-
Notifications
You must be signed in to change notification settings - Fork 1
/
sphericalenvmapping.cpp
403 lines (330 loc) · 14.6 KB
/
sphericalenvmapping.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
/*
* Vulkan Example - Spherical Environment Mapping, using different mat caps
*
* Use +/-/space toggle through different material captures
*
* Based on
* https://www.clicktorelease.com/blog/creating-spherical-environment-mapping-shader
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT)
* (http://opensource.org/licenses/MIT)
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_inverse.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include "VulkanBuffer.hpp"
#include "VulkanModel.hpp"
#include "VulkanTexture.hpp"
#include "vulkanexamplebase.h"
#include <vulkan/vulkan.h>
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
class VulkanExample : public VulkanExampleBase {
public:
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
// Vertex layout for the models
vks::VertexLayout vertexLayout = vks::VertexLayout({
vks::VERTEX_COMPONENT_POSITION, vks::VERTEX_COMPONENT_NORMAL,
vks::VERTEX_COMPONENT_UV, vks::VERTEX_COMPONENT_COLOR,
});
struct {
vks::Model object;
} models;
struct {
vks::Texture2DArray matCapArray;
} textures;
vks::Buffer uniformBuffer;
struct UBOVS {
glm::mat4 projection;
glm::mat4 model;
glm::mat4 normal;
glm::mat4 view;
int32_t texIndex = 0;
} uboVS;
VkPipeline pipeline;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) {
zoom = -0.9f;
rotationSpeed = 0.75f;
zoomSpeed = 0.25f;
rotation = glm::vec3(-25.0f, 23.75f, 0.0f);
title = "Spherical Environment Mapping";
settings.overlay = true;
}
~VulkanExample() {
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
models.object.destroy();
uniformBuffer.destroy();
textures.matCapArray.destroy();
}
void loadAssets() {
models.object.loadFromFile(getAssetPath() + "models/chinesedragon.dae",
vertexLayout, 0.05f, vulkanDevice, queue);
// Multiple mat caps are stored in a single texture array so they can easily
// be switched inside the shader just by updating the index in a uniform
// buffer
textures.matCapArray.loadFromFile(
getAssetPath() + "textures/matcap_array_rgba.ktx",
VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
}
void buildCommandBuffers() {
VkCommandBufferBeginInfo cmdBufInfo =
vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = {1.0f, 0};
VkRenderPassBeginInfo renderPassBeginInfo =
vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) {
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo,
VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport =
vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i],
VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout,
0, 1, &descriptorSet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS,
pipeline);
VkDeviceSize offsets[1] = {0};
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1,
&models.object.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.object.indices.buffer, 0,
VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], models.object.indexCount, 1, 0, 0, 0);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void prepareVertices() {
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vks::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID, vertexLayout.stride(),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
// Describes memory layout and shader positions
vertices.attributeDescriptions.resize(4);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0);
// Location 1 : Normal
vertices.attributeDescriptions[1] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 3);
// Location 2 : Texture coordinates
vertices.attributeDescriptions[2] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32_SFLOAT,
sizeof(float) * 6);
// Location 3 : Color
vertices.attributeDescriptions[3] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 8);
vertices.inputState =
vks::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount =
vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions =
vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount =
vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions =
vertices.attributeDescriptions.data();
}
void setupDescriptorPool() {
// Example uses one ubo and one image sampler
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
1),
vks::initializers::descriptorPoolSize(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1)};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(poolSizes.size(),
poolSizes.data(), 2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr,
&descriptorPool));
}
void setupDescriptorSetLayout() {
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
// Binding 1 : Fragment shader color map image sampler
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT, 1)};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(), setLayoutBindings.size());
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout,
nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo,
nullptr, &pipelineLayout));
}
void setupDescriptorSet() {
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(descriptorPool,
&descriptorSetLayout, 1);
VK_CHECK_RESULT(
vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0, &uniformBuffer.descriptor),
// Binding 1 : Fragment shader image sampler
vks::initializers::writeDescriptorSet(
descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1,
&textures.matCapArray.descriptor)};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(),
writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines() {
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vks::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vks::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT,
VK_FRONT_FACE_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vks::initializers::pipelineColorBlendStateCreateInfo(
1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vks::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vks::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR};
VkPipelineDynamicStateCreateInfo dynamicState =
vks::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(), dynamicStateEnables.size(), 0);
// Spherical environment rendering pipeline
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] =
loadShader(getAssetPath() + "shaders/sphericalenvmapping/sem.vert.spv",
VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] =
loadShader(getAssetPath() + "shaders/sphericalenvmapping/sem.frag.spv",
VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(
device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipeline));
}
void prepareUniformBuffers() {
// Vertex shader uniform buffer block
VK_CHECK_RESULT(
vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffer, sizeof(uboVS)));
// Map persistent
VK_CHECK_RESULT(uniformBuffer.map());
updateUniformBuffers();
}
void updateUniformBuffers() {
uboVS.projection = glm::perspective(
glm::radians(45.0f), (float)width / (float)height, 0.1f, 256.0f);
uboVS.view = glm::lookAt(glm::vec3(0, 0, -zoom), glm::vec3(0, 0, 0),
glm::vec3(0, 1, 0));
uboVS.model = glm::mat4(1.0f);
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.x),
glm::vec3(1.0f, 0.0f, 0.0f));
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.y),
glm::vec3(0.0f, 1.0f, 0.0f));
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.z),
glm::vec3(0.0f, 0.0f, 1.0f));
uboVS.normal = glm::inverseTranspose(uboVS.view * uboVS.model);
memcpy(uniformBuffer.mapped, &uboVS, sizeof(uboVS));
}
void draw() {
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare() {
VulkanExampleBase::prepare();
loadAssets();
prepareVertices();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
virtual void render() {
if (!prepared)
return;
draw();
}
virtual void viewChanged() { updateUniformBuffers(); }
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay) {
if (overlay->header("Settings")) {
if (overlay->sliderInt("Material cap", &uboVS.texIndex, 0,
textures.matCapArray.layerCount)) {
updateUniformBuffers();
}
}
}
};
VULKAN_EXAMPLE_MAIN()