-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtrain_lm.py
151 lines (126 loc) · 5.07 KB
/
train_lm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#! python
# -*- coding: utf-8 -*-
# Author: kun
# @Time: 2019-10-29 20:46
import torch
from core.solver import BaseSolver
from core.lm import RNNLM
from core.optim import Optimizer
from core.data import load_textset
from core.util import human_format
class Solver(BaseSolver):
"""
Solver for training language models
"""
def __init__(self, config, paras, mode):
super().__init__(config, paras, mode)
# Logger settings
self.best_loss = 10
def fetch_data(self, data):
''' Move data to device, insert <sos> and compute text seq. length'''
txt = torch.cat(
(torch.zeros((data.shape[0], 1), dtype=torch.long), data), dim=1).to(self.device)
txt_len = torch.sum(data != 0, dim=-1)
return txt, txt_len
def load_data(self):
"""
Load data for training/validation, store tokenizer and input/output shape
:return:
"""
self.tr_set, self.dv_set, self.vocab_size, self.tokenizer, msg = \
load_textset(self.paras.njobs, self.paras.gpu, self.paras.pin_memory, **self.config['data'])
self.verbose(msg)
def set_model(self):
"""
Setup ASR model and optimizer
:return:
"""
# Model
self.model = RNNLM(self.vocab_size, **self.config['model']).to(self.device)
self.verbose(self.model.create_msg())
# Losses
self.seq_loss = torch.nn.CrossEntropyLoss(ignore_index=0)
# Optimizer
self.optimizer = Optimizer(
self.model.parameters(), **self.config['hparas'])
# Enable AMP if needed
self.enable_apex()
# load pre-trained model
if self.paras.load:
self.load_ckpt()
ckpt = torch.load(self.paras.load, map_location=self.device)
self.model.load_state_dict(ckpt['model'])
self.optimizer.load_opt_state_dict(ckpt['optimizer'])
self.step = ckpt['global_step']
self.verbose('Load ckpt from {}, restarting at step {}'.format(
self.paras.load, self.step))
def exec(self):
"""
Training End-to-end ASR system
:return:
"""
self.verbose('Total training steps {}.'.format(
human_format(self.max_step)))
self.timer.set()
while self.step < self.max_step:
for data in self.tr_set:
# Pre-step : update tf_rate/lr_rate and do zero_grad
self.optimizer.pre_step(self.step)
# Fetch data
txt, txt_len = self.fetch_data(data)
self.timer.cnt('rd')
# Forward model
pred, _ = self.model(txt[:, :-1], txt_len)
# Compute all objectives
lm_loss = self.seq_loss(
pred.view(-1, self.vocab_size), txt[:, 1:].reshape(-1))
self.timer.cnt('fw')
# Backprop
grad_norm = self.backward(lm_loss)
self.step += 1
# Logger
if self.step % self.PROGRESS_STEP == 0:
self.progress('Tr stat | Loss - {:.2f} | Grad. Norm - {:.2f} | {}'
.format(lm_loss.cpu().item(), grad_norm, self.timer.show()))
self.write_log('entropy', {'tr': lm_loss})
self.write_log(
'perplexity', {'tr': torch.exp(lm_loss).cpu().item()})
# Validation
if (self.step == 1) or (self.step % self.valid_step == 0):
self.validate()
# End of step
self.timer.set()
if self.step > self.max_step:
break
self.log.close()
def validate(self):
# Eval mode
self.model.eval()
dev_loss = []
for i, data in enumerate(self.dv_set):
self.progress('Valid step - {}/{}'.format(i + 1, len(self.dv_set)))
# Fetch data
txt, txt_len = self.fetch_data(data)
# Forward model
with torch.no_grad():
pred, _ = self.model(txt[:, :-1], txt_len)
lm_loss = self.seq_loss(
pred.view(-1, self.vocab_size), txt[:, 1:].reshape(-1))
dev_loss.append(lm_loss)
# Ckpt if performance improves
dev_loss = sum(dev_loss) / len(dev_loss)
dev_ppx = torch.exp(dev_loss).cpu().item()
if dev_loss < self.best_loss:
self.best_loss = dev_loss
self.save_checkpoint('best_ppx.pth', 'perplexity', dev_ppx)
self.write_log('entropy', {'dv': dev_loss})
self.write_log('perplexity', {'dv': dev_ppx})
# Show some example of last batch on tensorboard
for i in range(min(len(txt), self.DEV_N_EXAMPLE)):
if self.step == 1:
self.write_log('true_text{}'.format(
i), self.tokenizer.decode(txt[i].tolist()))
self.write_log('pred_text{}'.format(i), self.tokenizer.decode(
pred[i].argmax(dim=-1).tolist()))
# Resume training
self.model.train()