-
Notifications
You must be signed in to change notification settings - Fork 8
/
val_mm.py
185 lines (153 loc) · 7.32 KB
/
val_mm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import torch
import argparse
import yaml
import math
import os
import time
from pathlib import Path
from tqdm import tqdm
from tabulate import tabulate
from torch.utils.data import DataLoader
from torch.nn import functional as F
from semseg.models import *
from semseg.datasets import *
from semseg.augmentations_mm import get_val_augmentation
from semseg.metrics import Metrics
from semseg.utils.utils import setup_cudnn
from math import ceil
import numpy as np
from torch.utils.data import DistributedSampler, RandomSampler
from torch import distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from semseg.utils.utils import fix_seeds, setup_cudnn, cleanup_ddp, setup_ddp, get_logger, cal_flops, print_iou
def pad_image(img, target_size):
rows_to_pad = max(target_size[0] - img.shape[2], 0)
cols_to_pad = max(target_size[1] - img.shape[3], 0)
padded_img = F.pad(img, (0, cols_to_pad, 0, rows_to_pad), "constant", 0)
return padded_img
@torch.no_grad()
def sliding_predict(model, image, num_classes, flip=True):
image_size = image[0].shape
tile_size = (int(ceil(image_size[2]*1)), int(ceil(image_size[3]*1)))
overlap = 1/3
stride = ceil(tile_size[0] * (1 - overlap))
num_rows = int(ceil((image_size[2] - tile_size[0]) / stride) + 1)
num_cols = int(ceil((image_size[3] - tile_size[1]) / stride) + 1)
total_predictions = torch.zeros((num_classes, image_size[2], image_size[3]), device=torch.device('cuda'))
count_predictions = torch.zeros((image_size[2], image_size[3]), device=torch.device('cuda'))
tile_counter = 0
for row in range(num_rows):
for col in range(num_cols):
x_min, y_min = int(col * stride), int(row * stride)
x_max = min(x_min + tile_size[1], image_size[3])
y_max = min(y_min + tile_size[0], image_size[2])
img = [modal[:, :, y_min:y_max, x_min:x_max] for modal in image]
padded_img = [pad_image(modal, tile_size) for modal in img]
tile_counter += 1
padded_prediction = model(padded_img)
if flip:
fliped_img = [padded_modal.flip(-1) for padded_modal in padded_img]
fliped_predictions = model(fliped_img)
padded_prediction += fliped_predictions.flip(-1)
predictions = padded_prediction[:, :, :img[0].shape[2], :img[0].shape[3]]
count_predictions[y_min:y_max, x_min:x_max] += 1
total_predictions[:, y_min:y_max, x_min:x_max] += predictions.squeeze(0)
return total_predictions.unsqueeze(0)
@torch.no_grad()
def evaluate(model, dataloader, device):
print('Evaluating...')
model.eval()
n_classes = dataloader.dataset.n_classes
metrics = Metrics(n_classes, dataloader.dataset.ignore_label, device)
sliding = False
for images, labels in tqdm(dataloader):
images = [x.to(device) for x in images]
labels = labels.to(device)
if sliding:
preds = sliding_predict(model, images, num_classes=n_classes).softmax(dim=1)
else:
preds = model(images).softmax(dim=1)
metrics.update(preds, labels)
ious, miou = metrics.compute_iou()
acc, macc = metrics.compute_pixel_acc()
f1, mf1 = metrics.compute_f1()
return acc, macc, f1, mf1, ious, miou
@torch.no_grad()
def evaluate_msf(model, dataloader, device, scales, flip):
model.eval()
n_classes = dataloader.dataset.n_classes
metrics = Metrics(n_classes, dataloader.dataset.ignore_label, device)
for images, labels in tqdm(dataloader):
labels = labels.to(device)
B, H, W = labels.shape
scaled_logits = torch.zeros(B, n_classes, H, W).to(device)
for scale in scales:
new_H, new_W = int(scale * H), int(scale * W)
new_H, new_W = int(math.ceil(new_H / 32)) * 32, int(math.ceil(new_W / 32)) * 32
scaled_images = [F.interpolate(img, size=(new_H, new_W), mode='bilinear', align_corners=True) for img in images]
scaled_images = [scaled_img.to(device) for scaled_img in scaled_images]
logits = model(scaled_images)
logits = F.interpolate(logits, size=(H, W), mode='bilinear', align_corners=True)
scaled_logits += logits.softmax(dim=1)
if flip:
scaled_images = [torch.flip(scaled_img, dims=(3,)) for scaled_img in scaled_images]
logits = model(scaled_images)
logits = torch.flip(logits, dims=(3,))
logits = F.interpolate(logits, size=(H, W), mode='bilinear', align_corners=True)
scaled_logits += logits.softmax(dim=1)
metrics.update(scaled_logits, labels)
acc, macc = metrics.compute_pixel_acc()
f1, mf1 = metrics.compute_f1()
ious, miou = metrics.compute_iou()
return acc, macc, f1, mf1, ious, miou
def main(cfg):
device = torch.device(cfg['DEVICE'])
eval_cfg = cfg['EVAL']
transform = get_val_augmentation(eval_cfg['IMAGE_SIZE'])
# cases = ['cloud', 'fog', 'night', 'rain', 'sun']
# cases = ['motionblur', 'overexposure', 'underexposure', 'lidarjitter', 'eventlowres']
cases = [None] # all
model_path = Path(eval_cfg['MODEL_PATH'])
if not model_path.exists():
raise FileNotFoundError
print(f"Evaluating {model_path}...")
exp_time = time.strftime('%Y%m%d_%H%M%S', time.localtime())
eval_path = os.path.join(os.path.dirname(eval_cfg['MODEL_PATH']), 'eval_{}.txt'.format(exp_time))
for case in cases:
dataset = eval(cfg['DATASET']['NAME'])(cfg['DATASET']['ROOT'], 'val', transform, cfg['DATASET']['MODALS'], case)
# --- test set
# dataset = eval(cfg['DATASET']['NAME'])(cfg['DATASET']['ROOT'], 'test', transform, cfg['DATASET']['MODALS'], case)
model = eval(cfg['MODEL']['NAME'])(cfg['MODEL']['BACKBONE'], dataset.n_classes, cfg['DATASET']['MODALS'])
msg = model.load_state_dict(torch.load(str(model_path), map_location='cpu'))
print(msg)
model = model.to(device)
sampler_val = None
dataloader = DataLoader(dataset, batch_size=eval_cfg['BATCH_SIZE'], num_workers=eval_cfg['BATCH_SIZE'], pin_memory=False, sampler=sampler_val)
if True:
if eval_cfg['MSF']['ENABLE']:
acc, macc, f1, mf1, ious, miou = evaluate_msf(model, dataloader, device, eval_cfg['MSF']['SCALES'], eval_cfg['MSF']['FLIP'])
else:
acc, macc, f1, mf1, ious, miou = evaluate(model, dataloader, device)
table = {
'Class': list(dataset.CLASSES) + ['Mean'],
'IoU': ious + [miou],
'F1': f1 + [mf1],
'Acc': acc + [macc]
}
print("mIoU : {}".format(miou))
print("Results saved in {}".format(eval_cfg['MODEL_PATH']))
with open(eval_path, 'a+') as f:
f.writelines(eval_cfg['MODEL_PATH'])
f.write("\n============== Eval on {} {} images =================\n".format(case, len(dataset)))
f.write("\n")
print(tabulate(table, headers='keys'), file=f)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='configs/DELIVER.yaml')
args = parser.parse_args()
with open(args.cfg) as f:
cfg = yaml.load(f, Loader=yaml.SafeLoader)
setup_cudnn()
# gpu = setup_ddp()
# main(cfg, gpu)
main(cfg)