-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmem.c
912 lines (816 loc) · 28.6 KB
/
mem.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
#include "mem.h"
#include "emu.h"
#include "cpu.h"
#include "lcd.h"
#include "bus.h"
#include "flash.h"
#include "control.h"
#include "debug/debug.h"
#include <assert.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#define mmio_mapped(addr, select) ((addr) < (((select) = (addr) >> 6 & 0x4000) ? 0xFB0000 : 0xE40000))
#define mmio_port(addr, select) (0x1000 + (select) + ((addr) >> 4 & 0xF000) + ((addr) & 0xFFF))
/* Global MEMORY state */
mem_state_t mem;
extern uint8_t *memory;
void mem_init(void) {
unsigned int i;
/* Allocate FLASH memory */
mem.flash.block = (uint8_t*)malloc(SIZE_FLASH);
memset(mem.flash.block, 0xFF, SIZE_FLASH);
for (i = 0; i < NUM_8K_SECTORS; i++) {
mem.flash.sector8k[i].ptr = mem.flash.block + i * SIZE_FLASH_SECTOR_8K;
mem.flash.sector8k[i].ipb = 0;
mem.flash.sector8k[i].dpb = 1;
}
for (i = 0; i < NUM_SECTORS; i++) {
mem.flash.sector[i].ptr = mem.flash.block + i * SIZE_FLASH_SECTOR_64K;
mem.flash.sector[i].ipb = 1;
mem.flash.sector[i].dpb = 1;
}
mem.flash.sector[1].ipb = 0;
/* Allocate RAM */
// mem.ram.block = (uint8_t*)calloc(SIZE_RAM, 1);
mem.ram.block = memory;
mem.flash.write = 0;
mem.flash.command = FLASH_NO_COMMAND;
printf("[eZ80-Emu] Initialized Memory...\n");
}
void mem_free(void) {
free(mem.ram.block);
mem.ram.block = NULL;
free(mem.flash.block);
mem.flash.block = NULL;
printf("[eZ80-Emu] Freed Memory.\n");
}
void mem_reset(void) {
// memset(mem.ram.block, 0, SIZE_RAM);
mem.ram.block = memory;
mem.flash.command = FLASH_NO_COMMAND;
printf("[eZ80-Emu] Memory reset.\n");
}
static uint32_t flash_block(uint32_t *addr, uint32_t *size) {
uint32_t mask = flash.mask;
if (size) {
*size = mask + 1;
}
if (*addr <= mask && flash.mapped) {
/* assume this will crash */
if (flash.waitStates == 6) {
flash.waitStates = 10;
cpu_crash("[CEmu] Reset triggered, flash data not latched.\n");
}
return flash.waitStates;
}
*addr &= mask;
return 258;
}
static void fix_size(uint32_t *addr, int32_t *size) {
if (*size < 0) {
*addr += *size;
*size = -*size;
}
}
static uint32_t addr_block(uint32_t *addr, int32_t size, void **block, uint32_t *block_size) {
if (*addr < 0xD00000) {
flash_block(addr, block_size);
*block = mem.flash.block;
*block_size = SIZE_FLASH;
} else if (*addr < 0xE00000) {
*addr &= 0x07FFFF;
*block = mem.ram.block;
*block_size = SIZE_RAM;
} else if (*addr < 0xE30800) {
*addr -= 0xE30200;
*block = lcd.palette;
*block_size = sizeof lcd.palette;
} else {
*addr -= 0xE30800;
*block = lcd.crsrImage;
*block_size = sizeof lcd.crsrImage;
}
return *addr + (unsigned int)size;
}
void *phys_mem_ptr(uint32_t addr, int32_t size) {
void *block;
uint32_t block_size, end_addr;
fix_size(&addr, &size);
end_addr = addr_block(&addr, size, &block, &block_size);
if (addr <= end_addr && addr <= block_size && end_addr <= block_size && block) {
return (uint8_t *)block + addr;
}
return NULL;
}
void *virt_mem_cpy(void *buf, uint32_t addr, int32_t size) {
uint8_t *dest = buf, *save_dest;
void *block;
uint32_t temp_addr, block_size, end_addr;
fix_size(&addr, &size);
if (!dest) {
dest = malloc((unsigned long)size);
}
save_dest = dest;
while (size) {
temp_addr = addr;
end_addr = addr_block(&temp_addr, size, &block, &block_size);
if (temp_addr <= end_addr && temp_addr < block_size && block) {
uint32_t temp_size = (end_addr <= block_size ? end_addr : block_size) - temp_addr;
memcpy(dest, (uint8_t *)block + temp_addr, temp_size);
dest += temp_size;
addr += temp_size;
size -= temp_size;
} else {
*dest++ = mem_peek_byte(addr++);
size--;
}
}
return save_dest;
}
void *virt_mem_dup(uint32_t addr, int32_t size) {
return virt_mem_cpy(NULL, addr, size);
}
void *mem_dma_cpy(void *buf, uint32_t addr, int32_t size) {
uint8_t *dest = buf, *save_dest;
fix_size(&addr, &size);
if (!dest) {
dest = malloc((unsigned long)size);
}
save_dest = dest;
while (size) {
addr &= 0x07FFFF;
if (addr + (unsigned int)size > addr && addr + (unsigned int)size <= SIZE_RAM) {
memcpy(dest, &mem.ram.block[addr], (unsigned long)size);
break;
}
if (addr < SIZE_RAM) {
uint32_t temp_size = SIZE_RAM - addr;
memcpy(dest, &mem.ram.block[addr], temp_size);
dest += temp_size;
addr += temp_size;
size -= temp_size;
} else {
*dest++ = mem_read_unmapped_ram(true);
size--;
}
}
return save_dest;
}
static void flash_reset_write_index(uint32_t addr, uint8_t byte) {
(void)addr;
(void)byte;
mem.flash.write = 0;
}
static void flash_write(uint32_t addr, uint8_t byte) {
unsigned int selected;
bool valid = false;
if (addr < 0x10000) {
selected = addr / SIZE_FLASH_SECTOR_8K;
valid = (mem.flash.sector8k[selected].ipb & mem.flash.sector8k[selected].dpb) == 1;
} else {
selected = addr / SIZE_FLASH_SECTOR_64K;
valid = (mem.flash.sector[selected].ipb & mem.flash.sector[selected].dpb) == 1;
}
if (valid == true) {
mem.flash.block[addr] &= byte;
}
}
static void flash_erase(uint32_t addr, uint8_t byte) {
unsigned int i;
(void)addr;
(void)byte;
mem.flash.command = FLASH_CHIP_ERASE;
for (i = 0; i < NUM_8K_SECTORS; i++) {
if ((mem.flash.sector8k[i].ipb & mem.flash.sector8k[i].dpb) == 1) {
memset(mem.flash.sector8k[i].ptr, 0xFF, SIZE_FLASH_SECTOR_8K);
}
}
for (i = 0; i < NUM_SECTORS; i++) {
if ((mem.flash.sector[i].ipb & mem.flash.sector[i].dpb) == 1) {
memset(mem.flash.sector[i].ptr, 0xFF, SIZE_FLASH_SECTOR_64K);
}
}
printf("[eZ80-Emu] Erased Unlocked Sectors.\n");
}
static void flash_erase_sector(uint32_t addr, uint8_t byte) {
unsigned int selected;
(void)byte;
mem.flash.command = FLASH_SECTOR_ERASE;
if (addr < 0x10000) {
selected = addr / SIZE_FLASH_SECTOR_8K;
if ((mem.flash.sector8k[selected].ipb & mem.flash.sector8k[selected].dpb) == 1) {
memset(mem.flash.sector8k[selected].ptr, 0xff, SIZE_FLASH_SECTOR_8K);
}
} else {
selected = addr / SIZE_FLASH_SECTOR_64K;
if ((mem.flash.sector[selected].ipb & mem.flash.sector[selected].dpb) == 1) {
memset(mem.flash.sector[selected].ptr, 0xff, SIZE_FLASH_SECTOR_64K);
}
}
}
static void flash_verify_sector_protection(uint32_t addr, uint8_t byte) {
(void)addr;
(void)byte;
mem.flash.command = FLASH_READ_SECTOR_PROTECTION;
}
static void flash_cfi_read(uint32_t addr, uint8_t byte) {
(void)addr;
(void)byte;
mem.flash.command = FLASH_READ_CFI;
}
static void flash_enter_deep_power_down(uint32_t addr, uint8_t byte) {
(void)addr;
(void)byte;
mem.flash.command = FLASH_DEEP_POWER_DOWN;
}
static void flash_enter_ipb(uint32_t addr, uint8_t byte) {
(void)addr;
(void)byte;
mem.flash.command = FLASH_IPB_MODE;
}
static void flash_enter_dpb(uint32_t addr, uint8_t byte) {
(void)addr;
(void)byte;
mem.flash.command = FLASH_DPB_MODE;
}
static void flash_erase_ipb(uint32_t addr, uint8_t byte) {
int i;
(void)addr;
(void)byte;
if( mem.flash.command == FLASH_IPB_MODE )
{
for (i = 0; i < NUM_8K_SECTORS; i++) {
mem.flash.sector8k[i].ipb = 1;
}
for (i = 0; i < NUM_SECTORS; i++) {
mem.flash.sector[i].ipb = 1;
}
/* this doesn't seem to happen on hardware? */
/*mem.flash.command = FLASH_WAIT_PB_EXIT;*/
}
}
static void flash_program_ipb(uint32_t addr, uint8_t byte) {
(void)byte;
if( mem.flash.command == FLASH_IPB_MODE )
{
unsigned int selected;
if (addr < 0x10000) {
selected = addr / SIZE_FLASH_SECTOR_8K;
mem.flash.sector8k[selected].ipb = 0;
} else {
selected = addr / SIZE_FLASH_SECTOR_64K;
mem.flash.sector[selected].ipb = 0;
}
mem.flash.command = FLASH_WAIT_PB_EXIT;
}
}
static void flash_program_dpb(uint32_t addr, uint8_t byte) {
if( mem.flash.command == FLASH_DPB_MODE )
{
unsigned int selected;
if (addr < 0x10000) {
selected = addr / SIZE_FLASH_SECTOR_8K;
mem.flash.sector8k[selected].dpb = byte & 1;
} else {
selected = addr / SIZE_FLASH_SECTOR_64K;
mem.flash.sector[selected].dpb = byte & 1;
}
mem.flash.command = FLASH_WAIT_PB_EXIT;
}
}
static void flash_exit_pb(uint32_t addr, uint8_t byte) {
if( mem.flash.command == FLASH_WAIT_PB_EXIT )
{
mem.flash.command = FLASH_NO_COMMAND;
flash_reset_write_index(addr, byte);
}
}
typedef const struct flash_write_pattern {
const int length;
const flash_write_t pattern[6];
void (*const handler)(uint32_t addr, uint8_t value);
} flash_write_pattern_t;
typedef struct flash_status_pattern {
uint8_t length;
uint8_t pattern[10];
} flash_status_pattern_t;
static flash_write_pattern_t patterns[] = {
{
.length = 4,
.pattern = {
{ .addr = 0xAAA, .addrMask = 0xFFF, .value = 0xAA, .valueMask = 0xFF },
{ .addr = 0x555, .addrMask = 0xFFF, .value = 0x55, .valueMask = 0xFF },
{ .addr = 0xAAA, .addrMask = 0xFFF, .value = 0xA0, .valueMask = 0xFF },
{ .addr = 0x000, .addrMask = 0x000, .value = 0x00, .valueMask = 0x00 },
},
.handler = flash_write
},
{
.length = 6,
.pattern = {
{ .addr = 0xAAA, .addrMask = 0xFFF, .value = 0xAA, .valueMask = 0xFF },
{ .addr = 0x555, .addrMask = 0xFFF, .value = 0x55, .valueMask = 0xFF },
{ .addr = 0xAAA, .addrMask = 0xFFF, .value = 0x80, .valueMask = 0xFF },
{ .addr = 0xAAA, .addrMask = 0xFFF, .value = 0xAA, .valueMask = 0xFF },
{ .addr = 0x555, .addrMask = 0xFFF, .value = 0x55, .valueMask = 0xFF },
{ .addr = 0x000, .addrMask = 0x000, .value = 0x30, .valueMask = 0xFF },
},
.handler = flash_erase_sector
},
{
.length = 6,
.pattern = {
{ .addr = 0xAAA, .addrMask = 0xFFF, .value = 0xAA, .valueMask = 0xFF },
{ .addr = 0x555, .addrMask = 0xFFF, .value = 0x55, .valueMask = 0xFF },
{ .addr = 0xAAA, .addrMask = 0xFFF, .value = 0x80, .valueMask = 0xFF },
{ .addr = 0xAAA, .addrMask = 0xFFF, .value = 0xAA, .valueMask = 0xFF },
{ .addr = 0x555, .addrMask = 0xFFF, .value = 0x55, .valueMask = 0xFF },
{ .addr = 0xAAA, .addrMask = 0xFFF, .value = 0x10, .valueMask = 0xFF },
},
.handler = flash_erase
},
{
.length = 1,
.pattern = {
{ .addr = 0xAA, .addrMask = 0xFFF, .value = 0x98, .valueMask = 0xFF },
},
.handler = flash_cfi_read
},
{
.length = 3,
.pattern = {
{ .addr = 0xAAA, .addrMask = 0xFFF, .value = 0xAA, .valueMask = 0xFF },
{ .addr = 0x555, .addrMask = 0xFFF, .value = 0x55, .valueMask = 0xFF },
{ .addr = 0xAAA, .addrMask = 0xFFF, .value = 0x90, .valueMask = 0xFF },
},
.handler = flash_verify_sector_protection
},
{
.length = 3,
.pattern = {
{ .addr = 0xAAA, .addrMask = 0xFFF, .value = 0xAA, .valueMask = 0xFF },
{ .addr = 0x555, .addrMask = 0xFFF, .value = 0x55, .valueMask = 0xFF },
{ .addr = 0x000, .addrMask = 0x000, .value = 0xB9, .valueMask = 0xFF },
},
.handler = flash_enter_deep_power_down
},
{
.length = 3,
.pattern = {
{ .addr = 0xAAA, .addrMask = 0xFFF, .value = 0xAA, .valueMask = 0xFF },
{ .addr = 0x555, .addrMask = 0xFFF, .value = 0x55, .valueMask = 0xFF },
{ .addr = 0xAAA, .addrMask = 0xFFF, .value = 0xC0, .valueMask = 0xFF },
},
.handler = flash_enter_ipb
},
{
.length = 3,
.pattern = {
{ .addr = 0xAAA, .addrMask = 0xFFF, .value = 0xAA, .valueMask = 0xFF },
{ .addr = 0x555, .addrMask = 0xFFF, .value = 0x55, .valueMask = 0xFF },
{ .addr = 0xAAA, .addrMask = 0xFFF, .value = 0xE0, .valueMask = 0xFF },
},
.handler = flash_enter_dpb
},
{
.length = 2,
.pattern = {
{ .addr = 0x000, .addrMask = 0x000, .value = 0x80, .valueMask = 0xFF },
{ .addr = 0x000, .addrMask = 0x000, .value = 0x30, .valueMask = 0xFF },
},
.handler = flash_erase_ipb
},
{
.length = 2,
.pattern = {
{ .addr = 0x000, .addrMask = 0x000, .value = 0xA0, .valueMask = 0xFF },
{ .addr = 0x000, .addrMask = 0x000, .value = 0x00, .valueMask = 0xFF },
},
.handler = flash_program_ipb
},
{
.length = 2,
.pattern = {
{ .addr = 0x000, .addrMask = 0x000, .value = 0xA0, .valueMask = 0xFF },
{ .addr = 0x000, .addrMask = 0x000, .value = 0x00, .valueMask = 0xFE },
},
.handler = flash_program_dpb
},
{
.length = 2,
.pattern = {
{ .addr = 0x000, .addrMask = 0x000, .value = 0x90, .valueMask = 0xFF },
{ .addr = 0x000, .addrMask = 0x000, .value = 0x00, .valueMask = 0xFF },
},
.handler = flash_exit_pb
},
{
.length = 0
}
};
static uint8_t mem_read_flash(uint32_t addr) {
uint8_t value = 0;
unsigned int selected;
cpu.cycles += flash_block(&addr, NULL);
if (flash.mapped) {
switch(mem.flash.command) {
case FLASH_NO_COMMAND:
value = mem.flash.block[addr];
break;
case FLASH_SECTOR_ERASE:
value = 0x80;
mem.flash.read++;
if (mem.flash.read == 3) {
mem.flash.read = 0;
mem.flash.command = FLASH_NO_COMMAND;
}
break;
case FLASH_CHIP_ERASE:
value = 0xFF;
mem.flash.command = FLASH_NO_COMMAND;
break;
case FLASH_READ_SECTOR_PROTECTION:
if (addr < 0x10000) {
selected = addr / SIZE_FLASH_SECTOR_8K;
value = !(mem.flash.sector8k[selected].ipb & mem.flash.sector8k[selected].dpb);
} else {
selected = addr / SIZE_FLASH_SECTOR_64K;
value = !(mem.flash.sector[selected].ipb & mem.flash.sector[selected].dpb);
}
break;
case FLASH_READ_CFI:
if (addr >= 0x20 && addr <= 0x2A) {
static const uint8_t id[7] = { 0x51, 0x52, 0x59, 0x02, 0x00, 0x40, 0x00 };
value = id[(addr - 0x20) / 2];
} else if (addr >= 0x36 && addr <= 0x50) {
static const uint8_t id[] = {
0x27, 0x36, 0x00, 0x00, 0x03, 0x04, 0x08, 0x0E,
0x03, 0x05, 0x03, 0x03, 0x16, 0x02, 0x00, 0x05,
0x00, 0x01, 0x08, 0x00, 0x00, 0x3F, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x50, 0x52, 0x49, 0x31, 0x33, 0x0C,
0x02, 0x01, 0x00, 0x08, 0x00, 0x00, 0x02, 0x95,
0xA5, 0x02, 0x01 };
value = id[(addr - 0x36) / 2];
}
break;
case FLASH_DEEP_POWER_DOWN:
break;
case FLASH_IPB_MODE:
if (addr < 0x10000) {
selected = addr / SIZE_FLASH_SECTOR_8K;
value = mem.flash.sector8k[selected].ipb;
} else {
selected = addr / SIZE_FLASH_SECTOR_64K;
value = mem.flash.sector[selected].ipb;
}
break;
case FLASH_DPB_MODE:
if (addr < 0x10000) {
selected = addr / SIZE_FLASH_SECTOR_8K;
value = mem.flash.sector8k[selected].dpb;
} else {
selected = addr / SIZE_FLASH_SECTOR_64K;
value = mem.flash.sector[selected].dpb;
}
break;
case FLASH_WAIT_PB_EXIT:
value = 0;
break;
default:
break;
}
} else {
value = mem_read_unmapped_flash(true);
}
return value;
}
static void mem_write_flash(uint32_t addr, uint8_t byte) {
int i;
int partial_match = 0;
flash_write_t *w;
flash_write_pattern_t *pattern;
cpu.cycles += flash_block(&addr, NULL);
if (!flash.mapped) {
return;
}
if (mem.flash.command != FLASH_NO_COMMAND) {
if ((mem.flash.command != FLASH_DEEP_POWER_DOWN && byte == 0xF0) ||
(mem.flash.command == FLASH_DEEP_POWER_DOWN && byte == 0xAB)) {
if( mem.flash.command != FLASH_WAIT_PB_EXIT )
{
mem.flash.command = FLASH_NO_COMMAND;
flash_reset_write_index(addr, byte);
}
return;
}
}
w = &mem.flash.writes[mem.flash.write++];
w->addr = addr;
w->value = byte;
for (pattern = patterns; pattern->length; pattern++) {
for (i = 0; (i < mem.flash.write) && (i < pattern->length) &&
(mem.flash.writes[i].addr & pattern->pattern[i].addrMask) == pattern->pattern[i].addr &&
(mem.flash.writes[i].value & pattern->pattern[i].valueMask) == pattern->pattern[i].value; i++) {
}
if (i == pattern->length) {
pattern->handler(addr, byte);
partial_match = 0;
break;
} else if (i == mem.flash.write) {
partial_match = 1;
}
}
if (!partial_match) {
flash_reset_write_index(addr, byte);
}
}
static bool detect_flash_unlock_sequence(uint8_t current) {
static const uint8_t flash_unlock_sequence[] = { 0xF3, 0x18, 0x00, 0xF3, 0xF3, 0xED, 0x7E, 0xED, 0x56, 0xED, 0x39, 0x28, 0xED, 0x38, 0x28, 0xCB, 0x57 };
uint8_t i;
if (current != flash_unlock_sequence[sizeof(flash_unlock_sequence) - 1] ||
!protected_ports_unlocked() || unprivileged_code()) {
return false;
}
for (i = 1; i != sizeof(flash_unlock_sequence); i++) {
if (mem.buffer[(mem.fetch + i) & (sizeof(mem.buffer) - 1)] != flash_unlock_sequence[i - 1]) {
return false;
}
}
return true;
}
uint8_t mem_read_cpu(uint32_t addr, bool fetch) {
uint8_t value = 0;
uint32_t ramAddr, select;
addr &= 0xFFFFFF;
#ifdef DEBUG_SUPPORT
if (!fetch) {
debug_stack_entry_t *entry = &debug.stack[debug.stackIndex];
if (entry->mode == cpu.L) {
if (entry->stack - addr <= 2 + (uint32_t)entry->mode) {
entry->popped = true;
}
if ((uint32_t)entry->retAddr + entry->range == addr) {
if (!++entry->range) {
--entry->range;
}
}
}
if (debug.addr[addr] & DBG_MASK_READ) {
debug_open(DBG_WATCHPOINT_READ, addr);
}
}
#endif
ramAddr = addr & 0x7FFFF;
value = mem.ram.block[ramAddr];
// switch((addr >> 20) & 0xF) {
// /* FLASH */
// case 0x0: case 0x1: case 0x2: case 0x3:
// case 0x4: case 0x5: case 0x6: case 0x7:
// value = mem_read_flash(addr);
// if (fetch && detect_flash_unlock_sequence(value)) {
// control.flashUnlocked |= 1 << 3;
// }
// break;
// /* UNMAPPED */
// case 0x8: case 0x9: case 0xA: case 0xB: case 0xC:
// value = mem_read_unmapped_other(true);
// cpu.cycles += 258;
// break;
// /* RAM */
// case 0xD:
// sched_process_pending_dma(4);
// ramAddr = addr & 0x7FFFF;
// if (ramAddr < 0x65800) {
// value = mem.ram.block[ramAddr];
// } else {
// value = mem_read_unmapped_ram(true);
// }
// break;
// /* MMIO <-> Advanced Perphrial Bus */
// case 0xE: case 0xF:
// if (mmio_mapped(addr, select)) {
// value = port_read_byte(mmio_port(addr, select));
// } else {
// if (addr >= 0xFB0000 && addr < 0xFF0000) {
// cpu.cycles += 3;
// } else {
// cpu.cycles += 2;
// }
// }
// break;
// }
if (fetch) {
mem.buffer[++mem.fetch] = value;
if (unprivileged_code()) {
control.flashUnlocked &= ~(1 << 3);
}
} else if (addr >= control.protectedStart && addr <= control.protectedEnd && unprivileged_code()) {
value = 0; /* reads from protected memory return 0 */
}
return value;
} /* end mem_read_cpu */
void mem_write_cpu(uint32_t addr, uint8_t value) {
uint32_t ramAddr, select;
addr &= 0xFFFFFF;
ramAddr = addr & 0x7FFFF;
mem.ram.block[ramAddr] = value;
// #ifdef DEBUG_SUPPORT
// if ((debug.addr[addr] &= ~(DBG_INST_START_MARKER | DBG_INST_MARKER)) & DBG_MASK_WRITE) {
// debug_open(DBG_WATCHPOINT_WRITE, addr);
// }
// #endif
// if (addr == control.stackLimit) {
// control.protectionStatus |= 1;
// printf("[eZ80-Emu] NMI reset caused by writing to the stack limit at address %#06x. Hint: Probably a stack overflow (aka too much recursion).\n", addr);
// cpu_nmi();
// } /* writes to stack limit succeed */
// if (addr >= control.protectedStart && addr <= control.protectedEnd && unprivileged_code()) {
// control.protectionStatus |= 2;
// printf("[eZ80-Emu] NMI reset caused by writing to protected memory (%#06x through %#06x) at address %#06x from unprivileged code.\n", control.protectedStart, control.protectedEnd, addr);
// cpu_nmi();
// } else { /* writes to protected memory are ignored */
// switch((addr >> 20) & 0xF) {
// /* FLASH */
// case 0x0: case 0x1: case 0x2: case 0x3:
// case 0x4: case 0x5: case 0x6: case 0x7:
// if (unprivileged_code()) {
// control.protectionStatus |= 2;
// printf("[eZ80-Emu] NMI reset caused by writing to flash at address %#06x from unprivileged code. Hint: Possibly a null pointer dereference.\n", addr);
// cpu_nmi();
// } else if (flash_unlocked()) {
// mem_write_flash(addr, value);
// } /* privileged writes with flash locked are probably ignored */
// break;
// /* UNMAPPED */
// case 0x8: case 0x9: case 0xA: case 0xB: case 0xC:
// cpu.cycles += 258;
// break;
// /* RAM */
// case 0xD:
// sched_process_pending_dma(2);
// ramAddr = addr & 0x7FFFF;
// if (ramAddr < 0x65800) {
// mem.ram.block[ramAddr] = value;
// }
// break;
// /* MMIO <-> Advanced Perphrial Bus */
// case 0xE: case 0xF:
// #ifdef DEBUG_SUPPORT
// if (debug.commands) {
// if (addr >= DBG_PORT_RANGE) {
// debug_open(addr, value);
// break;
// } else if ((addr >= DBGOUT_PORT_RANGE && addr < DBGOUT_PORT_RANGE+SIZEOF_DBG_BUFFER-1)) {
// debug.buffer[debug.bufPos] = (char)value;
// debug.bufPos = (debug.bufPos + 1) % SIZEOF_DBG_BUFFER;
// if (!value) {
// gui_console_printf("%s", debug.buffer);
// debug.bufPos = 0;
// }
// break;
// } else if ((addr >= DBGERR_PORT_RANGE && addr < DBGERR_PORT_RANGE+SIZEOF_DBG_BUFFER-1)) {
// debug.bufferErr[debug.bufErrPos] = (char)value;
// debug.bufErrPos = (debug.bufErrPos + 1) % SIZEOF_DBG_BUFFER;
// if (!value) {
// gui_console_err_printf("%s", debug.bufferErr);
// debug.bufErrPos = 0;
// }
// break;
// } else if (addr == DBGEXT_PORT) {
// switch (value) {
// case 1:
// gui_console_clear();
// break;
// default:
// break;
// }
// }
// }
// #endif
// if (mmio_mapped(addr, select)) {
// port_write_byte(mmio_port(addr, select), value);
// } else {
// if (addr >= 0xFB0000 && addr < 0xFF0000) {
// cpu.cycles += 3;
// } else {
// cpu.cycles += 2;
// }
// }
// break;
// }
// }
} /* end mem_write_cpu */
uint8_t mem_peek_byte(uint32_t addr) {
uint8_t value = 0;
uint32_t select;
addr &= 0xFFFFFF;
if (addr < 0xE00000) {
uint8_t *ptr;
if ((ptr = phys_mem_ptr(addr, 1))) {
value = *ptr;
} else {
value = mem_read_unmapped_ram(false);
}
} else if (mmio_mapped(addr, select)) {
value = port_peek_byte(mmio_port(addr, select));
}
return value;
}
uint16_t mem_peek_short(uint32_t addr) {
return mem_peek_byte(addr)
| mem_peek_byte(addr + 1) << 8;
}
uint32_t mem_peek_long(uint32_t addr) {
return mem_peek_byte(addr)
| mem_peek_byte(addr + 1) << 8
| mem_peek_byte(addr + 2) << 16;
}
uint32_t mem_peek_word(uint32_t addr, bool mode) {
addr = cpu_address_mode(addr, mode);
if (mode) {
return mem_peek_long(addr);
} else {
return mem_peek_short(addr);
}
}
void mem_poke_byte(uint32_t addr, uint8_t value) {
uint32_t select;
addr &= 0xFFFFFF;
if (addr < 0xE00000) {
uint8_t *ptr;
if ((ptr = phys_mem_ptr(addr, 1))) {
*ptr = value;
}
} else if (mmio_mapped(addr, select)) {
port_poke_byte(mmio_port(addr, select), value);
}
}
void mem_poke_short(uint32_t addr, uint16_t value) {
mem_poke_byte(addr, value);
mem_poke_byte(addr + 1, value >> 8);
}
void mem_poke_long(uint32_t addr, uint32_t value) {
mem_poke_byte(addr, value);
mem_poke_byte(addr + 1, value >> 8);
mem_poke_byte(addr + 2, value >> 16);
}
void mem_poke_word(uint32_t addr, uint32_t value, bool mode) {
addr = cpu_address_mode(addr, mode);
if (mode) {
mem_poke_long(addr, value);
} else {
mem_poke_short(addr, value);
}
}
uint8_t mem_read_unmapped_ram(bool update) {
static uint8_t value = 0;
if (update) {
value = bus_rand();
}
return value;
}
uint8_t mem_read_unmapped_flash(bool update) {
static uint8_t value = 0;
if (update) {
value = bus_rand();
}
return value;
}
uint8_t mem_read_unmapped_other(bool update) {
static uint8_t value = 0;
if (update) {
value = bus_rand();
}
return value;
}
bool mem_save(FILE *image) {
assert(mem.flash.block);
assert(mem.ram.block);
return fwrite(&mem, sizeof(mem), 1, image) == 1 &&
fwrite(mem.flash.block, SIZE_FLASH, 1, image) == 1 &&
fwrite(mem.ram.block, SIZE_RAM, 1, image) == 1;
}
bool mem_restore(FILE *image) {
bool ret = false;
unsigned int i;
uint8_t *tmp_flash_ptr;
uint8_t *tmp_ram_ptr;
assert(mem.flash.block);
assert(mem.ram.block);
tmp_flash_ptr = mem.flash.block;
tmp_ram_ptr = mem.ram.block;
ret |= fread(&mem, sizeof(mem), 1, image) == 1;
mem.flash.block = tmp_flash_ptr;
mem.ram.block = tmp_ram_ptr;
ret |= fread(mem.flash.block, SIZE_FLASH, 1, image) == 1 &&
fread(mem.ram.block, SIZE_RAM, 1, image) == 1;
for (i = 0; i < 8; i++) {
mem.flash.sector[i].ptr = &mem.flash.block[i*SIZE_FLASH_SECTOR_8K];
}
for (i = 0; i < 64; i++) {
mem.flash.sector[i].ptr = &mem.flash.block[i*SIZE_FLASH_SECTOR_64K];
}
return ret;
}