Skip to content

Latest commit

 

History

History
151 lines (122 loc) · 4.09 KB

Preorden_transitiva.md

File metadata and controls

151 lines (122 loc) · 4.09 KB
Título Autor
Si ≤ es un preorden, entonces < es transitiva.
José A. Alonso

[mathjax]

Demostrar con Lean4 que si \(≤\) es un preorden, entonces \(<\) es transitiva.

Para ello, completar la siguiente teoría de Lean4:

import Mathlib.Tactic
variable {α : Type _} [Preorder α]
variable (a b c : α)

example : a < b → b < c → a < c :=
by sorry

Demostración en lenguaje natural

Se usará la siguiente propiedad de los preórdenes \[ (∀ a, b)[a < b ↔ a ≤ b ∧ b ≰ a] \] Con dicha propiedad, lo que tenemos que demostrar se transforma en \[ a ≤ b ∧ b ≰ a → b ≤ c ∧ c ≰ b → a ≤ c ∧ c ≰ a \] Para demostrarla, supongamos que \begin{align} &a ≤ b \tag{(1)} \\ &b ≰ a \tag{(2)} \\ &b ≤ c \tag{(3)} \\ &c ≰ b \tag{(4)} \end{align} y tenemos que demostrar las siguientes relaciones \begin{align} &a ≤ c \tag{(5)} \\ &c ≰ a \tag{(6)} \end{align}

La (5) se tiene aplicando la propiedad transitiva a (1) y (3).

Para demostrar la (6), supongamos que \[ c ≤ a \tag{(7)} \] entonces, junto a la (1), por la propieda transitiva se tiene \[ c ≤ b \] que es una contradicción con la (4).

Demostraciones con Lean4

import Mathlib.Tactic
variable {α : Type _} [Preorder α]
variable (a b c : α)

-- 1ª demostración
-- ===============

example : a < b → b < c → a < c :=
by
  simp only [lt_iff_le_not_le]
  -- ⊢ a ≤ b ∧ ¬b ≤ a → b ≤ c ∧ ¬c ≤ b → a ≤ c ∧ ¬c ≤ a
  rintro ⟨h1 : a ≤ b, _h2 : ¬b ≤ a⟩ ⟨h3 : b ≤ c, h4 : ¬c ≤ b⟩
  -- ⊢ a ≤ c ∧ ¬c ≤ a
  constructor
  . -- ⊢ a ≤ c
    exact le_trans h1 h3
  . -- ⊢ ¬c ≤ a
    contrapose! h4
    -- h4 : c ≤ a
    -- ⊢ c ≤ b
    exact le_trans h4 h1

-- 2ª demostración
-- ===============

example : a < b → b < c → a < c :=
by
  simp only [lt_iff_le_not_le]
  -- ⊢ a ≤ b ∧ ¬b ≤ a → b ≤ c ∧ ¬c ≤ b → a ≤ c ∧ ¬c ≤ a
  rintro ⟨h1 : a ≤ b, _h2 : ¬b ≤ a⟩ ⟨h3 : b ≤ c, h4 : ¬c ≤ b⟩
  -- ⊢ a ≤ c ∧ ¬c ≤ a
  constructor
  . -- ⊢ a ≤ c
    exact le_trans h1 h3
  . -- ⊢ ¬c ≤ a
    rintro (h5 : c ≤ a)
    -- ⊢ False
    have h6 : c ≤ b := le_trans h5 h1
    show False
    exact h4 h6

-- 3ª demostración
-- ===============

example : a < b → b < c → a < c :=
by
  simp only [lt_iff_le_not_le]
  -- ⊢ a ≤ b ∧ ¬b ≤ a → b ≤ c ∧ ¬c ≤ b → a ≤ c ∧ ¬c ≤ a
  rintro ⟨h1 : a ≤ b, _h2 : ¬b ≤ a⟩ ⟨h3 : b ≤ c, h4 : ¬c ≤ b⟩
  -- ⊢ a ≤ c ∧ ¬c ≤ a
  constructor
  . -- ⊢ a ≤ c
    exact le_trans h1 h3
  . -- ⊢ ¬c ≤ a
    exact fun h5 ↦ h4 (le_trans h5 h1)

-- 4ª demostración
-- ===============

example : a < b → b < c → a < c :=
by
  simp only [lt_iff_le_not_le]
  -- ⊢ a ≤ b ∧ ¬b ≤ a → b ≤ c ∧ ¬c ≤ b → a ≤ c ∧ ¬c ≤ a
  rintro ⟨h1 : a ≤ b, _h2 : ¬b ≤ a⟩ ⟨h3 : b ≤ c, h4 : ¬c ≤ b⟩
  -- ⊢ a ≤ c ∧ ¬c ≤ a
  exact ⟨le_trans h1 h3, fun h5 ↦ h4 (le_trans h5 h1)⟩

-- 5ª demostración
-- ===============

example : a < b → b < c → a < c :=
by
  simp only [lt_iff_le_not_le]
  -- ⊢ a ≤ b ∧ ¬b ≤ a → b ≤ c ∧ ¬c ≤ b → a ≤ c ∧ ¬c ≤ a
  exact fun ⟨h1, _h2⟩ ⟨h3, h4⟩ ↦ ⟨le_trans h1 h3,
                                  fun h5 ↦ h4 (le_trans h5 h1)⟩

-- 6ª demostración
-- ===============

example : a < b → b < c → a < c :=
  lt_trans

-- Lemas usados
-- ============

-- #check (lt_iff_le_not_le : a < b ↔ a ≤ b ∧ ¬b ≤ a)
-- #check (le_trans : a ≤ b → b ≤ c → a ≤ c)
-- #check (lt_trans : a < b → b < c → a < c)

Demostraciones interactivas

Se puede interactuar con las demostraciones anteriores en Lean 4 Web.

Referencias