-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocessing.py
150 lines (119 loc) · 4.55 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from pathlib import Path
from os.path import join
import argparse
import scipy.ndimage as ndimage
import numpy as np
import skimage.io as io
import glob
from PIL import Image
from scipy.interpolate import interp1d
from skimage.morphology import disk
def crop_center(img, cropx, cropy):
y, x = img.shape[0], img.shape[1]
startx = x//2-(cropx//2)
starty = y//2-(cropy//2)
return img[starty:starty+cropy, startx:startx+cropx]
def to_0_1(img):
interp_fun = interp1d([img.min(), img.max()], [0.0, 1.0])
return interp_fun(img)
def enhance_image(img, mask, int_format=False, disk_size=5):
"""Enhance an image using the method described in the paper.
Args:
img (np.ndarray): Image to enhance
mask (np.ndarray): ROI mask of the image to enhance
Returns:
Enhanced image
"""
# Read image and its corresponding mask
if isinstance(img, str) or isinstance(img, Path):
img = io.imread(img)[..., :3]
if isinstance(mask, str) or isinstance(mask, Path):
mask = io.imread(mask)
if len(img.shape) == 3:
if img.shape[2] > 3:
img = img[:, :, :3]
if len(mask.shape) == 3:
mask = np.sum(mask[:, :, :3], axis=2)
img = img / 255
# mask = np.where(mask > (255//2), 255, 0)
mask = np.where(mask > 0.5, 1, 0)
# Copy original image
img_copy = img.copy()
# Convert to PIL format
zoomed_image = Image.fromarray(np.uint8(img_copy*255))
# Enlarge image
zoomed_image = zoomed_image.resize(
(int(img_copy.shape[1]*1.15), int(img_copy.shape[0]*1.15)),
Image.BICUBIC
)
# To numpy array type
zoomed_image = np.array(zoomed_image)
# Crop image to original size (zoom result)
zoomed_image = crop_center(zoomed_image, img_copy.shape[1],
img_copy.shape[0])
# Convert image from 0-255 format to 0.0-1.0 format
zoomed_image = zoomed_image / 255.0
# Create circular kernel for mask erosion
kernel = disk(disk_size)
# Erode mask
mask = ndimage.binary_erosion(mask, kernel)
# Convert boolean array to float array
mask = mask * 1.0 # type: ignore
img_copy[mask < 1.0] = 0.0
# Create RGB mask (same mask for all channels)
mask = np.stack((mask, mask, mask), axis=2)
composed_image = mask.copy()
composed_image[mask == 1.0] = img_copy[mask == 1.0]
composed_image[mask < 1.0] = zoomed_image[mask < 1.0]
filtered_image = ndimage.gaussian_filter(composed_image, sigma=(10, 10, 0))
subtracted_image = composed_image - filtered_image
subtracted_image[mask < 1.] = 0.
enhanced_image = subtracted_image/np.std(subtracted_image)
enhanced_image = to_0_1(enhanced_image)
enhanced_image[mask < 1.] = 0.
mask = mask[:, :, 0]
if int_format:
enhanced_image *= 255
enhanced_image = enhanced_image.astype(np.uint8)
mask *= 255
mask = mask.astype(np.uint8)
return enhanced_image, mask
def enhance_images(image_names, mask_names, save_path):
""" Enhances a list of images.
Args:
image_names (list): List of image names.
mask_names (list): List of ROI mask names.
"""
for image_name, mask_name in zip(image_names, mask_names):
assert Path(image_name).name == Path(mask_name).name
enhanced_image, eroded_mask = enhance_image(image_name, mask_name, int_format=True)
io.imsave(join(save_path, 'images', Path(image_name).name), enhanced_image)
io.imsave(
join(save_path, 'masks', Path(mask_name).name),
eroded_mask
)
def main(images_path, masks_path, save_path):
# Get images and masks
image_names = glob.glob(join(images_path, '*.png'))
mask_names = glob.glob(join(masks_path, '*.png'))
# Sort
image_names.sort()
mask_names.sort()
print(image_names)
print(mask_names)
enhance_images(image_names, mask_names, save_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Preprocess images')
parser.add_argument('--images-path', type=str, required=True,
help='Path to the images')
parser.add_argument('--masks-path', type=str, required=True,
help='Path to the masks')
parser.add_argument('--save-path', type=str, required=True,
help='Path to save the enhanced images')
args = parser.parse_args()
save_path = Path(args.save_path)
print('Preprocessing')
save_path.mkdir(exist_ok=True)
(save_path / 'masks').mkdir(exist_ok=True)
(save_path / 'images').mkdir(exist_ok=True)
main(args.images_path, args.masks_path, args.save_path)