forked from pkivolowitz/Shapes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcylinder.cpp
214 lines (175 loc) · 6.75 KB
/
cylinder.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#include <iostream>
#include <stdexcept>
#include "cylinder.h"
// Leave this defined
#define TRIANGLES
using namespace std;
using namespace glm;
#if 0
Cylinder::Cylinder(int slices, int stacks, float span, float back_radius, float front_radius) : Shape()
{
float full_span = pi<float>() * 2.0f;
if (span == 0)
throw std::invalid_argument("bad span value");
if (stacks < 1)
throw std::invalid_argument("bad stack value");
if (back_radius == 0.0f && front_radius == 0.0f)
throw std::invalid_argument("bad radii");
this->slices = abs(slices);
this->stacks = stacks;
this->fr = front_radius;
this->br = back_radius;
this->span = min<float>(full_span, abs(span));
this->is_partial_span = this->span != full_span;
}
void Linear(float x, float * evaluation, float * derivitive, float fr, float br)
{
assert(evaluation != nullptr);
assert(derivitive != nullptr);
*evaluation = mix(br, fr, x);
*derivitive = normalize(fr - br);
}
void Quadratic(float x, float * evaluation, float * derivitive, float p1, float p2)
{
assert(evaluation != nullptr);
assert(derivitive != nullptr);
*evaluation = mix(p1, p2, x * x);
*derivitive = 2 * x;
}
void Cos(float x, float * evaluation, float * derivitive, float p1, float p2)
{
assert(evaluation != nullptr);
assert(derivitive != nullptr);
*evaluation = mix(p1, p2, x) * abs(cos(x));
*derivitive = -sin(x);
}
bool Cylinder::PreGLInitialize()
{
vec3 z_axis(0.0f, 0.0f, 1.0f);
// Cylinders are built with radius 1 and 1 unit long from -0.5 to 0.5 along the z axis.
vec4 p(this->br, 0.0f, 0.0f, 1.0f);
float t = 1.0f;
float delta_t = 1.0f / float(this->stacks);
// How far to advance between rings.
vec3 delta_z(0.0f, 0.0f, delta_t);
// Rotation angle between slices.
float theta = this->span / float(this->slices);
float evaluation;
float derivative;
vec3 e(1.005f, 1.005f, 1.0f);
float f = 1.0f + 1.0f / 7.0f;
vec3 scale_factor_for_normals(f, f, 1.0f);
int real_number_of_slices = this->slices + (this->is_partial_span ? 1 : 0);
this->data.vertices.reserve(real_number_of_slices * (this->stacks + 1));
this->data.textures.reserve(real_number_of_slices * (this->stacks + 1));
this->data.normals.reserve(real_number_of_slices * (this->stacks + 1));
this->data.normal_visualization_coordinates.reserve(real_number_of_slices * (this->stacks + 1) * 2);
mat4 m = translate(mat4(), vec3(0.0f, 0.0f, -0.5f));
for (int j = 0; j < this->stacks + 1; j++)
{
// Mix from back radius to front radius to derive
// the x coordinate of the point used to project the
// surface.
Linear(t, &evaluation, &derivative, this->fr, this->br);
// Given the slope from back to front, compute normal angle.
float rho = atan(derivative);
//cout << rho / pi<float>() * 180.0f << endl;
vec4 rotated_y_axis = rotate(mat4(), -rho, vec3(0.0f, 1.0f, 0.0f)) * vec4(1.0f, 0.0f, 0.0f, 1.0f);
//cout << rotated_y_axis.x << " " << rotated_y_axis.y << " " << rotated_y_axis.z << endl;
p.x = evaluation;
t -= delta_t;
// Reset m2 to nothing but back to front translation.
mat4 m2 = m;
mat4 m3;
// Notice j will vary up to and including this->stacks due to
// the this->stacks + 1 up above. This allows the s parameter
// to range fully from 0 to 1.
vec2 tc(j / float(this->stacks) , 0.0f);
for (int i = 0; i < real_number_of_slices; i++)
{
// Calculate which coordinate on current stack as the t value of tc.
// That is, vary this according to slices. If the cylinder is closed,
// real_number_of_slices will be one greater than the number of slices
// so the last value of the division below will be 1.0.
//
// The s value is computed above and varies only with each stack.
tc = vec2(tc.s , i / float(real_number_of_slices - 1));
this->data.textures.push_back(tc);
vec3 n = vec3(m3 * rotated_y_axis);
this->data.vertices.push_back(vec3(m2 * p));
this->data.normals.push_back(n);
this->data.normal_visualization_coordinates.push_back(*(this->data.vertices.end() - 1));
this->data.normal_visualization_coordinates.push_back(*(this->data.vertices.end() - 1) + *(this->data.normals.end() - 1) / this->NORMAL_LENGTH_DIVISOR);
this->data.colors.push_back(this->RandomColor((i > 0 ? *(this->data.colors.end() - 1) : vec4(0.5f, 0.5f, 0.5f, 1.0f)), -0.2f, 0.2f));
m2 = rotate(m2, -theta, z_axis);
m3 = rotate(m3, -theta, z_axis);
}
m = translate(m, delta_z);
}
// There will be two triangles per slice.
// First is: current outer, current inner, next outer
// Second is: next outer, current inner, next inner
for (int j = 0; j < this->stacks; j++)
{
for (int i = 0; i < this->slices; i++)
{
#ifdef TRIANGLES
// The winding is supposed to be clockwise. But this is definitely
// counter clockwise.
// First or Top triangle
this->data.indices.push_back(j * real_number_of_slices + i);
this->data.indices.push_back(j * real_number_of_slices + (i + 1) % real_number_of_slices);
this->data.indices.push_back((j + 1) * real_number_of_slices + i);
// Second or Bottom triangle
this->data.indices.push_back(j * real_number_of_slices + (i + 1) % real_number_of_slices);
this->data.indices.push_back((j + 1) * real_number_of_slices + (i + 1) % real_number_of_slices);
this->data.indices.push_back((j + 1) * real_number_of_slices + i);
#else
this->indices.push_back(j * real_number_of_slices + i);
this->indices.push_back((j + 1) * real_number_of_slices + i);
this->indices.push_back((j + 1) * real_number_of_slices + (i + 1) % real_number_of_slices);
this->indices.push_back(j * real_number_of_slices + (i + 1) % real_number_of_slices);
#endif
}
}
this->data.vbackup = this->data.vertices;
return true;
}
void Cylinder::RecomputeNormals()
{
int real_number_of_slices = this->slices + (this->is_partial_span ? 1 : 0);
vector<vec3> & v = data.vertices;
vector<vec3> & n = data.normals;
vector<vec3> & p = data.normal_visualization_coordinates;
vec3 a;
vec3 b;
vec3 sum;
int i = 0; // This is the true index of vertices.
for (int stack_counter = 0; stack_counter < this->stacks; stack_counter++)
{
for (int slice_counter = 0; slice_counter < real_number_of_slices; slice_counter++, i++)
{
sum = vec3(0.0f);
if (slice_counter == 0 && is_partial_span)
{
// This is the first vertex on this partial stack. It is treated differently
// as there are no triangles to the left.
}
else if (slice_counter == slices && is_partial_span)
{
// This is the last vertex on this partial stack. It is treated differently
// as there are no triangles to the right.
}
else
{
// Except for the above, all vertices can be treated identically with the provision of course of care about wrap-around.
//a = normalize(v[(i + 1)] - v[i]);
//b = normalize(v[(i + 1) % real_number_of_slices] - v[i]);
}
}
}
}
void Cylinder::NonGLTakeDown()
{
}
#endif