forked from pytorch/torchtune
-
Notifications
You must be signed in to change notification settings - Fork 0
/
_model_builders.py
365 lines (315 loc) · 13.1 KB
/
_model_builders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from typing import List, Optional
from functools import partial
from torchtune.models.llama2._component_builders import llama2, lora_llama2, llama2_classifier, lora_llama2_classifier
from torchtune.modules import TransformerDecoder
from torchtune.models.llama2._tokenizer import Llama2Tokenizer
from torchtune.modules.peft import LORA_ATTN_MODULES
from torchtune.data._prompt_templates import _TemplateType
from torchtune.config._utils import _get_prompt_template
"""
Model builders build specific instantiations using component builders. For example
the llama2_7b model builder uses the llama2 component builder to create the
llama2 7B model.
"""
def llama2_7b() -> TransformerDecoder:
"""
Builder for creating a Llama2 model initialized w/ the default 7B parameter values
from https://arxiv.org/abs/2307.09288
Returns:
TransformerDecoder: Instantiation of Llama2 7B model
"""
return llama2(
vocab_size=32_000,
num_layers=32,
num_heads=32,
num_kv_heads=32,
embed_dim=4096,
max_seq_len=4096,
attn_dropout=0.0,
norm_eps=1e-5,
)
def llama2_tokenizer(path: str, max_seq_len: Optional[int] = None, prompt_template: Optional[_TemplateType] = "torchtune.models.llama2.Llama2ChatTemplate") -> Llama2Tokenizer:
"""
Tokenizer for Llama2.
Args:
path (str): path to the tokenizer
max_seq_len (Optional[int]): maximum sequence length for tokenizing a single list of messages,
after which the input will be truncated. Default is None.
prompt_template (Optional[_TemplateType]): optional specified prompt template.
If a string, it is assumed to be the dotpath of a :class:`~torchtune.data.PromptTemplateInterface`
class. If a dictionary, it is assumed to be a custom prompt template mapping role to the
prepend/append tags. Default is :class:`~torchtune.models.llama2.Llama2ChatTemplate`.
Returns:
Llama2Tokenizer: Instantiation of the Llama2 tokenizer
"""
return Llama2Tokenizer(path=path, max_seq_len=max_seq_len, prompt_template=_get_prompt_template(prompt_template) if prompt_template is not None else None)
def lora_llama2_7b(
lora_attn_modules: List[LORA_ATTN_MODULES],
apply_lora_to_mlp: bool = False,
apply_lora_to_output: bool = False,
lora_rank: int = 8,
lora_alpha: float = 16,
lora_dropout: float = 0.05,
quantize_base: bool = False,
) -> TransformerDecoder:
"""
Builder for creating a Llama2 7B model with LoRA enabled.
The Llama2 defaults are the same as in :func:`~torchtune.models.llama2.llama2_7b`,
while LoRA default params are based on
https://github.com/tloen/alpaca-lora/blob/8bb8579e403dc78e37fe81ffbb253c413007323f/finetune.py#L41-L43.
Args:
lora_attn_modules (List[LORA_ATTN_MODULES]): list of which linear layers
LoRA should be applied to in each self-attention block. Options are
``{"q_proj", "k_proj", "v_proj", "output_proj"}``.
apply_lora_to_mlp (bool): whether to apply LoRA to the MLP in each transformer layer.
Default: False
apply_lora_to_output (bool): whether to apply LoRA to the model's final output projection.
Default: False
lora_rank (int): rank of each low-rank approximation
lora_alpha (float): scaling factor for the low-rank approximation
quantize_base (bool): Whether to quantize base model weights
lora_dropout (float): dropout probability for LoRA linear layers. Default: 0.05
Returns:
TransformerDecoder: Instantiation of Llama2 7B model with LoRA applied
"""
return lora_llama2(
lora_attn_modules=lora_attn_modules,
apply_lora_to_mlp=apply_lora_to_mlp,
apply_lora_to_output=apply_lora_to_output,
vocab_size=32_000,
num_layers=32,
num_heads=32,
num_kv_heads=32,
embed_dim=4096,
max_seq_len=4096,
attn_dropout=0.0,
norm_eps=1e-5,
lora_rank=lora_rank,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
quantize_base=quantize_base,
)
qlora_llama2_7b = partial(lora_llama2_7b, quantize_base=True)
qlora_llama2_7b.__doc__ = """
Builder for creating a Llama2 7B model with QLoRA enabled. Base model weights in linear layers
that LoRA is applied to are quantized per the QLoRA paper: https://arxiv.org/abs/2305.14314.
Please see `lora_llama2_7b` for full API arguments.
"""
def llama2_13b() -> TransformerDecoder:
"""
Builder for creating a Llama2 model initialized w/ the default 13B parameter values
from https://arxiv.org/abs/2307.09288
Returns:
TransformerDecoder: Instantiation of Llama2 13B model
"""
return llama2(
vocab_size=32_000,
num_layers=40,
num_heads=40,
num_kv_heads=40,
embed_dim=5120,
intermediate_dim=13824,
max_seq_len=4096,
attn_dropout=0.0,
norm_eps=1e-5,
)
def lora_llama2_13b(
lora_attn_modules: List[LORA_ATTN_MODULES],
apply_lora_to_mlp: bool = False,
apply_lora_to_output: bool = False,
lora_rank: int = 8,
lora_alpha: float = 16,
lora_dropout: float = 0.05,
quantize_base: bool = False,
) -> TransformerDecoder:
"""
Builder for creating a Llama2 13B model with LoRA enabled.
The Llama2 defaults are the same as in :func:`~torchtune.models.llama2.llama2_13b`,
while LoRA default params are based on
https://github.com/tloen/alpaca-lora/blob/8bb8579e403dc78e37fe81ffbb253c413007323f/finetune.py#L41-L43.
Args:
lora_attn_modules (List[LORA_ATTN_MODULES]): list of which linear layers
LoRA should be applied to in each self-attention block. Options are
``{"q_proj", "k_proj", "v_proj", "output_proj"}``.
apply_lora_to_mlp (bool): whether to apply LoRA to the MLP in each transformer layer.
Default: False
apply_lora_to_output (bool): whether to apply LoRA to the model's final output projection.
Default: False
lora_rank (int): rank of each low-rank approximation
lora_alpha (float): scaling factor for the low-rank approximation
lora_dropout (float): dropout probability for LoRA linear layers. Default: 0.05
quantize_base (bool): Whether to quantize base model weights
Returns:
TransformerDecoder: Instantiation of Llama2 13B model with LoRA applied
"""
return lora_llama2(
lora_attn_modules=lora_attn_modules,
apply_lora_to_mlp=apply_lora_to_mlp,
apply_lora_to_output=apply_lora_to_output,
vocab_size=32_000,
num_layers=40,
num_heads=40,
num_kv_heads=40,
embed_dim=5120,
intermediate_dim=13824,
max_seq_len=4096,
attn_dropout=0.0,
norm_eps=1e-5,
lora_rank=lora_rank,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
quantize_base=quantize_base,
)
qlora_llama2_13b = partial(lora_llama2_13b, quantize_base=True)
qlora_llama2_13b.__doc__ = """
Builder for creating a Llama2 13B model with QLoRA enabled. Base model weights in linear layers
that LoRA is applied to are quantized per the QLoRA paper: https://arxiv.org/abs/2305.14314.
Please see `lora_llama2_13b` for full API arguments.
"""
def llama2_70b() -> TransformerDecoder:
"""
Builder for creating a Llama2 model initialized w/ the default 70B parameter values
from https://arxiv.org/abs/2307.09288
Returns:
TransformerDecoder: Instantiation of Llama2 70B model
"""
return llama2(
vocab_size=32_000,
num_layers=80,
num_heads=64,
num_kv_heads=8,
embed_dim=8192,
intermediate_dim=28672,
max_seq_len=4096,
attn_dropout=0.0,
norm_eps=1e-5,
)
def lora_llama2_70b(
lora_attn_modules: List[LORA_ATTN_MODULES],
apply_lora_to_mlp: bool = False,
apply_lora_to_output: bool = False,
lora_rank: int = 8,
lora_alpha: float = 16,
lora_dropout: float = 0.05,
quantize_base: bool = False,
) -> TransformerDecoder:
"""
Builder for creating a Llama2 70B model with LoRA enabled.
The Llama2 defaults are the same as in :func:`~torchtune.models.llama2.llama2_70b`,
while LoRA default params are based on
https://github.com/tloen/alpaca-lora/blob/8bb8579e403dc78e37fe81ffbb253c413007323f/finetune.py#L41-L43.
Args:
lora_attn_modules (List[LORA_ATTN_MODULES]): list of which linear layers
LoRA should be applied to in each self-attention block. Options are
``{"q_proj", "k_proj", "v_proj", "output_proj"}``.
apply_lora_to_mlp (bool): whether to apply LoRA to the MLP in each transformer layer.
Default: False
apply_lora_to_output (bool): whether to apply LoRA to the model's final output projection.
Default: False
lora_rank (int): rank of each low-rank approximation
lora_alpha (float): scaling factor for the low-rank approximation
lora_dropout (float): dropout probability for LoRA linear layers. Default: 0.05
quantize_base (bool): Whether to quantize base model weights
Returns:
TransformerDecoder: Instantiation of Llama2 70B model with LoRA applied
"""
return lora_llama2(
lora_attn_modules=lora_attn_modules,
apply_lora_to_mlp=apply_lora_to_mlp,
apply_lora_to_output=apply_lora_to_output,
vocab_size=32_000,
num_layers=80,
num_heads=64,
num_kv_heads=8,
embed_dim=8192,
max_seq_len=4096,
intermediate_dim=28672,
attn_dropout=0.0,
norm_eps=1e-5,
lora_rank=lora_rank,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
quantize_base=quantize_base,
)
qlora_llama2_70b = partial(lora_llama2_70b, quantize_base=True)
qlora_llama2_70b.__doc__ = """
Builder for creating a Llama2 70B model with QLoRA enabled. Base model weights in linear layers
that LoRA is applied to are quantized per the QLoRA paper: https://arxiv.org/abs/2305.14314.
Please see `lora_llama2_70b` for full API arguments.
"""
def llama2_reward_7b() -> TransformerDecoder:
"""
Builder for creating a Llama2 model initialized w/ the default 7B parameter values
from https://arxiv.org/abs/2307.09288, where the output layer is a classification layer
projecting to a single class for reward modelling.
Returns:
TransformerDecoder: Instantiation of Llama2 7B model
"""
return llama2_classifier(
num_classes=1,
vocab_size=32_000,
num_layers=32,
num_heads=32,
num_kv_heads=32,
embed_dim=4096,
max_seq_len=4096,
attn_dropout=0.0,
norm_eps=1e-5,
)
def lora_llama2_reward_7b(
lora_attn_modules: List[LORA_ATTN_MODULES],
apply_lora_to_mlp: bool = False,
apply_lora_to_output: bool = False,
lora_rank: int = 8,
lora_alpha: float = 16,
lora_dropout: float = 0.05,
quantize_base: bool = False,
) -> TransformerDecoder:
"""
Builder for creating a Llama2 7B reward model with LoRA enabled.
The Llama2 classifier defaults are the same as in :func:`~torchtune.models.llama2.llama2_reward_7b`,
while LoRA default params are based on
https://github.com/tloen/alpaca-lora/blob/8bb8579e403dc78e37fe81ffbb253c413007323f/finetune.py#L41-L43.
Args:
lora_attn_modules (List[LORA_ATTN_MODULES]): list of which linear layers
LoRA should be applied to in each self-attention block. Options are
``{"q_proj", "k_proj", "v_proj", "output_proj"}``.
apply_lora_to_mlp (bool): whether to apply LoRA to the MLP in each transformer layer.
Default: False
apply_lora_to_output (bool): whether to apply LoRA to the model's final output projection.
Default: False
lora_rank (int): rank of each low-rank approximation
lora_alpha (float): scaling factor for the low-rank approximation
quantize_base (bool): Whether to quantize base model weights
Returns:
TransformerDecoder: Instantiation of Llama2 7B model with LoRA applied
"""
return lora_llama2_classifier(
lora_attn_modules=lora_attn_modules,
apply_lora_to_mlp=apply_lora_to_mlp,
apply_lora_to_output=apply_lora_to_output,
num_classes=1,
vocab_size=32_000,
num_layers=32,
num_heads=32,
num_kv_heads=32,
embed_dim=4096,
max_seq_len=4096,
attn_dropout=0.0,
norm_eps=1e-5,
lora_rank=lora_rank,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
quantize_base=quantize_base,
)
qlora_llama2_reward_7b = partial(lora_llama2_7b, quantize_base=True)
qlora_llama2_reward_7b.__doc__ = """
Builder for creating a Llama2 reward 7b model with QLoRA enabled. Base model weights in linear layers
that LoRA is applied to are quantized per the QLoRA paper: https://arxiv.org/abs/2305.14314.
Please see `lora_llama2_reward_7b` for full API arguments.
"""