-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_video.py
387 lines (319 loc) · 15.1 KB
/
main_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import math
import os
from contextlib import contextmanager
from functools import partial
from pathlib import Path
from typing import Any, Iterable, Mapping, Callable
import inverse_optical_flow
import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
from PIL import Image
from efficientnet_pytorch import EfficientNet
from scipy.ndimage import map_coordinates
from tqdm import tqdm
def load_image(image_path) -> Image.Image:
image = Image.open(image_path)
return image
def image_to_tensor(image: Image.Image | np.ndarray, mean: torch.Tensor, std: torch.Tensor) -> torch.Tensor:
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean, std)
])
return transform(image)
def tensor_to_image(tensor: torch.Tensor, mean: torch.Tensor, std: torch.Tensor) -> Image.Image:
transform = transforms.Compose([
transforms.Normalize((-mean / std).tolist(), (1.0 / std).tolist()),
transforms.ToPILImage()
])
return transform(tensor)
def flatten_values(a: Iterable | Mapping | Any):
if isinstance(a, (dict, )):
for x in a.values():
yield from flatten_values(x)
elif isinstance(a, (list, tuple, set)):
for x in a:
yield from flatten_values(x)
else:
yield a
def total_variation2d(x: torch.Tensor):
return torch.sum(torch.abs(x[:, :, :-1] - x[:, :, 1:])) + torch.sum(torch.abs(x[:, :-1, :] - x[:, 1:, :]))
@contextmanager
def register_hooks(
model: torch.nn.Module,
hook: Callable,
**kwargs
):
handles = []
try:
for name, module in model.named_modules():
if isinstance(module, torch.nn.Conv2d):
hook: Callable = partial(hook, name=name, **kwargs)
handle = module.register_forward_hook(hook)
handles.append(handle)
yield handles
finally:
for handle in handles:
handle.remove()
def stat_recorder_hook(
module: torch.nn.Module,
input: torch.Tensor,
output: torch.Tensor,
name: str,
*,
eps: float | torch.Tensor = 1e-6,
storage: dict[str, dict[str, torch.Tensor]]
):
mean = output.mean(dim=[0, 2, 3])
std = output.std(dim=[0, 2, 3], unbiased=False)
# skewness = ((output - mean[None, :, None, None]) ** 3).mean(dim=[0, 2, 3]) / (std ** 3 + eps)
# kurtosis = ((output - mean[None, :, None, None]) ** 4).mean(dim=[0, 2, 3]) / (std ** 4 + eps)
# assert torch.isfinite(torch.cat([mean, std, skewness, kurtosis])).all()
storage[name] = {
"mean": mean,
"std": std,
# "skewness": skewness,
# "kurtosis": kurtosis,
}
def get_stats(model: torch.nn.Module, image: torch.Tensor) -> dict[str, dict[str, torch.Tensor]]:
stats = {}
with register_hooks(model, stat_recorder_hook, storage=stats):
_ = model(image[None])
return stats
def alpha_composite(im1, im2, opacity1=1.0, opacity2=1.0):
"""
Input: (4, H, W) ndarray, RGBA in 0-255
Output: (4, H, W) ndarray, RGBA in 0-255
"""
# Validate the opacity values
if not 0 <= opacity1 <= 1 or not 0 <= opacity2 <= 1:
raise ValueError('Opacity must be between 0 and 1')
# Assuming the last channel is the alpha channel
# Scale the alpha channels by the provided opacity values
im1[3, :, :] = im1[3, :, :] * opacity1
im2[3, :, :] = im2[3, :, :] * opacity2
# Normalize the alpha channels to be between 0 and 1
im1_alpha = im1[3, :, :] / 255.0
im2_alpha = im2[3, :, :] / 255.0
# Compute the composite alpha channel
composite_alpha = im1_alpha + im2_alpha * (1 - im1_alpha)
# Handle case where composite_alpha is 0 to avoid divide by zero error
mask = composite_alpha > 0
composite_alpha = np.where(mask, composite_alpha, 1)
# Compute the composite image
composite_image = np.empty_like(im1)
for channel in range(3): # Assuming the first 3 channels are RGB
composite_image[channel, :, :] = (
im1[channel, :, :] * im1_alpha
+ im2[channel, :, :] * im2_alpha * (1 - im1_alpha)
) / composite_alpha
# Add the composite alpha channel to the image
composite_image[3, :, :] = composite_alpha * 255
return composite_image.astype(np.uint8)
def warp(image: np.ndarray, backward_flow: np.ndarray, order=3) -> np.ndarray:
channels, height, width = image.shape
index_grid = np.mgrid[0:height, 0:width].astype(float)
# Widely, first channel is horizontal x-axis flow, the second channel is vertical y-axis flow.
coordinates = index_grid + backward_flow[::-1]
remapped = np.empty(image.shape, dtype=image.dtype)
for i in range(channels):
remapped[i] = map_coordinates(image[i], coordinates, order=order, mode='constant', cval=0)
return remapped
class PlateuPruner:
def __init__(self, patience: int = 5, min_delta: float = 0.0, target='minimize'):
"""
Initializes the EarlyStopping instance.
:param patience: Number of epochs with no improvement after which training will be stopped.
:param min_delta: Minimum change in the monitored quantity to qualify as an improvement.
:param target: 'minimize' for minimizing a metric (like loss), 'maximize' for maximizing a metric (like accuracy).
"""
self.patience = patience
self.min_delta = min_delta
self.target = target
self.counter = 0
self.best_score = math.inf if target == 'minimize' else -math.inf
self.early_stop = False
self.is_best = True
def report(self, score):
"""
Reports the latest metric value and checks if it's an improvement.
:param metric_value: The latest metric value (e.g., validation loss or accuracy).
"""
if self.target == 'minimize':
self.is_best = score < self.best_score
is_improvement = score < self.best_score - self.min_delta
else:
self.is_best = score > self.best_score
is_improvement = score > self.best_score + self.min_delta
if is_improvement:
self.best_score = score
self.counter = 0
else:
self.counter += 1
if self.counter >= self.patience:
self.early_stop = True
return self.is_best, self.early_stop
def main():
root_path = "root/sintel.mp4"
frames_path = f"{root_path}/frame"
flow_path = f"{root_path}/flow"
# style_filepath = "examples/style/confocal-microscopy.jpg"
# style_filepath = "examples/style/doodle.png"
# style_filepath = "examples/style/lego1.jpg"
# style_filepath = "examples/style/lego6.jpg"
# style_filepath = "examples/style/lego7.webp"
# style_filepath = "examples/style/lego8.webp"
# style_filepath = "examples/style/matrix.jpg"
# style_filepath = "examples/style/mush.png"
style_filepath = "examples/style/Starry-Night-canvas-Vincent-van-Gogh-New-1889.webp"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# model = torchvision.models.vgg16(pretrained=True).features
# model = torchvision.models.resnet18(pretrained=True)
model = EfficientNet.from_pretrained('efficientnet-b0')
# model = EfficientNet.from_pretrained('efficientnet-b4')
# Disable grad
for param in model.parameters():
param.requires_grad_(False)
# Disable running stats
for module in model.modules():
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
module.track_running_stats = False
# Unset "inplace"
for module in model.modules():
if hasattr(module, "inplace"):
module.inplace = False
model = model.to(device)
model.eval()
# print(f"model: {model}")
named_layers = [name for name, module in model.named_modules() if isinstance(module, torch.nn.Conv2d)]
style_content_weights_per_layer = {
name:
# Constant style and content weight per layer
(1, 1)
# Gradually decreasing style, gradually increasing content
# (1 - i / (len(named_layers) - 1),
# i / (len(named_layers) - 1))
# First half of layers are style, second half are content
# (1 if i < len(named_layers) // 2 else 0,
# 0 if i < len(named_layers) // 2 else 1)
# First quarter is none, second and third quarter of layers are style, fourth quarter is a content
# (1 if i >= len(named_layers) // 4 and i < len(named_layers) * 3 // 4 else 0,
# 1 if i >= len(named_layers) * 3 // 4 else 0)
# First quarter is a style, last quarter is a content
# (1 if i < len(named_layers) // 4 else 0,
# 1 if i >= len(named_layers) * 3 // 4 else 0)
# First three quarters is a style, last quarter is a content
# (1 if i < len(named_layers) * 3 // 4 else 0,
# 0 if i < len(named_layers) * 3 // 4 else 1)
for i, name in enumerate(named_layers)
}
print(f"style_content_weights_per_layer: {style_content_weights_per_layer}")
style_weight = 1e+1
content_weight = 1e+0
temporal_weight = 1e+2
total_variation_weight = 0
mean = torch.tensor((0.485, 0.456, 0.406)).to(device)
std = torch.tensor((0.229, 0.224, 0.225)).to(device)
# Clamping range for normalized image
min_vals = (0 - mean) / std
max_vals = (1 - mean) / std
style_image = load_image(style_filepath)
style_image = image_to_tensor(style_image, mean, std).to(device)
style_stats = get_stats(model, style_image)
# print(f"style_stats.keys(): {style_stats.keys()}")
assert torch.isfinite(torch.cat(list(flatten_values(style_stats)))).all()
frame_indices = sorted([int(x.name) for x in os.scandir(frames_path) if x.is_dir()])
print(f"frames: {frame_indices}")
styled = None
styled_prev_warped = None
for frame_i in frame_indices:
frame_path = f"{frames_path}/{frame_i}"
for filepath in Path(frame_path).glob("styled_*.png"):
os.remove(filepath)
for frame_i in tqdm(frame_indices, desc="Styling"):
frame_path = f"{frames_path}/{frame_i}"
content_filepath = f"{frame_path}/content.qoi"
styled_filepath = f"{frame_path}/styled.pt"
forward_flow_filepath = f"{flow_path}/flow_{frame_i-1}_to_{frame_i}.npy"
backward_flow_filepath = f"{flow_path}/flow_{frame_i}_to_{frame_i-1}.npy"
content = load_image(content_filepath)
content = image_to_tensor(content, mean, std).to(device)
tensor_to_image(content, mean, std).save(f"{frame_path}/0_content.png")
if styled is None:
styled = content.clone().to(device)
disocclusion_mask = torch.ones_like(styled, device=device)
else:
forward_flow = np.load(forward_flow_filepath)
with torch.no_grad():
styled.data = styled.data.clamp_(min_vals[:, None, None], max_vals[:, None, None])
np_styled = tensor_to_image(styled, mean, std).convert('RGBA')
np_styled = np.array(np_styled).transpose(2, 0, 1)
np_content = tensor_to_image(content, mean, std).convert('RGBA')
np_content = np.array(np_content).transpose(2, 0, 1)
forward_flow_inv, disocclusion_mask = inverse_optical_flow.max_method(forward_flow)
np_styled = warp(np_styled, forward_flow_inv, order=3)
np_styled[3, :, :] = np_styled[3, :, :] * (1 - disocclusion_mask)
np_styled = alpha_composite(np_styled, np_content)
np_styled = np_styled[:3].transpose(1, 2, 0)
styled_prev_warped = image_to_tensor(np_styled, mean, std).to(device)
styled = content.clone().to(device)
disocclusion_mask = torch.from_numpy(disocclusion_mask).to(device).to(torch.float32)
styled.requires_grad_(True)
def get_opimization_strategy():
# optimizer = torch.optim.LBFGS([styled], lr=1, max_iter=40)
optimizer = torch.optim.Adam([styled], lr=0.1)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda epoch: 1)
return optimizer, scheduler
optimizer, scheduler = get_opimization_strategy()
epochs = 1 if isinstance(optimizer, torch.optim.LBFGS) else 40
content_stats = get_stats(model, content)
assert torch.isfinite(torch.cat(list(flatten_values(content_stats)))).all()
pruner = PlateuPruner(patience=20, min_delta=0.01, target="minimize")
best_styled = styled.clone().to(device)
for epoch in range(epochs):
iteration = 0
def closure() -> float:
nonlocal iteration
print(f"closure(): frame_i: {frame_i}, epoch: {epoch}, iteration: {iteration}")
optimizer.zero_grad(set_to_none=True)
with torch.no_grad():
styled.data = styled.data.clamp_(min_vals[:, None, None], max_vals[:, None, None])
tensor_to_image(styled, mean, std).save(f"{frame_path}/styled_{epoch}_{iteration}.png")
styled_stats = get_stats(model, styled)
loss = torch.zeros(1, device=device)
for name, (style_w, content_w) in style_content_weights_per_layer.items():
# If requested layer weight not found in style or content stats, skip it
if name not in styled_stats or name not in style_stats or name not in content_stats:
continue
loss += style_weight * style_w * torch.nn.functional.mse_loss(
torch.cat(list(flatten_values(styled_stats[name]))),
torch.cat(list(flatten_values(style_stats[name]))))
loss += content_weight * content_w * torch.nn.functional.mse_loss(
torch.cat(list(flatten_values(styled_stats[name]))),
torch.cat(list(flatten_values(content_stats[name]))))
loss += total_variation_weight * total_variation2d(styled)
if styled_prev_warped is not None:
loss += temporal_weight * torch.nn.functional.mse_loss(styled * (1 - disocclusion_mask),
styled_prev_warped * (1 - disocclusion_mask))
assert not torch.isnan(loss).any()
print(f"loss: {loss.item()}, lr: {optimizer.param_groups[0]['lr']}")
iteration += 1
loss.backward()
return loss.item()
closure_loss = optimizer.step(closure)
if isinstance(scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau):
scheduler.step(closure_loss)
else:
scheduler.step()
is_best, should_prune = pruner.report(closure_loss)
if is_best:
print(f"New best at frame {frame_i}, epoch {epoch}, iteration {iteration}")
best_styled = styled.clone().to(device)
if should_prune:
print(f"Early stopping at frame {frame_i}, epoch {epoch}, iteration {iteration}")
break
styled = best_styled
torch.save(styled, styled_filepath)
if __name__ == '__main__':
main()