-
Notifications
You must be signed in to change notification settings - Fork 11
/
haxedoc.xml
7441 lines (7198 loc) · 280 KB
/
haxedoc.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<haxe>
<class path="Array" params="T" file="/usr/lib/haxe/std/Array.hx" extern="1">
<length public="1" set="null">
<x path="Int"/>
<haxe_doc>The length of `this` Array.</haxe_doc>
</length>
<concat public="1" set="method">
<f a="a">
<c path="Array"><c path="Array.T"/></c>
<c path="Array"><c path="Array.T"/></c>
</f>
<haxe_doc>Returns a new Array by appending the elements of `a` to the elements of
`this` Array.
This operation does not modify `this` Array.
If `a` is the empty Array `[]`, a copy of `this` Array is returned.
The length of the returned Array is equal to the sum of `this.length`
and `a.length`.
If `a` is `null`, the result is unspecified.</haxe_doc>
</concat>
<join public="1" set="method">
<f a="sep">
<c path="String"/>
<c path="String"/>
</f>
<haxe_doc>Returns a string representation of `this` Array, with `sep` separating
each element.
The result of this operation is equal to `Std.string(this[0]) + sep +
Std.string(this[1]) + sep + ... + sep + Std.string(this[this.length-1])`
If `this` is the empty Array `[]`, the result is the empty String `""`.
If `this` has exactly one element, the result is equal to a call to
`Std.string(this[0])`.
If `sep` is null, the result is unspecified.</haxe_doc>
</join>
<pop public="1" set="method">
<f a=""><t path="Null"><c path="Array.T"/></t></f>
<haxe_doc>Removes the last element of `this` Array and returns it.
This operation modifies `this` Array in place.
If `this` has at least one element, `this.length` will decrease by 1.
If `this` is the empty Array `[]`, null is returned and the length
remains 0.</haxe_doc>
</pop>
<push public="1" set="method">
<f a="x">
<c path="Array.T"/>
<x path="Int"/>
</f>
<haxe_doc>Adds the element `x` at the end of `this` Array and returns the new
length of `this` Array.
This operation modifies `this` Array in place.
`this.length` increases by 1.</haxe_doc>
</push>
<reverse public="1" set="method">
<f a=""><x path="Void"/></f>
<haxe_doc><![CDATA[Reverse the order of elements of `this` Array.
This operation modifies `this` Array in place.
If `this.length < 2`, `this` remains unchanged.]]></haxe_doc>
</reverse>
<shift public="1" set="method">
<f a=""><t path="Null"><c path="Array.T"/></t></f>
<haxe_doc>Removes the first element of `this` Array and returns it.
This operation modifies `this` Array in place.
If `this` has at least one element, `this`.length and the index of each
remaining element is decreased by 1.
If `this` is the empty Array `[]`, `null` is returned and the length
remains 0.</haxe_doc>
</shift>
<slice public="1" set="method">
<f a="pos:?end">
<x path="Int"/>
<x path="Int"/>
<c path="Array"><c path="Array.T"/></c>
</f>
<haxe_doc>Creates a shallow copy of the range of `this` Array, starting at and
including `pos`, up to but not including `end`.
This operation does not modify `this` Array.
The elements are not copied and retain their identity.
If `end` is omitted or exceeds `this.length`, it defaults to the end of
`this` Array.
If `pos` or `end` are negative, their offsets are calculated from the
end of `this` Array by `this.length + pos` and `this.length + end`
respectively. If this yields a negative value, 0 is used instead.
If `pos` exceeds `this.length` or if `end` exceeds or equals `pos`,
the result is `[]`.</haxe_doc>
</slice>
<sort public="1" set="method">
<f a="f">
<f a=":">
<c path="Array.T"/>
<c path="Array.T"/>
<x path="Int"/>
</f>
<x path="Void"/>
</f>
<haxe_doc><![CDATA[Sorts `this` Array according to the comparison function `f`, where
`f(x,y)` returns 0 if x == y, a positive Int if x > y and a
negative Int if x < y.
This operation modifies `this` Array in place.
The sort operation is not guaranteed to be stable, which means that the
order of equal elements may not be retained. For a stable Array sorting
algorithm, `haxe.ds.sort.MergeSort.sort()` can be used instead.
If `f` is null, the result is unspecified.]]></haxe_doc>
</sort>
<splice public="1" set="method">
<f a="pos:len">
<x path="Int"/>
<x path="Int"/>
<c path="Array"><c path="Array.T"/></c>
</f>
<haxe_doc><![CDATA[Removes `len` elements from `this` Array, starting at and including
`pos`, an returns them.
This operation modifies `this` Array in place.
If `len` is < 0 or `pos` exceeds `this`.length, the result is the empty
Array [].
If `pos` is negative, its value is calculated from the end of `this`
Array by `this.length + pos`. If this yields a negative value, 0 is
used instead.
If the sum of the resulting values for `len` and `pos` exceed
`this.length`, this operation will affect the elements from `pos` to the
end of `this` Array.
The length of the returned Array is equal to the new length of `this`
Array subtracted from the original length of `this` Array. In other
words, each element of the original `this` Array either remains in
`this` Array or becomes an element of the returned Array.]]></haxe_doc>
</splice>
<toString public="1" set="method">
<f a=""><c path="String"/></f>
<haxe_doc>Returns a string representation of `this` Array.
The result will include the individual elements' String representations
separated by comma. The enclosing [ ] may be missing on some platforms,
use Std.string() to get a String representation that is consistent
across platforms.</haxe_doc>
</toString>
<unshift public="1" set="method">
<f a="x">
<c path="Array.T"/>
<x path="Void"/>
</f>
<haxe_doc>Adds the element `x` at the start of `this` Array.
This operation modifies `this` Array in place.
`this.length` and the index of each Array element increases by 1.</haxe_doc>
</unshift>
<insert public="1" set="method">
<f a="pos:x">
<x path="Int"/>
<c path="Array.T"/>
<x path="Void"/>
</f>
<haxe_doc>Inserts the element `x` at the position `pos`.
This operation modifies `this` Array in place.
The offset is calculated like so:
- If `pos` exceeds `this.length`, the offset is `this.length`.
- If `pos` is negative, the offset is calculated from the end of `this`
Array, i.e. `this.length + pos`. If this yields a negative value, the
offset is 0.
- Otherwise, the offset is `pos`.
If the resulting offset does not exceed `this.length`, all elements from
and including that offset to the end of `this` Array are moved one index
ahead.</haxe_doc>
</insert>
<remove public="1" set="method">
<f a="x">
<c path="Array.T"/>
<x path="Bool"/>
</f>
<haxe_doc>Removes the first occurence of `x` in `this` Array.
This operation modifies `this` Array in place.
If `x` is found by checking standard equality, it is removed from `this`
Array and all following elements are reindexed acoordingly. The function
then returns true.
If `x` is not found, `this` Array is not changed and the function
returns false.</haxe_doc>
</remove>
<copy public="1" set="method">
<f a=""><c path="Array"><c path="Array.T"/></c></f>
<haxe_doc>Returns a shallow copy of `this` Array.
The elements are not copied and retain their identity, so
`a[i] == a.copy()[i]` is true for any valid `i`. However,
`a == a.copy()` is always false.</haxe_doc>
</copy>
<iterator public="1" set="method">
<f a=""><t path="Iterator"><c path="Array.T"/></t></f>
<haxe_doc>Returns an iterator of the Array values.</haxe_doc>
</iterator>
<map public="1" params="S" set="method">
<f a="f">
<f a="">
<c path="Array.T"/>
<c path="map.S"/>
</f>
<c path="Array"><c path="map.S"/></c>
</f>
<haxe_doc>Creates a new Array by applying function `f` to all elements of `this`.
The order of elements is preserved.
If `f` is null, the result is unspecified.</haxe_doc>
</map>
<filter public="1" set="method">
<f a="f">
<f a="">
<c path="Array.T"/>
<x path="Bool"/>
</f>
<c path="Array"><c path="Array.T"/></c>
</f>
<haxe_doc>Returns an Array containing those elements of `this` for which `f`
returned true.
The individual elements are not duplicated and retain their identity.
If `f` is null, the result is unspecified.</haxe_doc>
</filter>
<new public="1" set="method">
<f a=""><x path="Void"/></f>
<haxe_doc>Creates a new Array.</haxe_doc>
</new>
<haxe_doc>An Array is a storage for values. You can access it using indexes or
with its API. On the server side, it's often better to use a `List` which
is less memory and CPU consuming, unless you really need indexed access.</haxe_doc>
</class>
<abstract path="Class" params="T" file="/usr/lib/haxe/std/Class.hx">
<this><d/></this>
<haxe_doc>An abstract type that represents a Class.
See `Type` for the Haxe Reflection API.</haxe_doc>
<meta>
<m n=":valueUsed"/>
<m n=":coreType"/>
<m n=":runtimeValue"/>
</meta>
</abstract>
<class path="Date" params="" file="/usr/lib/haxe/std/Date.hx" extern="1">
<now public="1" set="method" static="1">
<f a=""><c path="Date"/></f>
<haxe_doc>Returns a Date representing the current local time.</haxe_doc>
</now>
<fromTime public="1" set="method" static="1">
<f a="t">
<x path="Float"/>
<c path="Date"/>
</f>
<haxe_doc>Returns a Date from timestamp `t`.</haxe_doc>
</fromTime>
<fromString public="1" set="method" static="1">
<f a="s">
<c path="String"/>
<c path="Date"/>
</f>
<haxe_doc>Returns a Date from a formated string `s`, with the following accepted
formats:
- `"YYYY-MM-DD hh:mm:ss"`
- `"YYYY-MM-DD"`
- `"hh:mm:ss"`
The first two formats are expressed in local time, the third in UTC
Epoch.</haxe_doc>
</fromString>
<getTime public="1" set="method">
<f a=""><x path="Float"/></f>
<haxe_doc>Returns the timestamp of the date. It might only have a per-second
precision depending on the platforms.</haxe_doc>
</getTime>
<getHours public="1" set="method">
<f a=""><x path="Int"/></f>
<haxe_doc>Returns the hours of `this` Date (0-23 range).</haxe_doc>
</getHours>
<getMinutes public="1" set="method">
<f a=""><x path="Int"/></f>
<haxe_doc>Returns the minutes of `this` Date (0-59 range).</haxe_doc>
</getMinutes>
<getSeconds public="1" set="method">
<f a=""><x path="Int"/></f>
<haxe_doc>Returns the seconds of the `this` Date (0-59 range).</haxe_doc>
</getSeconds>
<getFullYear public="1" set="method">
<f a=""><x path="Int"/></f>
<haxe_doc>Returns the full year of `this` Date (4-digits).</haxe_doc>
</getFullYear>
<getMonth public="1" set="method">
<f a=""><x path="Int"/></f>
<haxe_doc>Returns the month of `this` Date (0-11 range).</haxe_doc>
</getMonth>
<getDate public="1" set="method">
<f a=""><x path="Int"/></f>
<haxe_doc>Returns the day of `this` Date (1-31 range).</haxe_doc>
</getDate>
<getDay public="1" set="method">
<f a=""><x path="Int"/></f>
<haxe_doc>Returns the day of the week of `this` Date (0-6 range).</haxe_doc>
</getDay>
<toString public="1" set="method">
<f a=""><c path="String"/></f>
<haxe_doc>Returns a string representation of `this` Date, by using the
standard format [YYYY-MM-DD HH:MM:SS]. See `DateTools.format` for
other formating rules.</haxe_doc>
</toString>
<new public="1" set="method">
<f a="year:month:day:hour:min:sec">
<x path="Int"/>
<x path="Int"/>
<x path="Int"/>
<x path="Int"/>
<x path="Int"/>
<x path="Int"/>
<x path="Void"/>
</f>
<haxe_doc>Creates a new date object from the given arguments.
The behaviour of a Date instance is only consistent across platforms if
the the arguments describe a valid date.
- month: 0 to 11
- day: 1 to 31
- hour: 0 to 23
- min: 0 to 59
- sec: 0 to 59</haxe_doc>
</new>
<haxe_doc>The Date class provides a basic structure for date and time related
information. Date instances can be created by
- `new Date()` for a specific date,
- `Date.now()` to obtain information about the current time,
- `Date.fromTime()` with a given timestamp or
- `Date.fromString()` by parsing from a String.
There is some extra functions available in the `DateTools` class.
In the context of haxe dates, a timestamp is defined as the number of
milliseconds elapsed since 1st January 1970.</haxe_doc>
</class>
<class path="EReg" params="" file="/usr/lib/haxe/std/flash/_std/EReg.hx">
<r><c path="flash.utils.RegExp"/></r>
<result><c path="+Array"/></result>
<match public="1" set="method" line="31">
<f a="s">
<c path="String"/>
<x path="Bool"/>
</f>
<haxe_doc>Tells if `this` regular expression matches String `s`.
This method modifies the internal state.
If `s` is `null`, the result is unspecified.</haxe_doc>
</match>
<matched public="1" set="method" line="37">
<f a="n">
<x path="Int"/>
<c path="String"/>
</f>
<haxe_doc>Returns the matched sub-group `n` of `this` EReg.
This method should only be called after `this.match` or
`this.matchSub`, and then operates on the String of that operation.
The index `n` corresponds to the n-th set of parentheses in the pattern
of `this` EReg. If no such sub-group exists, an exception is thrown.
If `n` equals 0, the whole matched substring is returned.</haxe_doc>
</matched>
<matchedRight public="1" set="method" line="47">
<f a=""><c path="String"/></f>
<haxe_doc>Returns the part to the right of the last matched substring.
If the most recent call to `this.match` or `this.matchSub` did not
match anything, the result is unspecified.
If the global g modifier was in place for the matching, only the
substring to the right of the leftmost match is returned.
The result does not include the matched part.</haxe_doc>
</matchedRight>
<new public="1" set="method" line="27">
<f a="r:opt">
<c path="String"/>
<c path="String"/>
<x path="Void"/>
</f>
<haxe_doc>Creates a new regular expression with pattern `r` and modifiers `opt`.
This is equivalent to the shorthand syntax `~/r/opt`
If `r` or `opt` are null, the result is unspecified.</haxe_doc>
</new>
<haxe_doc>The EReg class represents regular expressions.
While basic usage and patterns consistently work across platforms, some more
complex operations may yield different results. This is a necessary trade-
off to retain a certain level of performance.
EReg instances can be created by calling the constructor, or with the
special syntax ~/pattern/modifier
EReg instances maintain an internal state, which is affected by several of
its methods.
A detailed explanation of the supported operations is available at
http://haxe.org/doc/cross/regexp</haxe_doc>
<meta>
<m n=":keep"/>
<m n=":coreApi"/>
</meta>
</class>
<abstract path="Enum" params="T" file="/usr/lib/haxe/std/Enum.hx">
<this><d/></this>
<haxe_doc>An abstract type that represents an Enum type.
The corresponding enum instance type is `EnumValue`.
See `Type` for the Haxe Reflection API.</haxe_doc>
<meta>
<m n=":coreType"/>
<m n=":runtimeValue"/>
</meta>
</abstract>
<abstract path="EnumValue" params="" file="/usr/lib/haxe/std/EnumValue.hx">
<this><d/></this>
<haxe_doc>An abstract type that represents any enum value.
See `Type` for the Haxe Reflection API.</haxe_doc>
<meta><m n=":coreType"/></meta>
</abstract>
<class path="Lambda" params="" file="/usr/lib/haxe/std/Lambda.hx">
<array public="1" params="A" set="method" line="42" static="1">
<f a="it">
<t path="Iterable"><c path="array.A"/></t>
<c path="Array"><c path="array.A"/></c>
</f>
<haxe_doc>Creates an Array from Iterable `it`.
If `it` is an Array, this function returns a copy of it.</haxe_doc>
</array>
<filter public="1" params="A" set="method" line="159" static="1">
<f a="it:f">
<t path="Iterable"><c path="filter.A"/></t>
<f a="">
<c path="filter.A"/>
<x path="Bool"/>
</f>
<c path="List"><c path="filter.A"/></c>
</f>
<haxe_doc>Returns a List containing those elements of `it` for which `f` returned
true.
If `it` is empty, the result is the empty List even if `f` is null.
Otherwise if `f` is null, the result is unspecified.</haxe_doc>
</filter>
<haxe_doc>The `Lambda` class is a collection of methods to support functional
programming. It is ideally used with 'using Lambda' and then acts as an
extension to Iterable types.
On static platforms, working with the Iterable structure might be slower
than performing the operations directly on known types, such as Array and
List.
If the first argument to any of the methods is null, the result is
unspecified.</haxe_doc>
<meta><m n=":keep"/></meta>
</class>
<class path="List" params="T" file="/usr/lib/haxe/std/List.hx">
<h><c path="Array"><d/></c></h>
<q><c path="Array"><d/></c></q>
<length public="1" set="null">
<x path="Int"/>
<haxe_doc>The length of `this` List.</haxe_doc>
</length>
<add public="1" set="method" line="49">
<f a="item">
<c path="List.T"/>
<x path="Void"/>
</f>
<haxe_doc>Adds element `item` at the end of `this` List.
`this.length` increases by 1.</haxe_doc>
</add>
<iterator public="1" set="method" line="161">
<f a=""><t path="Iterator"><c path="List.T"/></t></f>
<haxe_doc>Returns an iterator on the elements of the list.</haxe_doc>
</iterator>
<new public="1" set="method" line="40">
<f a=""><x path="Void"/></f>
<haxe_doc>Creates a new empty list.</haxe_doc>
</new>
<haxe_doc>A linked-list of elements. The list is composed of two-elements arrays
that are chained together. It is optimized so that adding or removing an
element does not imply copying the whole array content every time.</haxe_doc>
<meta><m n=":keep"/></meta>
</class>
<abstract path="Map" params="K:V" file="/usr/lib/haxe/std/Map.hx">
<from>
<icast field="fromStringMap"><c path="haxe.ds.StringMap"><c path="fromStringMap.V"/></c></icast>
<icast field="fromIntMap"><c path="haxe.ds.IntMap"><c path="fromIntMap.V"/></c></icast>
<icast field="fromObjectMap"><c path="haxe.ds.ObjectMap">
<c path="fromObjectMap.K"/>
<c path="fromObjectMap.V"/>
</c></icast>
</from>
<this><c path="IMap">
<c path="Map.K"/>
<c path="Map.V"/>
</c></this>
<to>
<icast field="toStringMap"><c path="haxe.ds.StringMap"><c path="Map.V"/></c></icast>
<icast field="toIntMap"><c path="haxe.ds.IntMap"><c path="Map.V"/></c></icast>
<icast field="toEnumValueMapMap"><c path="haxe.ds.EnumValueMap">
<c path="toEnumValueMapMap.K"/>
<c path="Map.V"/>
</c></icast>
<icast field="toObjectMap"><c path="haxe.ds.ObjectMap">
<c path="toObjectMap.K"/>
<c path="Map.V"/>
</c></icast>
</to>
<haxe_doc><![CDATA[Map allows key to value mapping for arbitrary value types, and many key
types.
This is a multi-type abstract, it is instantiated as one of its
specialization types depending on its type parameters.
A Map can be instantiated without explicit type parameters. Type inference
will then determine the type parameters from the usage.
Maps can also be created with `key1 => value1, key2 => value2` syntax.
Map is an abstract type, it is not available at runtime.]]></haxe_doc>
<meta><m n=":multiType"/></meta>
<impl><class path="_Map.Map_Impl_" params="" file="/usr/lib/haxe/std/Map.hx" private="1" module="Map"><meta><m n=":keep"/></meta></class></impl>
</abstract>
<class path="IMap" params="K:V" file="/usr/lib/haxe/std/Map.hx" module="Map" interface="1"><meta><m n=":keep"/></meta></class>
<typedef path="_Map.Hashable" params="" file="/usr/lib/haxe/std/Map.hx" private="1" module="Map"><a><hashCode set="method"><f a=""><x path="Int"/></f></hashCode></a></typedef>
<class path="Math" params="" file="/usr/lib/haxe/std/Math.hx" extern="1">
<PI public="1" set="null" static="1"><x path="Float"/></PI>
<NEGATIVE_INFINITY public="1" set="null" static="1">
<x path="Float"/>
<haxe_doc>A special Float constant which denotes negative infinity.
For example, this is the result of -1.0 / 0.0.
Operations with NEGATIVE_INFINITY as an operand may result in
Operations with NEGATIVE_INFINITY as an operand may result in
NEGATIVE_INFINITY, POSITIVE_INFINITY or NaN. For detailed information,
see ...
If this constant is converted to an Int, e.g. through Std.int(), the
result is unspecified.</haxe_doc>
</NEGATIVE_INFINITY>
<POSITIVE_INFINITY public="1" set="null" static="1">
<x path="Float"/>
<haxe_doc>A special Float constant which denotes negative infinity.
For example, this is the result of 1.0 / 0.0.
Operations with POSITIVE_INFINITY as an operand may result in
NEGATIVE_INFINITY, POSITIVE_INFINITY or NaN. For detailed information,
see ...
If this constant is converted to an Int, e.g. through Std.int(), the
result is unspecified.</haxe_doc>
</POSITIVE_INFINITY>
<NaN public="1" set="null" static="1">
<x path="Float"/>
<haxe_doc>A special Float constant which denotes an invalid number.
NaN stands for "Not a Number". It occurs when a mathematically incorrect
operation is executed, such as taking the square root of a negative
number: Math.sqrt(-1).
All further operations with NaN as an operand will result in NaN.
If this constant is converted to an Int, e.g. through Std.int(), the
result is unspecified.
In order to test if a value is NaN, you should use Math.isNaN() function.
(Php) In PHP versions prior to 5.3.1 VC 9 there may be unexpected
results when performing arithmetic operations with NaN on Windows, see:
https://bugs.php.net/bug.php?id=42143</haxe_doc>
</NaN>
<abs public="1" set="method" static="1">
<f a="v">
<x path="Float"/>
<x path="Float"/>
</f>
<haxe_doc>Returns the absolute value of `v`.
If `v` is positive or 0, the result is unchanged. Otherwise the result
is -`v`.
If `v` is NEGATIVE_INFINITY or POSITIVE_INFINITY, the result is
POSITIVE_INFINITY.
If `v` is NaN, the result is NaN.</haxe_doc>
</abs>
<min public="1" set="method" static="1">
<f a="a:b">
<x path="Float"/>
<x path="Float"/>
<x path="Float"/>
</f>
<haxe_doc>Returns the smaller of values `a` and `b`.
If `a` or `b` are NaN, the result is NaN.
If `a` or `b` are NEGATIVE_INFINITY, the result is NEGATIVE_INFINITY.
If `a` and `b` are POSITIVE_INFINITY, the result is POSITIVE_INFINITY.</haxe_doc>
</min>
<max public="1" set="method" static="1">
<f a="a:b">
<x path="Float"/>
<x path="Float"/>
<x path="Float"/>
</f>
<haxe_doc>Returns the greater of values `a` and `b`.
If `a` or `b` are NaN, the result is NaN.
If `a` or `b` are POSITIVE_INFINITY, the result is POSITIVE_INFINITY.
If `a` and `b` are NEGATIVE_INFINITY, the result is NEGATIVE_INFINITY.</haxe_doc>
</max>
<sin public="1" set="method" static="1">
<f a="v">
<x path="Float"/>
<x path="Float"/>
</f>
<haxe_doc>Returns the trigonometric sine of `v`.
The unit of `v` is radians.
If `v` is NaN or infinite, the result is NaN.</haxe_doc>
</sin>
<cos public="1" set="method" static="1">
<f a="v">
<x path="Float"/>
<x path="Float"/>
</f>
<haxe_doc>Returns the trigonometric cosine of `v`.
The unit of `v` is radians.
If `v` is NaN or infinite, the result is NaN.</haxe_doc>
</cos>
<tan public="1" set="method" static="1"><f a="v">
<x path="Float"/>
<x path="Float"/>
</f></tan>
<asin public="1" set="method" static="1"><f a="v">
<x path="Float"/>
<x path="Float"/>
</f></asin>
<acos public="1" set="method" static="1"><f a="v">
<x path="Float"/>
<x path="Float"/>
</f></acos>
<atan public="1" set="method" static="1"><f a="v">
<x path="Float"/>
<x path="Float"/>
</f></atan>
<atan2 public="1" set="method" static="1"><f a="y:x">
<x path="Float"/>
<x path="Float"/>
<x path="Float"/>
</f></atan2>
<exp public="1" set="method" static="1">
<f a="v">
<x path="Float"/>
<x path="Float"/>
</f>
<haxe_doc>Returns Euler's number, raised to the power of `v`.
exp(1.0) is approximately 2.718281828459.
If `v` is POSITIVE_INFINITY, the result is POSITIVE_INFINITY.
If `v` is NEGATIVE_INFINITY, the result is 0.0.
If `v` is NaN, the result is NaN.</haxe_doc>
</exp>
<log public="1" set="method" static="1">
<f a="v">
<x path="Float"/>
<x path="Float"/>
</f>
<haxe_doc>Returns the natural logarithm of `v`.
If `v` is negative (including NEGATIVE_INFINITY) or NaN, the result is
NaN.
If `v` is POSITIVE_INFINITY, the result is POSITIVE_INFINITY.
If `v` is 0.0, the result is NEGATIVE_INFINITY.
This is the inverse operation of exp, i.e. log(exp(v)) == v always
holds.</haxe_doc>
</log>
<pow public="1" set="method" static="1"><f a="v:exp">
<x path="Float"/>
<x path="Float"/>
<x path="Float"/>
</f></pow>
<sqrt public="1" set="method" static="1">
<f a="v">
<x path="Float"/>
<x path="Float"/>
</f>
<haxe_doc>Returns the square root of `v`.
If `v` is negative (including NEGATIVE_INFINITY) or NaN, the result is
NaN.
If `v` is POSITIVE_INFINITY, the result is POSITIVE_INFINITY.
If `v` is 0.0, the result is 0.0.</haxe_doc>
</sqrt>
<round public="1" set="method" static="1">
<f a="v">
<x path="Float"/>
<x path="Int"/>
</f>
<haxe_doc>Rounds `v` to the nearest Int value.
If v is outside of the signed Int32 range, or is NaN, NEGATIVE_INFINITY or POSITIVE_INFINITY, the result is unspecified.
TODO: need spec</haxe_doc>
</round>
<floor public="1" set="method" static="1">
<f a="v">
<x path="Float"/>
<x path="Int"/>
</f>
<haxe_doc>Returns the largest Int value that is not greater than `v`.
If v is outside of the signed Int32 range, or is NaN, NEGATIVE_INFINITY or POSITIVE_INFINITY, the result is unspecified.
TODO: need spec</haxe_doc>
</floor>
<ceil public="1" set="method" static="1">
<f a="v">
<x path="Float"/>
<x path="Int"/>
</f>
<haxe_doc>Returns the smallest Int value that is not less than `v`.
If v is outside of the signed Int32 range, or is NaN, NEGATIVE_INFINITY or POSITIVE_INFINITY, the result is unspecified.
TODO: need spec</haxe_doc>
</ceil>
<random public="1" set="method" static="1">
<f a=""><x path="Float"/></f>
<haxe_doc>Returns a pseudo-random number which is greater than or equal to 0.0,
and less than 1.0.</haxe_doc>
</random>
<ffloor public="1" set="method" static="1"><f a="v">
<x path="Float"/>
<x path="Float"/>
</f></ffloor>
<fceil public="1" set="method" static="1"><f a="v">
<x path="Float"/>
<x path="Float"/>
</f></fceil>
<fround public="1" set="method" static="1"><f a="v">
<x path="Float"/>
<x path="Float"/>
</f></fround>
<isFinite public="1" set="method" static="1">
<f a="f">
<x path="Float"/>
<x path="Bool"/>
</f>
<haxe_doc>Tells if `f` is a finite number.
If `f` is POSITIVE_INFINITY, NEGATIVE_INFINITY or NaN, the result is
false.
Otherwise the result is true.</haxe_doc>
</isFinite>
<isNaN public="1" set="method" static="1">
<f a="f">
<x path="Float"/>
<x path="Bool"/>
</f>
<haxe_doc>Tells if `f` is not a valid number.
If `f` is NaN, the result is true.
Otherwise the result is false. In particular, both POSITIVE_INFINITY and
NEGATIVE_INFINITY are not considered NaN.</haxe_doc>
</isNaN>
<haxe_doc>This class defines mathematical functions and constants.</haxe_doc>
</class>
<class path="Random" params="" file="src/Random.hx">
<bool public="1" get="inline" set="null" line="15" static="1">
<f a=""><x path="Bool"/></f>
<haxe_doc>Return a random boolean value (true or false)</haxe_doc>
</bool>
<int public="1" get="inline" set="null" line="21" static="1">
<f a="from:to">
<x path="Int"/>
<x path="Int"/>
<x path="Int"/>
</f>
<haxe_doc>Return a random integer between 'from' and 'to', inclusive.</haxe_doc>
</int>
<float public="1" get="inline" set="null" line="27" static="1">
<f a="from:to">
<x path="Float"/>
<x path="Float"/>
<x path="Float"/>
</f>
<haxe_doc>Return a random float between 'from' and 'to', inclusive.</haxe_doc>
</float>
<string public="1" set="method" line="34" static="1">
<f a="length:?charactersToUse">
<x path="Int"/>
<c path="String"/>
<c path="String"/>
</f>
<haxe_doc>Return a random string of a certain length. You can optionally specify
which characters to use, otherwise the default is (a-zA-Z0-9)</haxe_doc>
</string>
<date public="1" get="inline" set="null" line="45" static="1">
<f a="earliest:latest">
<c path="Date"/>
<c path="Date"/>
<c path="Date"/>
</f>
<haxe_doc><![CDATA[Return a random date & time from within a range. The behaviour is unspecified if either `earliest` or `latest` is null. Earliest and Latest are inclusive]]></haxe_doc>
</date>
<fromArray public="1" params="T" get="inline" set="null" line="51" static="1">
<f a="arr">
<c path="Array"><c path="fromArray.T"/></c>
<t path="Null"><c path="fromArray.T"/></t>
</f>
<haxe_doc>Return a random item from an array. Will return null if the array is null or empty.</haxe_doc>
</fromArray>
<shuffle public="1" params="T" set="method" line="58" static="1">
<f a="arr">
<c path="Array"><c path="shuffle.T"/></c>
<c path="Array"><c path="shuffle.T"/></c>
</f>
<haxe_doc>Shuffle an Array. This operation affects the array in place, and returns that array.
The shuffle algorithm used is a variation of the [Fisher Yates Shuffle](http://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle)</haxe_doc>
</shuffle>
<fromIterable public="1" params="T" get="inline" set="null" line="73" static="1">
<f a="it">
<t path="Iterable"><c path="fromIterable.T"/></t>
<t path="Null"><c path="fromIterable.T"/></t>
</f>
<haxe_doc>Return a random item from an iterable. Will return null if the iterable is null or empty.</haxe_doc>
</fromIterable>
<enumConstructor public="1" params="T" get="inline" set="null" line="79" static="1">
<f a="e">
<x path="Enum"><c path="enumConstructor.T"/></x>
<t path="Null"><c path="enumConstructor.T"/></t>
</f>
<haxe_doc>Return a random constructor from an Enum. Will return null if the enum has no constructors. Only works with enum constructors that take no parameters.</haxe_doc>
</enumConstructor>
<haxe_doc>**
* Copyright (c) 2013 Jason O'Neil
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**</haxe_doc>
</class>
<class path="RandomTest" params="" file="test/RandomTest.hx">
<beforeClass public="1" set="method" line="19">
<f a=""><x path="Void"/></f>
<meta><m n="BeforeClass"/></meta>
</beforeClass>
<afterClass public="1" set="method" line="24">
<f a=""><x path="Void"/></f>
<meta><m n="AfterClass"/></meta>
</afterClass>
<setup public="1" set="method" line="29">
<f a=""><x path="Void"/></f>
<meta><m n="Before"/></meta>
</setup>
<tearDown public="1" set="method" line="34">
<f a=""><x path="Void"/></f>
<meta><m n="After"/></meta>
</tearDown>
<int public="1" set="method" line="40">
<f a=""><x path="Void"/></f>
<meta><m n="Test"/></meta>
</int>
<intNegative public="1" set="method" line="52">
<f a=""><x path="Void"/></f>
<meta><m n="Test"/></meta>
</intNegative>
<intNegativeAndPositive public="1" set="method" line="64">
<f a=""><x path="Void"/></f>
<meta><m n="Test"/></meta>
</intNegativeAndPositive>
<intInclusive public="1" set="method" line="76">
<f a=""><x path="Void"/></f>
<meta><m n="Test"/></meta>
</intInclusive>
<float public="1" set="method" line="83">
<f a=""><x path="Void"/></f>
<meta><m n="Test"/></meta>
</float>
<floatNegative public="1" set="method" line="95">
<f a=""><x path="Void"/></f>
<meta><m n="Test"/></meta>
</floatNegative>
<floatNegativeAndPositive public="1" set="method" line="107">
<f a=""><x path="Void"/></f>
<meta><m n="Test"/></meta>
</floatNegativeAndPositive>
<floatDecimal public="1" set="method" line="119">
<f a=""><x path="Void"/></f>
<meta><m n="Test"/></meta>
</floatDecimal>
<floatInclusive public="1" set="method" line="131">
<f a=""><x path="Void"/></f>
<meta><m n="Test"/></meta>
</floatInclusive>
<bool public="1" set="method" line="138">
<f a=""><x path="Void"/></f>
<meta><m n="Test"/></meta>
</bool>
<string public="1" set="method" line="149">
<f a=""><x path="Void"/></f>
<meta><m n="Test"/></meta>
</string>
<stringWithCustomRange public="1" set="method" line="166">
<f a=""><x path="Void"/></f>
<meta><m n="Test"/></meta>
</stringWithCustomRange>
<date public="1" set="method" line="183">
<f a=""><x path="Void"/></f>
<meta><m n="Test"/></meta>
</date>
<arrayOfStrings public="1" set="method" line="199">
<f a=""><x path="Void"/></f>
<meta><m n="Test"/></meta>
</arrayOfStrings>
<arrayOfInts public="1" set="method" line="219">
<f a=""><x path="Void"/></f>
<meta><m n="Test"/></meta>
</arrayOfInts>
<arrayEmpty public="1" set="method" line="239">
<f a=""><x path="Void"/></f>
<meta><m n="Test"/></meta>
</arrayEmpty>
<arrayNull public="1" set="method" line="246">
<f a=""><x path="Void"/></f>
<meta><m n="Test"/></meta>
</arrayNull>
<enumConstructor public="1" set="method" line="253">
<f a=""><x path="Void"/></f>
<meta><m n="Test"/></meta>
</enumConstructor>
<enumConstructorNone public="1" set="method" line="268">