-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
268 lines (231 loc) · 10.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
"""Main training module."""
import argparse
import logging
import os
import sys
import torch.optim as optim
from typing import List
from vae import Evaluator, Trainer
from vae.models.losses import LOSSES, RECON_DIST, get_loss_f
from vae.models.vae import VAE
from vae.utils.modelIO import save_model, load_model, load_metadata
from utils.datasets import get_dataloaders, get_img_size, DATASETS
from utils.helpers import (create_safe_directory, get_device, set_seed,
get_n_param)
from utils.visualize import GifTraversalsTraining
RES_DIR = 'results_new'
def parse_arguments(args_to_parse: List):
"""Parse the command line arguments.
Parameters
----------
args_to_parse: list of str
Arguments to parse (splitted on whitespaces).
"""
description = "PyTorch implementation and evaluation of Variational" + \
"AutoEncoders and metrics."
parser = argparse.ArgumentParser(description=description)
# General options
general = parser.add_argument_group('General options')
general.add_argument('name', type=str,
help="Name of the model for storing and loading.")
general.add_argument('--no-progress-bar',
action='store_true', default=False,
help='Disables progress bar.')
general.add_argument('--no-cuda',
action='store_true', default=False,
help='Disables CUDA training, even when have one.')
general.add_argument('-s', '--seed',
type=int, default=1234,
help='Random seed. `None` for stochastic behaviour.')
# Learning options
training = parser.add_argument_group('Training specific options')
training.add_argument('--checkpoint-every',
type=int, default=10,
help='Save a the trained model every n epochs.')
training.add_argument('-d', '--dataset',
default='dsprites', choices=DATASETS,
help="Path to training data.")
training.add_argument('-e', '--epochs',
type=int, default=30,
help='Maximum number of epochs to run for.')
training.add_argument('-b', '--batch-size',
type=int, default=64,
help='Batch size for training.')
training.add_argument('--lr', '--learning-rate',
type=float, default=1e-4,
help='Learning rate.')
training.add_argument('--noise',
type=float, default=None,
help='Added noise to input images.')
# Model Options
model = parser.add_argument_group('Model specfic options')
model.add_argument('-z', '--latent-dim',
type=int, default=10,
help='Dimension of the latent variable.')
model.add_argument('-l', '--loss',
default='GJS', choices=LOSSES,
help="Type of VAE loss function to use.")
model.add_argument('-r', '--rec-dist',
default='bernoulli', choices=RECON_DIST,
help="Form of the likelihood ot use for each pixel.")
model.add_argument('-a', '--reg-anneal',
type=float, default=10000,
help="Number of annealing steps for regularisation.")
# Loss Specific Options
GJS = parser.add_argument_group('Geometric Jensen-Shannon parameters')
GJS.add_argument('--GJS-A',
type=float, default=0.5,
help='Skew of geometric-JS (alpha in the paper).')
GJS.add_argument('--GJS-B',
type=float, default=1.0,
help='Weight of the skew geometric-JS.')
GJS.add_argument('--GJS-invA',
type=bool, default=True,
help='Whether to invert alpha.')
betaH = parser.add_argument_group('BetaH parameters')
betaH.add_argument('--betaH-B',
type=float, default=4.0,
help='Weight of the KL (beta in the paper).')
MMD = parser.add_argument_group('MMD parameters')
MMD.add_argument('--MMD-B',
type=float, default=500.0,
help='Weight of the MMD (lambda in the paper).')
betaB = parser.add_argument_group('BetaB parameters')
betaB.add_argument('--betaB-initC',
type=float, default=0.0,
help='Starting annealed capacity.')
betaB.add_argument('--betaB-finC',
type=float, default=25.0,
help='Final annealed capacity.')
betaB.add_argument('--betaB-G',
type=float, default=100,
help='Weight of the KL (gamma in the paper).')
factor = parser.add_argument_group('factor VAE parameters')
factor.add_argument('--factor-G',
type=float, default=6.0,
help='Weight of the TC term (gamma in the paper).')
factor.add_argument('--lr-disc',
type=float, default=5e-5,
help='Learning rate of the discriminator.')
btcvae = parser.add_argument_group('beta-tcvae parameters')
btcvae.add_argument('--btcvae-A',
type=float, default=1.0,
help='Weight of the MI term (alpha in the paper).')
btcvae.add_argument('--btcvae-G',
type=float, default=1.0,
help='Weight of the dim-wise KL (gamma in the paper).')
btcvae.add_argument('--btcvae-B',
type=float, default=6.0,
help='Weight of the TC term (beta in the paper).')
# Learning options
evaluation = parser.add_argument_group('Evaluation options')
evaluation.add_argument('--is-eval-only',
action='store_true', default=False,
help='Whether to only evaluate model `name`.')
evaluation.add_argument('--is-metrics',
action='store_true', default=False,
help='Whether to compute disentanglement metrics.')
args = parser.parse_args(args_to_parse)
print(args)
return args
def main(args: argparse.Namespace):
"""Main train and evaluation function."""
formatter = logging.Formatter(
'%(asctime)s %(levelname)s - %(funcName)s: %(message)s', "%H:%M:%S")
logger = logging.getLogger(__name__)
logger.setLevel("INFO")
stream = logging.StreamHandler()
stream.setLevel("INFO")
stream.setFormatter(formatter)
logger.addHandler(stream)
set_seed(args.seed)
device = get_device(is_gpu=not args.no_cuda)
exp_dir = os.path.join(RES_DIR, args.name)
logger.info(
f"Root directory for saving and loading experiments: {exp_dir}")
if not args.is_eval_only:
create_safe_directory(exp_dir, logger=logger)
if args.loss == "factor":
logger.info(
"FactorVae needs 2 batches per iteration." +
"To replicate this behavior, double batch size and epochs.")
args.batch_size *= 2
args.epochs *= 2
# PREPARES DATA
train_loader = get_dataloaders(args.dataset,
noise=args.noise,
batch_size=args.batch_size,
logger=logger)
logger.info(
f"Train {args.dataset} with {len(train_loader.dataset)} samples")
# PREPARES MODEL
args.img_size = get_img_size(args.dataset) # stores for metadata
model = VAE(args.img_size, args.latent_dim)
logger.info(f'Num parameters in model: {get_n_param(model)}')
# TRAINS
optimizer = optim.Adam(model.parameters(), lr=args.lr)
model = model.to(device)
gif_visualizer = GifTraversalsTraining(model, args.dataset, exp_dir)
loss_f = get_loss_f(args.loss,
n_data=len(train_loader.dataset),
device=device,
**vars(args))
if args.loss in ['tdGJS', 'tGJS']:
loss_optimizer = optim.Adam(loss_f.parameters(), lr=args.lr)
else:
loss_optimizer = None
print(loss_optimizer)
trainer = Trainer(model, optimizer, loss_f,
device=device,
logger=logger,
save_dir=exp_dir,
is_progress_bar=not args.no_progress_bar,
gif_visualizer=gif_visualizer,
loss_optimizer=loss_optimizer,
denoise=args.noise is not None)
trainer(train_loader,
epochs=args.epochs,
checkpoint_every=args.checkpoint_every,)
# SAVE MODEL AND EXPERIMENT INFORMATION
save_model(trainer.model, exp_dir, metadata=vars(args))
# Eval
model = load_model(exp_dir, is_gpu=not args.no_cuda)
metadata = load_metadata(exp_dir)
test_loader = get_dataloaders(metadata["dataset"],
noise=args.noise,
train=False,
batch_size=128,
logger=logger)
loss_f = get_loss_f(args.loss,
n_data=len(test_loader.dataset),
device=device,
**vars(args))
evaluator = Evaluator(model, loss_f,
device=device,
is_metrics=args.is_metrics,
is_train=False,
logger=logger,
save_dir=exp_dir,
is_progress_bar=not args.no_progress_bar,
denoise=args.noise is not None)
evaluator(test_loader)
# Train set also
test_loader = get_dataloaders(metadata["dataset"],
train=True,
batch_size=128,
logger=logger)
loss_f = get_loss_f(args.loss,
n_data=len(test_loader.dataset),
device=device,
**vars(args))
evaluator = Evaluator(model, loss_f,
device=device,
is_metrics=args.is_metrics,
is_train=True,
logger=logger,
save_dir=exp_dir,
is_progress_bar=not args.no_progress_bar)
evaluator(test_loader)
if __name__ == '__main__':
args = parse_arguments(sys.argv[1:])
main(args)