ret[args[i]] = 0;
}
return ret;
},
STACK_ALIGN: 8,
getAlignSize: function (type, size, vararg) {
// we align i64s and doubles on 64-bit boundaries, unlike x86
if (!vararg && (type == 'i64' || type == 'double')) return 8;
if (!type) return Math.min(size, 8); // align structures internally to 64 bits
return Math.min(size || (type ? Runtime.getNativeFieldSize(type) : 0), Runtime.QUANTUM_SIZE);
},
calculateStructAlignment: function calculateStructAlignment(type) {
type.flatSize = 0;
type.alignSize = 0;
var diffs = [];
var prev = -1;
var index = 0;
type.flatIndexes = type.fields.map(function(field) {
index++;
var size, alignSize;
if (Runtime.isNumberType(field) || Runtime.isPointerType(field)) {
size = Runtime.getNativeTypeSize(field); // pack char; char; in structs, also char[X]s.
alignSize = Runtime.getAlignSize(field, size);
} else if (Runtime.isStructType(field)) {
if (field[1] === '0') {
// this is [0 x something]. When inside another structure like here, it must be at the end,
// and it adds no size
// XXX this happens in java-nbody for example... assert(index === type.fields.length, 'zero-length in the middle!');
size = 0;
if (Types.types[field]) {
alignSize = Runtime.getAlignSize(null, Types.types[field].alignSize);
} else {
alignSize = type.alignSize || QUANTUM_SIZE;
}
} else {
size = Types.types[field].flatSize;
alignSize = Runtime.getAlignSize(null, Types.types[field].alignSize);
}
} else if (field[0] == 'b') {
// bN, large number field, like a [N x i8]
size = field.substr(1)|0;
alignSize = 1;
} else if (field[0] === '<') {
// vector type
size = alignSize = Types.types[field].flatSize; // fully aligned
} else if (field[0] === 'i') {
// illegal integer field, that could not be legalized because it is an internal structure field
// it is ok to have such fields, if we just use them as markers of field size and nothing more complex
size = alignSize = parseInt(field.substr(1))/8;
assert(size % 1 === 0, 'cannot handle non-byte-size field ' + field);
} else {
assert(false, 'invalid type for calculateStructAlignment');
}
if (type.packed) alignSize = 1;
type.alignSize = Math.max(type.alignSize, alignSize);
var curr = Runtime.alignMemory(type.flatSize, alignSize); // if necessary, place this on aligned memory
type.flatSize = curr + size;
if (prev >= 0) {
diffs.push(curr-prev);
}
prev = curr;
return curr;
});
if (type.name_ && type.name_[0] === '[') {
// arrays have 2 elements, so we get the proper difference. then we scale here. that way we avoid
// allocating a potentially huge array for [999999 x i8] etc.
type.flatSize = parseInt(type.name_.substr(1))*type.flatSize/2;
}
type.flatSize = Runtime.alignMemory(type.flatSize, type.alignSize);
if (diffs.length == 0) {
type.flatFactor = type.flatSize;
} else if (Runtime.dedup(diffs).length == 1) {
type.flatFactor = diffs[0];
}
type.needsFlattening = (type.flatFactor != 1);
return type.flatIndexes;
},
generateStructInfo: function (struct, typeName, offset) {
var type, alignment;
if (typeName) {
offset = offset || 0;
type = (typeof Types === 'undefined' ? Runtime.typeInfo : Types.types)[typeName];
if (!type) return null;
if (type.fields.length != struct.length) {
printErr('Number of named fields must match the type for ' + typeName + ': possibly duplicate struct names. Cannot return structInfo');
return null;
}
alignment = type.flatIndexes;
} else {
var type = { fields: struct.map(function(item) { return item[0] }) };
alignment = Runtime.calculateStructAlignment(type);
}
var ret = {
__size__: type.flatSize
};
if (typeName) {
struct.forEach(function(item, i) {
if (typeof item === 'string') {
ret[item] = alignment[i] + offset;
} else {
// embedded struct
var key;
for (var k in item) key = k;
ret[key] = Runtime.generateStructInfo(item[key], type.fields[i], alignment[i]);
}
});
} else {
struct.forEach(function(item, i) {
ret[item[1]] = alignment[i];
});
}
return ret;
},
dynCall: function (sig, ptr, args) {
if (args && args.length) {
if (!args.splice) args = Array.prototype.slice.call(args);
args.splice(0, 0, ptr);
return Module['dynCall_' + sig].apply(null, args);
} else {
return Module['dynCall_' + sig].call(null, ptr);
}
},
functionPointers: [],
addFunction: function (func) {
for (var i = 0; i < Runtime.functionPointers.length; i++) {
if (!Runtime.functionPointers[i]) {
Runtime.functionPointers[i] = func;
return 2*(1 + i);
}
}
throw 'Finished up all reserved function pointers. Use a higher value for RESERVED_FUNCTION_POINTERS.';
},
removeFunction: function (index) {
Runtime.functionPointers[(index-2)/2] = null;
},
getAsmConst: function (code, numArgs) {
// code is a constant string on the heap, so we can cache these
if (!Runtime.asmConstCache) Runtime.asmConstCache = {};
var func = Runtime.asmConstCache[code];
if (func) return func;
var args = [];
for (var i = 0; i < numArgs; i++) {
args.push(String.fromCharCode(36) + i); // $0, $1 etc
}
code = Pointer_stringify(code);
if (code[0] === '"') {
// tolerate EM_ASM("..code..") even though EM_ASM(..code..) is correct
if (code.indexOf('"', 1) === code.length-1) {
code = code.substr(1, code.length-2);
} else {
// something invalid happened, e.g. EM_ASM("..code($0)..", input)
abort('invalid EM_ASM input |' + code + '|. Please use EM_ASM(..code..) (no quotes) or EM_ASM({ ..code($0).. }, input) (to input values)');
}
}
return Runtime.asmConstCache[code] = eval('(function(' + args.join(',') + '){ ' + code + ' })'); // new Function does not allow upvars in node
},
warnOnce: function (text) {
if (!Runtime.warnOnce.shown) Runtime.warnOnce.shown = {};
if (!Runtime.warnOnce.shown[text]) {
Runtime.warnOnce.shown[text] = 1;
Module.printErr(text);
}
},
funcWrappers: {},
getFuncWrapper: function (func, sig) {
assert(sig);
if (!Runtime.funcWrappers[func]) {
Runtime.funcWrappers[func] = function dynCall_wrapper() {
return Runtime.dynCall(sig, func, arguments);
};
}
return Runtime.funcWrappers[func];
},
UTF8Processor: function () {
var buffer = [];
var needed = 0;
this.processCChar = function (code) {
code = code & 0xFF;
if (buffer.length == 0) {
if ((code & 0x80) == 0x00) { // 0xxxxxxx
return String.fromCharCode(code);
}
buffer.push(code);
if ((code & 0xE0) == 0xC0) { // 110xxxxx
needed = 1;
} else if ((code & 0xF0) == 0xE0) { // 1110xxxx
needed = 2;
} else { // 11110xxx
needed = 3;
}
return '';
}
if (needed) {
buffer.push(code);
needed--;
if (needed > 0) return '';
}
var c1 = buffer[0];
var c2 = buffer[1];
var c3 = buffer[2];
var c4 = buffer[3];
var ret;
if (buffer.length == 2) {
ret = String.fromCharCode(((c1 & 0x1F) << 6) | (c2 & 0x3F));
} else if (buffer.length == 3) {
ret = String.fromCharCode(((c1 & 0x0F) << 12) | ((c2 & 0x3F) << 6) | (c3 & 0x3F));
} else {
// http://mathiasbynens.be/notes/javascript-encoding#surrogate-formulae
var codePoint = ((c1 & 0x07) << 18) | ((c2 & 0x3F) << 12) |
((c3 & 0x3F) << 6) | (c4 & 0x3F);
ret = String.fromCharCode(
Math.floor((codePoint - 0x10000) / 0x400) + 0xD800,
(codePoint - 0x10000) % 0x400 + 0xDC00);
}
buffer.length = 0;
return ret;
}
this.processJSString = function processJSString(string) {
string = unescape(encodeURIComponent(string));
var ret = [];
for (var i = 0; i < string.length; i++) {
ret.push(string.charCodeAt(i));
}
return ret;
}
},
stackAlloc: function (size) { var ret = STACKTOP;STACKTOP = (STACKTOP + size)|0;STACKTOP = (((STACKTOP)+7)&-8); return ret; },
staticAlloc: function (size) { var ret = STATICTOP;STATICTOP = (STATICTOP + size)|0;STATICTOP = (((STATICTOP)+7)&-8); return ret; },
dynamicAlloc: function (size) { var ret = DYNAMICTOP;DYNAMICTOP = (DYNAMICTOP + size)|0;DYNAMICTOP = (((DYNAMICTOP)+7)&-8); if (DYNAMICTOP >= TOTAL_MEMORY) enlargeMemory();; return ret; },
alignMemory: function (size,quantum) { var ret = size = Math.ceil((size)/(quantum ? quantum : 8))*(quantum ? quantum : 8); return ret; },
makeBigInt: function (low,high,unsigned) { var ret = (unsigned ? ((+((low>>>0)))+((+((high>>>0)))*(+4294967296))) : ((+((low>>>0)))+((+((high|0)))*(+4294967296)))); return ret; },
GLOBAL_BASE: 8,
QUANTUM_SIZE: 4,
__dummy__: 0
}
Module['Runtime'] = Runtime;
//========================================
// Runtime essentials
//========================================
var __THREW__ = 0; // Used in checking for thrown exceptions.
var ABORT = false; // whether we are quitting the application. no code should run after this. set in exit() and abort()
var EXITSTATUS = 0;
var undef = 0;
// tempInt is used for 32-bit signed values or smaller. tempBigInt is used
// for 32-bit unsigned values or more than 32 bits. TODO: audit all uses of tempInt
var tempValue, tempInt, tempBigInt, tempInt2, tempBigInt2, tempPair, tempBigIntI, tempBigIntR, tempBigIntS, tempBigIntP, tempBigIntD, tempDouble, tempFloat;
var tempI64, tempI64b;
var tempRet0, tempRet1, tempRet2, tempRet3, tempRet4, tempRet5, tempRet6, tempRet7, tempRet8, tempRet9;
function assert(condition, text) {
if (!condition) {
abort('Assertion failed: ' + text);
}
}
var globalScope = this;
// C calling interface. A convenient way to call C functions (in C files, or
// defined with extern "C").
//
// Note: LLVM optimizations can inline and remove functions, after which you will not be
// able to call them. Closure can also do so. To avoid that, add your function to
// the exports using something like
//
// -s EXPORTED_FUNCTIONS='["_main", "_myfunc"]'
//
// @param ident The name of the C function (note that C++ functions will be name-mangled - use extern "C")
// @param returnType The return type of the function, one of the JS types 'number', 'string' or 'array' (use 'number' for any C pointer, and
// 'array' for JavaScript arrays and typed arrays; note that arrays are 8-bit).
// @param argTypes An array of the types of arguments for the function (if there are no arguments, this can be ommitted). Types are as in returnType,
// except that 'array' is not possible (there is no way for us to know the length of the array)
// @param args An array of the arguments to the function, as native JS values (as in returnType)
// Note that string arguments will be stored on the stack (the JS string will become a C string on the stack).
// @return The return value, as a native JS value (as in returnType)
function ccall(ident, returnType, argTypes, args) {
return ccallFunc(getCFunc(ident), returnType, argTypes, args);
}
Module["ccall"] = ccall;
// Returns the C function with a specified identifier (for C++, you need to do manual name mangling)
function getCFunc(ident) {
try {
var func = Module['_' + ident]; // closure exported function
if (!func) func = eval('_' + ident); // explicit lookup
} catch(e) {
}
assert(func, 'Cannot call unknown function ' + ident + ' (perhaps LLVM optimizations or closure removed it?)');
return func;
}
// Internal function that does a C call using a function, not an identifier
function ccallFunc(func, returnType, argTypes, args) {
var stack = 0;
function toC(value, type) {
if (type == 'string') {
if (value === null || value === undefined || value === 0) return 0; // null string
value = intArrayFromString(value);
type = 'array';
}
if (type == 'array') {
if (!stack) stack = Runtime.stackSave();
var ret = Runtime.stackAlloc(value.length);
writeArrayToMemory(value, ret);
return ret;
}
return value;
}
function fromC(value, type) {
if (type == 'string') {
return Pointer_stringify(value);
}
assert(type != 'array');
return value;
}
var i = 0;
var cArgs = args ? args.map(function(arg) {
return toC(arg, argTypes[i++]);
}) : [];
var ret = fromC(func.apply(null, cArgs), returnType);
if (stack) Runtime.stackRestore(stack);
return ret;
}
// Returns a native JS wrapper for a C function. This is similar to ccall, but
// returns a function you can call repeatedly in a normal way. For example:
//
// var my_function = cwrap('my_c_function', 'number', ['number', 'number']);
// alert(my_function(5, 22));
// alert(my_function(99, 12));
//
function cwrap(ident, returnType, argTypes) {
var func = getCFunc(ident);
return function() {
return ccallFunc(func, returnType, argTypes, Array.prototype.slice.call(arguments));
}
}
Module["cwrap"] = cwrap;
// Sets a value in memory in a dynamic way at run-time. Uses the
// type data. This is the same as makeSetValue, except that
// makeSetValue is done at compile-time and generates the needed
// code then, whereas this function picks the right code at
// run-time.
// Note that setValue and getValue only do *aligned* writes and reads!
// Note that ccall uses JS types as for defining types, while setValue and
// getValue need LLVM types ('i8', 'i32') - this is a lower-level operation
function setValue(ptr, value, type, noSafe) {
type = type || 'i8';
if (type.charAt(type.length-1) === '*') type = 'i32'; // pointers are 32-bit
switch(type) {
case 'i1': HEAP8[(ptr)]=value; break;
case 'i8': HEAP8[(ptr)]=value; break;
case 'i16': HEAP16[((ptr)>>1)]=value; break;
case 'i32': HEAP32[((ptr)>>2)]=value; break;
case 'i64': (tempI64 = [value>>>0,(tempDouble=value,(+(Math_abs(tempDouble))) >= (+1) ? (tempDouble > (+0) ? ((Math_min((+(Math_floor((tempDouble)/(+4294967296)))), (+4294967295)))|0)>>>0 : (~~((+(Math_ceil((tempDouble - +(((~~(tempDouble)))>>>0))/(+4294967296))))))>>>0) : 0)],HEAP32[((ptr)>>2)]=tempI64[0],HEAP32[(((ptr)+(4))>>2)]=tempI64[1]); break;
case 'float': HEAPF32[((ptr)>>2)]=value; break;
case 'double': HEAPF64[((ptr)>>3)]=value; break;
default: abort('invalid type for setValue: ' + type);
}
}
Module['setValue'] = setValue;
// Parallel to setValue.
function getValue(ptr, type, noSafe) {
type = type || 'i8';
if (type.charAt(type.length-1) === '*') type = 'i32'; // pointers are 32-bit
switch(type) {
case 'i1': return HEAP8[(ptr)];
case 'i8': return HEAP8[(ptr)];
case 'i16': return HEAP16[((ptr)>>1)];
case 'i32': return HEAP32[((ptr)>>2)];
case 'i64': return HEAP32[((ptr)>>2)];
case 'float': return HEAPF32[((ptr)>>2)];
case 'double': return HEAPF64[((ptr)>>3)];
default: abort('invalid type for setValue: ' + type);
}
return null;
}
Module['getValue'] = getValue;
var ALLOC_NORMAL = 0; // Tries to use _malloc()
var ALLOC_STACK = 1; // Lives for the duration of the current function call
var ALLOC_STATIC = 2; // Cannot be freed
var ALLOC_DYNAMIC = 3; // Cannot be freed except through sbrk
var ALLOC_NONE = 4; // Do not allocate
Module['ALLOC_NORMAL'] = ALLOC_NORMAL;
Module['ALLOC_STACK'] = ALLOC_STACK;
Module['ALLOC_STATIC'] = ALLOC_STATIC;
Module['ALLOC_DYNAMIC'] = ALLOC_DYNAMIC;
Module['ALLOC_NONE'] = ALLOC_NONE;
// allocate(): This is for internal use. You can use it yourself as well, but the interface
// is a little tricky (see docs right below). The reason is that it is optimized
// for multiple syntaxes to save space in generated code. So you should
// normally not use allocate(), and instead allocate memory using _malloc(),
// initialize it with setValue(), and so forth.
// @slab: An array of data, or a number. If a number, then the size of the block to allocate,
// in *bytes* (note that this is sometimes confusing: the next parameter does not
// affect this!)
// @types: Either an array of types, one for each byte (or 0 if no type at that position),
// or a single type which is used for the entire block. This only matters if there
// is initial data - if @slab is a number, then this does not matter at all and is
// ignored.
// @allocator: How to allocate memory, see ALLOC_*
function allocate(slab, types, allocator, ptr) {
var zeroinit, size;
if (typeof slab === 'number') {
zeroinit = true;
size = slab;
} else {
zeroinit = false;
size = slab.length;
}
var singleType = typeof types === 'string' ? types : null;
var ret;
if (allocator == ALLOC_NONE) {
ret = ptr;
} else {
ret = [_malloc, Runtime.stackAlloc, Runtime.staticAlloc, Runtime.dynamicAlloc][allocator === undefined ? ALLOC_STATIC : allocator](Math.max(size, singleType ? 1 : types.length));
}
if (zeroinit) {
var ptr = ret, stop;
assert((ret & 3) == 0);
stop = ret + (size & ~3);
for (; ptr < stop; ptr += 4) {
HEAP32[((ptr)>>2)]=0;
}
stop = ret + size;
while (ptr < stop) {
HEAP8[((ptr++)|0)]=0;
}
return ret;
}
if (singleType === 'i8') {
if (slab.subarray || slab.slice) {
HEAPU8.set(slab, ret);
} else {
HEAPU8.set(new Uint8Array(slab), ret);
}
return ret;
}
var i = 0, type, typeSize, previousType;
while (i < size) {
var curr = slab[i];
if (typeof curr === 'function') {
curr = Runtime.getFunctionIndex(curr);
}
type = singleType || types[i];
if (type === 0) {
i++;
continue;
}
if (type == 'i64') type = 'i32'; // special case: we have one i32 here, and one i32 later
setValue(ret+i, curr, type);
// no need to look up size unless type changes, so cache it
if (previousType !== type) {
typeSize = Runtime.getNativeTypeSize(type);
previousType = type;
}
i += typeSize;
}
return ret;
}
Module['allocate'] = allocate;
function Pointer_stringify(ptr, /* optional */ length) {
// TODO: use TextDecoder
// Find the length, and check for UTF while doing so
var hasUtf = false;
var t;
var i = 0;
while (1) {
t = HEAPU8[(((ptr)+(i))|0)];
if (t >= 128) hasUtf = true;
else if (t == 0 && !length) break;
i++;
if (length && i == length) break;
}
if (!length) length = i;
var ret = '';
if (!hasUtf) {
var MAX_CHUNK = 1024; // split up into chunks, because .apply on a huge string can overflow the stack
var curr;
while (length > 0) {
curr = String.fromCharCode.apply(String, HEAPU8.subarray(ptr, ptr + Math.min(length, MAX_CHUNK)));
ret = ret ? ret + curr : curr;
ptr += MAX_CHUNK;
length -= MAX_CHUNK;
}
return ret;
}
var utf8 = new Runtime.UTF8Processor();
for (i = 0; i < length; i++) {
t = HEAPU8[(((ptr)+(i))|0)];
ret += utf8.processCChar(t);
}
return ret;
}
Module['Pointer_stringify'] = Pointer_stringify;
// Given a pointer 'ptr' to a null-terminated UTF16LE-encoded string in the emscripten HEAP, returns
// a copy of that string as a Javascript String object.
function UTF16ToString(ptr) {
var i = 0;
var str = '';
while (1) {
var codeUnit = HEAP16[(((ptr)+(i*2))>>1)];
if (codeUnit == 0)
return str;
++i;
// fromCharCode constructs a character from a UTF-16 code unit, so we can pass the UTF16 string right through.
str += String.fromCharCode(codeUnit);
}
}
Module['UTF16ToString'] = UTF16ToString;
// Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr',
// null-terminated and encoded in UTF16LE form. The copy will require at most (str.length*2+1)*2 bytes of space in the HEAP.
function stringToUTF16(str, outPtr) {
for(var i = 0; i < str.length; ++i) {
// charCodeAt returns a UTF-16 encoded code unit, so it can be directly written to the HEAP.
var codeUnit = str.charCodeAt(i); // possibly a lead surrogate
HEAP16[(((outPtr)+(i*2))>>1)]=codeUnit;
}
// Null-terminate the pointer to the HEAP.
HEAP16[(((outPtr)+(str.length*2))>>1)]=0;
}
Module['stringToUTF16'] = stringToUTF16;
// Given a pointer 'ptr' to a null-terminated UTF32LE-encoded string in the emscripten HEAP, returns
// a copy of that string as a Javascript String object.
function UTF32ToString(ptr) {
var i = 0;
var str = '';
while (1) {
var utf32 = HEAP32[(((ptr)+(i*4))>>2)];
if (utf32 == 0)
return str;
++i;
// Gotcha: fromCharCode constructs a character from a UTF-16 encoded code (pair), not from a Unicode code point! So encode the code point to UTF-16 for constructing.
if (utf32 >= 0x10000) {
var ch = utf32 - 0x10000;
str += String.fromCharCode(0xD800 | (ch >> 10), 0xDC00 | (ch & 0x3FF));
} else {
str += String.fromCharCode(utf32);
}
}
}
Module['UTF32ToString'] = UTF32ToString;
// Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr',
// null-terminated and encoded in UTF32LE form. The copy will require at most (str.length+1)*4 bytes of space in the HEAP,
// but can use less, since str.length does not return the number of characters in the string, but the number of UTF-16 code units in the string.
function stringToUTF32(str, outPtr) {
var iChar = 0;
for(var iCodeUnit = 0; iCodeUnit < str.length; ++iCodeUnit) {
// Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! We must decode the string to UTF-32 to the heap.
var codeUnit = str.charCodeAt(iCodeUnit); // possibly a lead surrogate
if (codeUnit >= 0xD800 && codeUnit <= 0xDFFF) {
var trailSurrogate = str.charCodeAt(++iCodeUnit);
codeUnit = 0x10000 + ((codeUnit & 0x3FF) << 10) | (trailSurrogate & 0x3FF);
}
HEAP32[(((outPtr)+(iChar*4))>>2)]=codeUnit;
++iChar;
}
// Null-terminate the pointer to the HEAP.
HEAP32[(((outPtr)+(iChar*4))>>2)]=0;
}
Module['stringToUTF32'] = stringToUTF32;
function demangle(func) {
try {
// Special-case the entry point, since its name differs from other name mangling.
if (func == 'Object._main' || func == '_main') {
return 'main()';
}
if (typeof func === 'number') func = Pointer_stringify(func);
if (func[0] !== '_') return func;
if (func[1] !== '_') return func; // C function
if (func[2] !== 'Z') return func;
switch (func[3]) {
case 'n': return 'operator new()';
case 'd': return 'operator delete()';
}
var i = 3;
// params, etc.
var basicTypes = {
'v': 'void',
'b': 'bool',
'c': 'char',
's': 'short',
'i': 'int',
'l': 'long',
'f': 'float',
'd': 'double',
'w': 'wchar_t',
'a': 'signed char',
'h': 'unsigned char',
't': 'unsigned short',
'j': 'unsigned int',
'm': 'unsigned long',
'x': 'long long',
'y': 'unsigned long long',
'z': '...'
};
function dump(x) {
//return;
if (x) Module.print(x);
Module.print(func);
var pre = '';
for (var a = 0; a < i; a++) pre += ' ';
Module.print (pre + '^');
}
var subs = [];
function parseNested() {
i++;
if (func[i] === 'K') i++; // ignore const
var parts = [];
while (func[i] !== 'E') {
if (func[i] === 'S') { // substitution
i++;
var next = func.indexOf('_', i);
var num = func.substring(i, next) || 0;
parts.push(subs[num] || '?');
i = next+1;
continue;
}
if (func[i] === 'C') { // constructor
parts.push(parts[parts.length-1]);
i += 2;
continue;
}
var size = parseInt(func.substr(i));
var pre = size.toString().length;
if (!size || !pre) { i--; break; } // counter i++ below us
var curr = func.substr(i + pre, size);
parts.push(curr);
subs.push(curr);
i += pre + size;
}
i++; // skip E
return parts;
}
var first = true;
function parse(rawList, limit, allowVoid) { // main parser
limit = limit || Infinity;
var ret = '', list = [];
function flushList() {
return '(' + list.join(', ') + ')';
}
var name;
if (func[i] === 'N') {
// namespaced N-E
name = parseNested().join('::');
limit--;
if (limit === 0) return rawList ? [name] : name;
} else {
// not namespaced
if (func[i] === 'K' || (first && func[i] === 'L')) i++; // ignore const and first 'L'
var size = parseInt(func.substr(i));
if (size) {
var pre = size.toString().length;
name = func.substr(i + pre, size);
i += pre + size;
}
}
first = false;
if (func[i] === 'I') {
i++;
var iList = parse(true);
var iRet = parse(true, 1, true);
ret += iRet[0] + ' ' + name + '<' + iList.join(', ') + '>';
} else {
ret = name;
}
paramLoop: while (i < func.length && limit-- > 0) {
//dump('paramLoop');
var c = func[i++];
if (c in basicTypes) {
list.push(basicTypes[c]);
} else {
switch (c) {
case 'P': list.push(parse(true, 1, true)[0] + '*'); break; // pointer
case 'R': list.push(parse(true, 1, true)[0] + '&'); break; // reference
case 'L': { // literal
i++; // skip basic type
var end = func.indexOf('E', i);
var size = end - i;
list.push(func.substr(i, size));
i += size + 2; // size + 'EE'
break;
}
case 'A': { // array
var size = parseInt(func.substr(i));
i += size.toString().length;
if (func[i] !== '_') throw '?';
i++; // skip _
list.push(parse(true, 1, true)[0] + ' [' + size + ']');
break;
}
case 'E': break paramLoop;
default: ret += '?' + c; break paramLoop;
}
}
}
if (!allowVoid && list.length === 1 && list[0] === 'void') list = []; // avoid (void)
return rawList ? list : ret + flushList();
}
return parse();
} catch(e) {
return func;
}
}
function demangleAll(text) {
return text.replace(/__Z[\w\d_]+/g, function(x) { var y = demangle(x); return x === y ? x : (x + ' [' + y + ']') });