-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_sl_average_features.py
505 lines (445 loc) · 15.7 KB
/
train_sl_average_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
"""
Train an model using study level dataloader
"""
import numpy as np
from sklearn.metrics import (
f1_score,
roc_auc_score,
average_precision_score,
precision_recall_curve,
auc,
)
import torch
from torch import nn, optim
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
import torchvision.models.resnet as tvresnet
from tqdm import tqdm
import torch.nn.functional as F
import mimic_cxr_jpg
from torch_nlp_models.meters import CSVMeter
from torchvision.models import resnet
from torchvision.models import densenet
# from affine_augmentation import densenet
from datetime import datetime
import os
from contextlib import contextmanager
@contextmanager
def nvtxblock(desc):
try:
torch.cuda.nvtx.range_push(desc)
yield
finally:
torch.cuda.nvtx.range_pop()
class activation_to_pred(nn.Module):
def __init__(
self
):
super().__init__()
self.classifier = nn.Linear(1024, 14)
def forward(self, x):
out = F.relu(x, inplace=True)
out = F.adaptive_avg_pool2d(out, (1, 1))
out = torch.flatten(out, 1)
out = self.classifier(out)
return out
def all_gather_vectors(tensors, *, device="cuda"):
"""
All-gather 1D GPU tensors with heterogeneous lengths.
"""
world_size = dist.get_world_size()
assert isinstance(tensors, list)
assert len(tensors) > 0
# get the maximum length across all ranks
hdls = []
padded_tensors = []
szst = []
for t in tensors:
szs = [torch.tensor(1).to(device) for _ in range(world_size)]
dist.all_gather(szs, torch.tensor(t.shape[0]).to(device))
szst.append(szs)
maxlen = torch.tensor(szs).max().cpu().item()
pts = [
torch.zeros((maxlen,), device=device, dtype=t.dtype)
for _ in range(world_size)
]
padded_tensors.append(pts)
t_pad = torch.zeros_like(pts[0])
t_pad[: t.shape[0]] = t
hdls.append(dist.all_gather(pts, t_pad, async_op=True))
# Now wait to complete and reassemble
out = []
for h, pts, szs in zip(hdls, padded_tensors, szst):
h.wait()
c = torch.cat([pt[:s] for s, pt in zip(szs, pts)], 0)
out.append(c)
return out
class Trainer:
def __init__(
self,
model,
train_data,
num_epochs,
output_dir,
batch_size=64,
val_iters=None,
val_data=None,
test_data=None,
distributed=False,
amp=False,
lr=0.0005,
device="cuda",
progress=False,
reporter=True,
):
self.model = model
self.num_epochs = num_epochs
self.device = device
self.val_iters = val_iters
self.output_dir = output_dir
self.amp = amp
self.lr = lr
self.distributed = distributed
self.progress = progress
self.reporter = reporter
if distributed:
self.world_size = dist.get_world_size()
self.rank = dist.get_rank()
self.train_loader = train_data
self.val_loader = val_data
self.test_loader = test_data
if self.reporter:
print(
f"Number of minibatches in each split:"
f" train {len(self.train_loader)}"
f" val {len(self.val_loader)}"
f" test {len(self.test_loader)}"
)
if self.reporter:
self.epoch_meter = CSVMeter(
os.path.join(self.output_dir, "epoch_metrics.csv"), buffering=1
)
self.val_meter = CSVMeter(
os.path.join(self.output_dir, "val_metrics.csv"), buffering=1
)
self.iter_meter = CSVMeter(
os.path.join(self.output_dir, "iter_metrics.csv")
)
self.criterion = nn.BCEWithLogitsLoss(reduction='none')
self.optim = optim.Adam(self.model.parameters(), lr=self.lr)
# self.optim = optim.SGD(self.model.parameters(), lr=self.lr)
self.total_iters = 0
self.scaler = torch.cuda.amp.GradScaler()
def train(self):
self.epbar = range(self.num_epochs)
validation_loss = []
if self.progress and self.reporter:
self.epbar = tqdm(self.epbar, desc="epoch", position=2)
for self._epoch in self.epbar:
with nvtxblock("Train Epoch"):
eploss = self.epoch()
if self.val_iters is None:
with nvtxblock("Val Epoch"):
valmetrics = self.validate()
if self.reporter:
self.val_meter.update(**valmetrics)
else:
valmetrics = {}
validation_loss.append(self.valLoss)
if len(validation_loss) >= 3:
if (
validation_loss[-1] >= validation_loss[-2]
and validation_loss[-2] >= validation_loss[-3]
):
self.lr = self.lr / 2
elif len(validation_loss) >= 10:
if validation_loss[-1] >= validation_loss[-10]:
break
if self.reporter:
self.epoch_meter.update(train_loss=eploss, **valmetrics)
# flush all meters at least once per epoch
self.epoch_meter.flush()
self.val_meter.flush()
self.iter_meter.flush()
def epoch(self):
if self.reporter and not self.progress:
print(f"Starting epoch {self._epoch} of {self.num_epochs}")
epoch_start = datetime.now()
self.itbar = self.train_loader
if self.progress and self.reporter:
self.itbar = tqdm(self.itbar, desc="iter", position=1, leave=False)
eploss = 0
for self._iter, batch in enumerate(self.itbar):
with nvtxblock("Train Iteration"):
itloss = self.iteration(*batch)
if itloss is None:
continue
if self.reporter:
self.iter_meter.update(loss=itloss)
eploss += itloss / len(self.train_loader)
if self.reporter and not self.progress:
epoch_time = datetime.now() - epoch_start
print(f"Epoch time: {epoch_time}")
if self.reporter:
torch.save(
self.model.state_dict(),
self.output_dir + f"/model_epoch{self._epoch}.pt",
)
return eploss
def batch_forward(self, X, Y, Ymask, lengths, meta):
Ymask = Ymask.to(device)
X = X.type(torch.float32).to(device)
Y = Y.type(torch.float32).to(device)
prediction = []
offset = 0
for length,label in zip(lengths,Y):
studfeatures = X[offset:offset+length].mean(0).unsqueeze(0)
studpred = self.model(studfeatures)
prediction.append(studpred)
offset += length
prediction = torch.cat(prediction)
loss = self.criterion(prediction,Y).mean()
return prediction, loss, X, Y, Ymask
def iteration(self, *batch):
self.optim.zero_grad()
with nvtxblock("Forward"):
if self.amp:
from torch.cuda.amp import autocast
with autocast():
outputs = self.batch_forward(*batch)
else:
outputs = self.batch_forward(*batch)
if outputs is None:
return
_, loss, _, _, _ = outputs
if self.progress and self.reporter:
self.itbar.set_postfix(loss=loss.item())
with nvtxblock("Backward"):
if self.amp:
self.scaler.scale(loss).backward()
else:
loss.backward()
with nvtxblock("Optim Step"):
if self.amp:
self.scaler.step(self.optim)
self.scaler.update()
else:
self.optim.step()
self.total_iters += 1
if self.val_iters is not None and self.total_iters % self.val_iters == 0:
with nvtxblock("Val"):
valmetrics = self.validate()
if self.reporter:
self.val_meter.update(**valmetrics)
return loss.item()
def validate(self):
if self.reporter:
print("Computing validation and test metrics")
self.model.eval()
metrics = {}
splits = [('val', self.val_loader), ('test', self.test_loader)]
for i, (split, loader) in enumerate(splits):
valbar = loader
if self.progress and self.reporter:
valbar = tqdm(valbar, desc=split, position=0, leave=False)
valloss = 0
Ypreds, Yactual = {}, {}
for task in mimic_cxr_jpg.chexpert_labels:
Ypreds[task], Yactual[task] = [], []
for batch in valbar:
with torch.no_grad():
batchout = self.batch_forward(*batch)
if batchout is None:
continue
preds, loss, X, Y, Ymask = batchout
for i, task in enumerate(mimic_cxr_jpg.chexpert_labels):
pred = preds[:, i].detach()
mask = Ymask[:, i] == 1
Yactual[task].append(Y[mask, i].cpu().numpy())
Ypreds[task].append(pred[mask].cpu().numpy())
valloss += loss.detach().cpu().item()
# concatenate batch predictions
for task in mimic_cxr_jpg.chexpert_labels:
Ypreds[task] = np.concatenate(Ypreds[task], axis=0)
Yactual[task] = np.concatenate(Yactual[task], axis=0)
if self.distributed:
allvectors = [torch.tensor(Ypreds[t]).to(device).contiguous()
for t in mimic_cxr_jpg.chexpert_labels] \
+ [torch.tensor(Yactual[t]).to(device).contiguous()
for t in mimic_cxr_jpg.chexpert_labels]
gathered = all_gather_vectors(allvectors, device=self.device)
for i, task in enumerate(mimic_cxr_jpg.chexpert_labels):
Ypreds[task] = gathered[i]
Yactual[task] = gathered[i +
len(mimic_cxr_jpg.chexpert_labels)]
#metrics[split] = {'loss': valloss/len(valbar)}
metrics[split + '_loss'] = valloss/len(valbar)
if split == 'val':
self.valLoss = valloss/len(valbar)
for task in mimic_cxr_jpg.chexpert_labels:
Yp = Ypreds[task].cpu().numpy()
Ya = Yactual[task].cpu().numpy()
ap = average_precision_score(Ya, Yp)
metrics[split + '_avg_prec_' + task] = ap
try:
metrics[split + '_auc_' + task] = roc_auc_score(Ya, Yp)
except ValueError: # only one class predicted
metrics[split + '_auc_' + task] = 0
self.model.train()
return metrics
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--datadir",
"-d",
default=mimic_cxr_jpg.topdir,
help="Top-level directory of MIMIC-CXR-JPG dataset download.",
)
parser.add_argument(
"--outputdir",
"-o",
required=True,
help="Where to write outputs (trained weights, CSV of metrics)",
)
parser.add_argument('--arch', default='densenet121', choices=['densenet121',
'densenet161', 'densenet169', 'densenet201', 'msd100','resnet50'],
help='Densenet architecture.'
)
parser.add_argument(
"--image-subdir",
default="files",
help="Subdirectory of datadir holding JPG files.",
)
parser.add_argument(
"--from-scratch",
action="store_true",
help="Do not initialize with ImageNet pretrained weights.",
)
parser.add_argument(
"--embed-dim",
"-e",
default=64, type=int, help="embed_dim for the MHA model"
)
parser.add_argument(
"--num-heads",
"-n",
default=8, type=int, help="Number of parallel heads for the MHA model"
)
parser.add_argument(
"--epochs", default=100, type=int, help="Number of epochs to train for."
)
parser.add_argument(
"--val-iters",
default=None,
type=int,
help="Compute validation metrics every this many iterations. None for once per epoch.",
)
parser.add_argument(
"--batch-size", default=64, type=int, help="Batch size for SGD."
)
parser.add_argument(
"--learning-rate", default=1e-3, type=float, help="Learning rate for SGD."
)
parser.add_argument(
"--amp", action="store_true", help="Use automatic mixed precision (AMP)."
)
parser.add_argument(
"--num-folds", default=10, type=int, help="Number of folds in cross-validation"
)
parser.add_argument(
"--fold",
required=True,
type=int,
help="Which fold of cross-validation to use in training?",
)
parser.add_argument(
"--random-state",
default=0,
type=int,
help="Random state to use in cross-validation",
)
parser.add_argument(
"--hide-progress", action="store_true", help="Do not display progress bar."
)
parser.add_argument(
"--single-node-data-parallel",
action="store_true",
help="Use torch.nn.DataParallel",
)
parser.add_argument(
"--distributed-data-parallel",
action="store_true",
help="Use torch.distributed for multi-node parallelism",
)
args = parser.parse_args()
# Reproducibility
# cf. https://pytorch.org/docs/stable/notes/randomness.html
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(0)
model = activation_to_pred()
train, val, test = mimic_cxr_jpg.cv(
datadir=args.datadir,
image_subdir=args.image_subdir,
num_folds=args.num_folds,
fold=args.fold,
random_state=args.random_state,
stratify=False,
return_studies=True,
dataloaders=True,
load_activations=True,
dl_kwargs=dict(
batch_size=args.batch_size,
num_workers=12,
shuffle=True,
pin_memory=True,
),
)
sampler = None
if args.distributed_data_parallel:
rank = int(os.environ["OMPI_COMM_WORLD_RANK"])
world_size = int(os.environ["OMPI_COMM_WORLD_SIZE"])
local_rank = int(os.environ["OMPI_COMM_WORLD_LOCAL_RANK"])
else:
world_size = 1
local_rank = 0
rank = 0
# We do not use local_rank since we are now using -r6 -a1 -g1 -c7 on summit
gpunum = local_rank
device = torch.device("cuda", gpunum)
model = model.to(device)
if args.single_node_data_parallel:
model = nn.DataParallel(model)
elif args.distributed_data_parallel:
dist.init_process_group("nccl")
args.learning_rate *= world_size
model = DDP(
model,
device_ids=[gpunum],
output_device=gpunum,
)
try:
t = Trainer(
model,
train,
args.epochs,
args.outputdir,
batch_size=args.batch_size,
val_iters=args.val_iters,
val_data=val,
test_data=test,
progress=not args.hide_progress,
reporter=rank == 0,
device=device,
amp=args.amp,
distributed=args.distributed_data_parallel,
)
t.train()
finally:
dist.destroy_process_group()